تأثير الضغط العالي على طاقة الفجوة في أشباه الموصلات الضوئية
الملخص
في هذه الدراسة، تم تحليل تأثير الضغط العالي على فجوة طاقة النطاق لعدة اشباه الموصلات الضوئية ( ,ZnO, MgO, CdO, WO3, CaO, ZnS, ZrO2 , InO2 ,SnO2 , و TiO2 ) من خلال تطبيق المعادلة التي قدمها Angillela. تساعد هذه المعادلة في تحليل التغير في فجوة الطاقة مع الضغط نسبة الى التغير في ثابت الشبيكة البلورية. لحساب الضغط استخدمنا معادلة الحالة لـ Murnaghan . معادلة Angillela أثبتت دقتها مع ZnO المكعب و MgO الهيكلي من نوع وورزايت، و CdO من نوع ملح الصخور، فيما كان تطبيق المعادلة لبقية أشباه الموصلات ليست دقيقة تماماً. تظهر نتائجنا أن فجوة الطاقة لهذه أشباه الموصلات الضوئية تتصرف بشكل مشابه لأشباه الموصلات الاخرى تحت الضغط العالي، حيث تزداد فجوة الطاقة مع زيادة الضغط بالإضافة إلى ذلك، بينت النتائج ان ثابت الشبيكة يقل مع تطبيق الضغط لجميع أشباه الموصلات الضوئية المستخدمة في هذا العمل
المراجع
- M. A. Barakat, "New trends in removing heavy metals from industrial wastewater," Arab. J. Chem., vol. 4, pp. 361–377, 2011. https://doi.org/10.1016/j.arabjc.2010.07.019
- M. Monira, M. A. Helal, M. N. H. Liton, M. Kamruzzaman, and S. Kojima, "Elastic, optoelectronic and photocatalytic properties of semiconducting CsNbO₃: first principles insights," Sci. Rep., vol. 13, p. 10246, 2023. http://dx.doi.org/10.1038/s41598-023-36875-x
- A. K. Pandey, S. Srivastava, and C. K. Dixit, "A paradigm shift in high-pressure equation of state modeling: unveiling the pressure-bulk modulus relationship," Iran. J. Sci. Technol., vol. 47, no. 3, pp. 1877–1882, 2023. https://doi.org/10.1007/s40995-023-01535-2
- P. Cheng et al., "Pressure-optimized band gap and enhanced photoelectric response of graphitic carbon nitride with nitrogen vacancies," Phys. Rev. Appl., vol. 19, no. 2, p. 024048, 2023.
- G. G. N. Angilella, N. H. March, I. A. Howard, and R. Pucci, "Pressure dependence of the energy gaps in diamond type, and their III-V analogues such as InSb," J. Phys.: Conf. Ser., vol. 121, p. 032006, 2008. https://doi.org/10.1088/1742-6596/121/3/032006
- F. Birch, "Finite elastic strain of cubic crystal," Phys. Rev., vol. 71, pp. 809–824, 1947. https://doi.org/10.1103/PhysRev.71.809
- F. D. Murnaghan, "The compressibility of media under extreme pressures," Proc. Natl. Acad. Sci. U.S.A., vol. 30, no. 9, pp. 244–247, 1944. https://doi.org/10.1073/pnas.30.9.244
- C. A. G. Jemmy, P. R. Sudha, and S. M. Rajeswarapalanichamy, "Structural, electronic and elastic properties of ZnO and CdO: A first-principles study," Procedia Mater. Sci., vol. 5, pp. 1034–1042, 2014. https://doi.org/10.1016/j.mspro.2014.07.394
- K. Li, C. Kang, and D. Xue, "Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys," Mater. Res. Bull., vol. 47, pp. 2092–2905, 2012. https://doi.org/10.1016/j.materresbull.2012.04.115
- Y. Z. Zhu, G. D. Chen, and H. Ye, "Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys," Phys. Rev. B, vol. 77, p. 245209, 2008. https://doi.org/10.1103/PhysRevB.77.245209
- X. Liu and H.-Q. Fan, "Electronic structure, elasticity, Debye temperature and anisotropy of cubic WO₃ from first-principles calculation," R. Soc. Open Sci., vol. 5, p. 171921, 2018. https://doi.org/10.1098/rsos.171921
- H. Widiyandari, I. Firdaus, V. S. Kadaisman, and A. Purwanto, "Optical properties and photocatalytic activities of Tungsten Oxide (WO₃) with platinum co-catalyst addition," AIP Conf. Proc., vol. 1712, p. 050027, 2016. https://doi.org/10.1063/1.4941910
- M. M. Abdus Salam, "Theoretical study of CaO, CaS and CaSe via first-principles calculations," Results Phys., vol. 10, pp. 934–945, 2018. https://doi.org/10.1016/j.rinp.2018.07.042
- B. Zhu et al., "Structures, phase transition, elastic properties of SnO₂ from first-principles analysis," Phys. B Condens. Matter, vol. 406, pp. 3508–3513, 2011. https://doi.org/10.1016/j.physb.2011.06.036
- F. J. Arlinghaus, "Energy bands in stannic oxide (SnO₂)," J. Phys. Chem. Solids, vol. 35, no. 8, pp. 931–935, 1974. https://doi.org/10.1016/S0022-3697(74)80102-2
- J. Qi, F. Liu, Y. He, W. Chen, and C. Wang, "Compression behavior and phase transition of cubic In₂O₃ nanocrystals," J. Appl. Phys., vol. 109, p. 063520, 2011. https://doi.org/10.1063/1.3561363
- T. Suzuki, H. Watanabe, T. Ueno, Y. Oaki, and H. Imai, "Significant increase in band gap and emission efficiency of In₂O₃ quantum dots by size-tuning around 1 nm in supermicroporous silicas," Langmuir, vol. 33, no. 12, pp. 3014–3017, 2017. https://doi.org/10.1021/acs.langmuir.6b04181
- L. Jin, L. Ni, Q. Yu, A. Rauf, and C. Zhou, "Theoretical calculations of thermodynamic properties of tetragonal ZrO₂," Comput. Mater. Sci., vol. 65, pp. 170–174, 2012. https://doi.org/10.1016/j.commatsci.2012.07.008
- F. Zandiehnadem, R. A. Murray, and W. Y. Ching, "Electronic structures of three phases of zirconium oxide," Physica B+C, vol. 150, pp. 19–24, 1988. https://doi.org/10.1016/0378-4363(88)90099-X
- B. H. Elias and N. S. Saadi, "First principle pseudopotential study of zinc blend to rock salt phase transition in ZnS," Int. J. Sci. Eng. Res., vol. 4, no. 2, pp. 1–4, 2013.
- Sachin, B. K. Pandey, R. L. Jaiswal, (Theoretical prediction for bandgap of semiconducting nanoparticles), Adv. Matt. Lett. 12(10), 2115700, (2021). https://doi.org/10.5185/aml.2021.15700
- T. Mahmood, Ch. Cao, R. Ahmed, M. Ahmed, M. A. Saeed, A. A. Zafar, T. Hussain, M. A. Kamran, "Pressure induced structural and electronic bandgap properties of Anatas and Rutile TiO₂," Sains Malaysiana, vol. 42, no. 2, pp. 231–237, 2012.
تنزيل هذا الملف
الإحصائيات
التنزيلات
كيفية الاقتباس
##submission.copyrightAndLicensing##

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.





