التمثيل المصفوفي لجبر لي المحلول القابل للتفكيك سداسي الأبعاد
الملخص
تُوسّع هذه الورقة تصنيف اللوب الطوبولوجية المتصلة ثلاثية الأبعاد ، حيث تكون مجموعة الضرب فيها عبارة عن زمرة لي سداسية الأبعاد قابلة للتحلل والحل. بناءً على النتائج المهمة الواردة في [1]، والتي أثبتت انعدام القوى المركزية من الدرجة الثانية لهذه الوب، نستنتج وبشكل صريح تمثيلات مصفوفيه لجبر لي المرتبط بها. تُعد هذه التمثيلات بالغة الأهمية لإكمال التصنيف، إذ تُسهّل التحقق من التوافق مع الشروط العملية المعرفة على جبر لي. نحدد 26 عائلة مميزة من زمر لي المصفوفية، بما في ذلك 18 مجموعة تتميز بأحادية المركز و8 مجموعات ثنائية المركز. بالإضافة إلى ذلك، نُوضح التوافق بين هذه المجموعات وجبر لي المُشتق منها. تُعالج نتائجنا فجوة قائمة في الأدبيات من خلال توفير إطار منهجي لدراسة العلاقات المتبادلة بين الوب الطوبولوجية وزمر لي المُناظرة لها.
المراجع
- A. Al-Abayechi and . Á. Figula, "Topological loops with Six-dimensional decomposable solvable multiplication groups," vol. 77, no. 20, 2022, doi.org/10.1007/s00025-021-01546-8.
- A. A. Albert, "Quasigroups I," Trans. Amer. Math. Soc., no. 54, pp. 507-519, 1943, doi.org/10.1090/S0002-9947-1943-0009962-7.
- R. H. Bruck, "Contributions to the Theory of Loops," Trans. Amer. Math. Soc., no. 60, pp. 245-354, 1946, doi.org/10.1090/S0002-9947-1946-0017288-3 .
- M. Mazur, "Connected transversals to nilpotent groups," Walter de Gruyter, 2007, DOI 10.1515/JGT.2007.015 .
- D. Stanovský and P. Vojtěchovský, "Abelian extensions and solvable loops," Results in Mathematics, vol. 66, no. 3, pp. 367-384, 2014, doi.org/10.1007/s00025-014-0382-6.
- M. Niemenmaa, "Finite loops with nilpotent inner mapping groups are centrally nilpotent," Bulletin of the Australian Mathematical Society, vol. 79, no. 1, pp. 109-114, 2009, doi:10.1017/S0004972708001093 .
- G. Thompson and A. Shabanskaya, "Solvable extensions of a special class of Nilpotent Lie Algebras," Archivum Mathematicum, no. 49, p. 141–159, 2013, DOI: 10.5817/AM2013-3-141 .
- A. Vesanen, "Solvable groups and loops," Journal of Algebra, vol. 180, no. 3, pp. 862-876, 1996, doi.org/10.1006/jabr.1996.0098.
- C. Wright, "On the multiplication group of a loop," Illinois Journal of Mathematics, vol. 13, no. 4, pp. 660-673, 1969, DOI: 10.1215/ijm/1256053425.
- M. Niemenmaa and K. Tomáš , "On multiplication groups of loops," Journal of Algebra, vol. 135, no. 1, pp. 112-122, 1990, doi.org/10.1016/0021-8693(90)90152-E .
- P. Csörgő, "On connected transversals to abelian subgroups and loop theoretical consequences," Archiv der Mathematik, vol. 86, pp. 499-516, 2006, doi.org/10.1007/s00013-006-1379-5 .
- A. Drápal, "Orbits of inner mapping groups," Monatshefte für Mathematik, vol. 134, pp. 191-206, 2002, doi.org/10.1007/s605-002-8256-2 .
- G. P. Nagy and P. Vojtěchovský, "Moufang loops with commuting inner mappings," Journal of Pure and Applied Algebra, vol. 213, no. 11, pp. 2177-2186, 2009, doi.org/10.1016/j.jpaa.2009.04.004 .
- M. Niemenmaa, "On finite loops whose inner mapping groups are abelian," Bulletin of the Australian Mathematical Society, vol. 65, no. 3, pp. 477-484, 2002, doi.org/10.1017/S0004972700020529 .
- A. Vesanen, "Finite classical groups and multiplication groups of loops," Mathematical Proceedings of the Cambridge Philosophical Society, vol. 117, no. 3, pp. 425-429, 1995, doi.org/10.1017/S0305004100073278.
- P. Nagy and K. Strambach, Loops in group theory and Lie theory, Walter de Gruyter, 2011.
- A. Figula, "The multiplication groups of 2-dimensional topological loops," Walter de Gruyter GmbH & Co. KG, pp. 419-429, 2009, doi.org/10.1515/JGT.2008.087 .
- A. Figula, "On the Multiplication Groups of Three-Dimensional Topological Loops," J. Lie Theory, no. 21, pp. 385-415, 2011, https://zbmath.org/1222.22020.
- A. Figula, "Three-dimensional topological loops with solvable multiplication groups," Communications in Algebra, vol. 42, no. 1, pp. 444-468, 2014, doi.org/10.1080/00927872.2012.717320 .
- A. Figula and M. Lattuca, "Three-dimensional topological loops with nilpotent multiplication groups," J. Lie Theory, vol. 25, pp. 787-805, 2015, https://zbmath.org/1331.22007 .
- A. Figula and A. Al-Abayechi, "Topological loops with solvable multiplication groups of dimension at most six are centrally nilpotent," International Journal of Group Theory, vol. 9, no. 2, pp. 81-94, 2020, doi.org/10.22108/IJGT.2019.114770.1522.
- Á. Figula and . A. Al-Abayechi, "Topological loops having solvable indecomposable Lie groups as their multiplication groups," Transformation Groups, vol. 26, no. 1, pp. 279-303, 2020, doi.org/10.1007/s00031-020-09604-1 .
- Á. Figula, K. Ficzere and A. Al-Abayechi, "Topological loops with six-dimensional solvable multiplication groups having five-dimensional nilradical," Annales Mathematicae et Informaticae, vol. 50, pp. 71-87, 2019, doi.org/10.33039/ami.2019.08.001 .
- R. Ghanam, . I. Strugar and G. Thompson, "Matrix representation for low dimensional Lie algebras," EXTRACTA MATHEMATICE, vol. 20, no. 2, p. 151–184, 2005.
- G. M. Mubarakzyanov, "On Solvable Lie Algebras," Izv. Vyssh. Uchebn. Zaved. Mat. , no. 1, p. 114–123, 1963.
- G. M. Mubarakzyanov, " Classification of real structures of Lie Algebras of fifth order," Izv. Vyssh. Uchebn. Zaved. Mat., no. 3, pp. 99-106, 1963.
- R. H. Bruck, "Contributions to the theory of loops," Transactions of the American Mathematical Society, vol. 60, no. 2, pp. 245-354, 1946, doi.org/10.1090/S0002-9947-1946-0017288-3.
تنزيل هذا الملف
الإحصائيات
التنزيلات
كيفية الاقتباس
##submission.copyrightAndLicensing##

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.





