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MINIMUM COST 
QUALITY CONTROL TESTS 

 
Bassim Mansour* 

 
ABSTRACT 
    An expected cost model of a process whose mean is con-
trolled by an X  chart is developed.  
    Tow- stage numerical procedure is used to calculate the 
sample size, the number of units produced between sample, and 
the control limits of optimal control charts.   
 
1- INTRODUCTION 
    Statistical testing procedures are used to control the quality of 
products produced by many types of industrial processes.  
    A product is considered characteristic of the product falls 
within prescribed limits, otherwise, the product is considered to 
be unacceptable or defective. 
    In most processes, the measurable characteristic which 
describes product quality is a random variable whose density 
function depends upon one or more parameters. 
    A process is said to be in control when these parameters equal 
some prescribed values called the control values. Control values 
of parameters which maximize the percent of   acceptable quality 
product are generally selected. 
    The function of quality control procedure is to determine if the 
process is in or out of control. 
    This function is accomplished by periodically testing the null 
hypothesis that the process parameters are equal to the control 
values. The test is conducted by measuring the quality of a 
sample of several units of product. 
    From these measurements, the value of a test statistic is 
calculated. 
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    The set of all possible values of the test statistic is divided in to 
two subsets.  
    One subset includes these values of the test statistics 
considered likely to occur if the null hypothesis is true. 
    The other subset includes those values considered unlikely to 
occur if the null hypothesis is true. 
    This later subset is generally called the test critical region. If a 
value of the test statistic falls in the critical region, the null 
hypothesis is rejected and the process is investigated in order to 
determine and correct the condition which caused the process to 
go out of control. 
    If the value of the test statistic is not in the critical region, the 
null hypothesis is not rejected, the process is assumed to be in 
control, and it is allowed to continue to operate. 
    As in any hypothesis testing procedure, two types of errors 
may be made.  
    One type (generally called type 1 errors) involves rejecting the 
null hypothesis when the process is in control.  
    The second type (generally called type П errors) involves the 
acceptance of the null hypothesis when the process is out of 
control. 
    Type П error leads to costs associated with the increase in 
defective products produced by an out-of-control process.  
    Coat of unnecessary investigation and loss of production arise 
from type І error.  
    Both of these costs can be decreased by increasing the sample 
size and the frequency of sampling.  
    This reduction in error cost is, of course, accompanied by an 
increase in sampling and testing costs. 
    TypeΙ  error costs can also be decreased by decreasing the size 
of the critical region.  
    Decreasing the size of the critical region increasing the 
probability of accepting the null hypothesis when is it true, thus 
decreasing the type Ι error costs.  
    However, if some alternative hypothesis is true (that is, if the 
process is out of control) the probability of accepting the null 
hypothesis is also increased, thus increasing type ΙΙ error costs.           
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2- Purpose of the article 
    The purpose of this article is to develop a method for choosing 
the test parameters (that is, the sample size, the frequency of 
sampling, and the critical region) in a manner that will minimize 
the total cost. 
    The investigation will be limited to quality control tests 
involving a single process parameter.   
  
3- The Content 
 
    The method presented in most introductory quality control 
texts (for example, Burr (2), Duncan (5), and Grant (8)) involves 
the selection of the simple size and the critical region such that 
the power of the test to detect some specified shift in the process 
parameter (that is, the probability of rejection the null hypothesis 
given some specific alternative hypothesis) and the type І error 
level are some arbitrarily selected values.  
    With approach, the problem of how frequently a sample 
should be taken is ignored. 
    It has also been suggested Wetler (13) that the sample size 
should be selected to minimize the total amount of sampling 
required to detect a process parameter shift of some specified 
size with some specific probability. 
    Several investigations on minimum cost selection of quality 
control test parameters have been reported. 
    Cowden (3) carried out some numerical experiments based on 
the assumption that the process mean is out of control at the 
beginning of the day. 
    Duncan (4) assumed that the process may shift from the in-
control state to a single out-of-control state any time during the 
day.  
    He further assumed that the process remains in the in-control 
state before going out-of-control is an exponential random 
variable with mean )( 1−λ  hours. 
    Girshick and Rubin (7) considered the problem of minimizing 
the running and repair costs for a machine which could be 
considered to be in one of four states. 
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    The first two states represent levels of performance while the 
last two represent overhaul states. 
    Bather (1) developed a stopping rule which indicates when 
production on a machine should be halted and the machine 
overhauled. Tayler (11) shows that inspection of a fixed number 
of items at a fixed interval of time is non-optimal. 
    Instead, sampling should be determined at each stage by the 
current posterior probabilities. 
    Using this approach, Taylor (12) develops an optimal control 
procedure based on the assumption that the process has only two 
states, in-control and out-of-control. 
    Despite the non-optimal nature of fixed sample size, fixed time 
increment sampling plans, such plans are still widely used 
because of their ease of administration. 
    In light of the widespread use, it is desirable to obtain an 
optimal sampling plan within the class of fixed size –fixed time 
sampling plans. It is the purpose of this article to develop a 
method for selecting the optimal sampling plan from this class of 
plans. 
    In place of the assumption of one in-control state and one out-
of-control state made by other authors DUNCAN (4), TAYLOR 
(12), it is assumed that the process parameter, µ, is a continuous 
random variable which can be satisfactorily approximated by a 
discrete random variable. 
    One value, µ0, of the discrete random variable is associated 
with the    in-control value of the process parameter and the 
remaining values, 521 ,..........,, µµµ , are associated with out-of-
control values of the process parameter. 
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4- GENERAL COST MODEL 
    The expected total cost )(cE , per unit of product, associated 
with a quality control test procedure can be written as 
 

[ ]1...........)()()()( 321 cEcEcEcE ++=  
 
    Where )( 1cE is the expected cost per unit associated with 
carrying out the test procedure, )( 2cE is the expected cost per 
unit associated with investigating and carrying the process when 
the test indicates that the process is out of control (that is, when 
the null hypothesis is rejected), and )( 3cE is the expected cost 
per unit associated with the production of defective product. 
    Both Cowden (3) and Duncan (4) consider the cost of 
sampling and testing to consist of a constant a mount 
independent of the number of units sampled plus a constant a 
mount for each unit sampled. 
    In view of the difficulty of obtaining accurate cost estimates, 
more complex cost functions appear to be unwarranted.  
    Thus, the expected sampling and testing cost per unit is 
 

[ ]2...........)( 21
1 k
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k
a

cE +=  

  
Where 
n  is the sampling size, 

1a   is the fixed cost per sample, 

2a   is the cost per unit of product sampled, 
k    is the number of units produced between samples. 
 
    The cost of rejecting the null hypothesis involves the costs of 
determining and correcting the cause of an apparent shift of the 
process parameter from 0µ to some new value of .µ  
    There may be some reason to suppose that the costs of 
determining the cause of a shift will depend upon the true value 

n
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of the parameterµ , since it is likely that the cause of small shifts 
will be more difficult to find than the cause of large shift. 
    However, the cost of correcting process after the cause has 
been determined is often larger for large shifts than for small 
shifts. 
    It is also difficult to conceive of a situation prior information 
will be available concerning the cost of correcting a process as a 
function of the true value of the parameterµ . 
    Prior information is generally available concerning how often 
the process goes out of control, how long the process is 
inoperative, and the cost per hour of an inoperative process. 
    From this information, the average cost of getting the process 
back into operation can be determined with reasonable accuracy.  
    Thus, it will be assumed that the cost of investigating and 
correcting a process that is apparently out of control is a random 
variable, (ν ), with mean a3 whose distribution does not depend 
on the parameterµ . 
    If(u) is a random variable which takes on the value one if the 
null hypothesis is rejected and zero otherwise, and if (ν ) equals 
zero when (u) equals zero (that is, investigation and correction 
costs are not incurred unless the null hypothesis is rejected ), then 
the expected cost per unit for rejecting the null hypothesis is 
 

k
upacE )1()( 3

2
=

=   

    Let (q ) be the row vector of probabilities ( iq ), where ( iq ) is 
the conditional probability of rejecting.  
    Ho given ( iµµ = ), and let (α ) be the row vector of 
probabilities ( iα ), where ( iα ) is the probability that ( iµµ = ) at 
the time the test is performed, then the expected cost of rejecting 
the null hypothesis is  

 
 
 

where tα  is the transpose ofα . 
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    There is some intuitive appeal to the argument that the 
relationship between the number of defectives produced and the 
cost of producing defectives is nonlinear, since a small number of 
defectives may go unnoticed by the custom while a large number 
of defective may cause loss of future business.  
    However, in view of the inherent difficulties involved in 
determining the nature of this relationship, a simple linear 
relationship is assumed. 
    If a4 is the cost associated with producing a defective unit of 
product, if f is the row vector of probabilities if , where if is the 
conditional probability of producing a defective unit given 

iµµ = , and if γ  is the row vector of probabilities iγ  where 

iγ is the       probability that the process is in state )( iµ , then the 
expected cost per unit associated with accept the null hypothesis 
is  
 

[ ]4...........)( t
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Combining equations 1, 2, 3, and 4, the total expected cost 
becomes 
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    In the above function, the a's are cost coefficients which are 
assumed to be functionally independent of the test parameter. 
    The vector f depends only on the nature of the process 
parameter and the definition of defective unit and, thus, does not 
functionally depend on the test parameters.  
    The vectorq ,α  and γ are, however, functionally dependent on 
the test parameters.  
    The form of this dependency is developed in later sections. 
Thus far, only two (that is, n andk ) of the three test parameters 
have been defined. 
    In order to express the third test parameter (that is, the test 
critical rejoin) as a single parameter, some restrictions must be 
placed on the nature of the test. 

n
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    It will be assumed that the test statistic, (T ), is normally 
distributed with mean (µ ) and variance ( N/2σ ), and that the 
critical rejoin is symmetric and defined by the critical rejoin 
parameter L  such that the null hypothesis is rejected if  

)/(0 NLT σµ +>   
Of if 

)/(0 NLT σµ −<  
 
 
4-1 PROBABILITY VECTOR   q    
       On the basis of the assumption that (T ) is normally 
distributed with mean (µ ) and variance ( N/2σ ), the 
probability of rejecting ( 0H ) when ( iµµ = ) can be written as 
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When i=0 the above reduces to 
 

[ ]7..........)(20 Lq φ=   
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4-2 PROBABILITY VECTOR α 
 
    The elements, iα , of the probability vector α  represent the 
steady-state probability that the process is in state i (that 
is, iµµ = ) at the time a sample is selected. 
    To obtain these steady-state probabilities, the transition 
probability matrix, )(β , is required-the elements, )( ijb , of the 
matrix )(β  represent the probability of the process shifting from  
state )(i  to state )( j  during the production of the )(k  unit 
between sample. 
    To obtain the probabilities )( ijb  the a priori probabilities 

vector )( p  must be defined. The elements )( ip  of the 
vector )( p  represent the probability that the process will shift 
from the in-control state (that is, 0µµ =  ) to the out-of-control 
state ( iµµ = ) during the production of )(k  units.  
    If it is assumed that the time the process remains in the in-
control state before going out-of–control is an exponential 
random variable      with mean )( 1−λ  hours, then the probability 
of remaining in state )( 0µ  for )(h  hours is  
 

h
h

0
1 λλτλ −− =− ∫ edte       

    If a production rate of )(R  units per hour is assumed and the 
production of a fraction of a unit is allowed, )( 0p  becomes 
 

[ ]8.........../R
0

Κ′−Κ− == λλ eep  
 
Where )/( Rλλ =′  (that is, 1−′λ  is the average number of 
units produced before an out-of-control shift occurs). 
    Same method is needed to assign the remaining probability   

)1( Κ′−− λe ,to the )(s  states ),..........,,( 521 µµµ . Many such 
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assignments exist; however, one simple family of distribution, 
which is indexed by single parameter, is presented. 
    Recall that the binomial probability of )(i  successes in )(s  
trials is  
 

isi
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Where .10 << π  recall also that 
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But probabilities, )( ip , are desired such that  
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For si ..,,.........3,2,1=  
    It is easily show that )( 0p  defined by equation )8(  and )( ip  
defined by equation )9(  define a probability distribution for a 
discrete random variable wich takes on the values     

).,,.........2,1,0( s . To show this, note that all )( ip  must be non-
negative and that 
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    While it is difficult to justify this a priori distribution on an 
intuitive basis, by appropriate choice of )(),( πλ′  and )(s  
should be possible approximate almost any desired a priori 
distribution. 
    Several additional assumptions must be made before the 
transition probabilities are defined. 
    First it is assumed that when the process goes out-of-control 
(that is, µ  shifts from 0µ  to iµ ) it stays out-of-control until 
detected (that is, until 0H  is rejected). In practice this means that 
the process will not correct itself.  
    It will be further assumed that when the process goes out-of-
control it will not improve, but it may get worse.  
    This means that if )(µ  shifts to )( iµ  it cannot shift back to 

)( ji −µ  but it may shift to )( i j+µ . However, only one shift is 
allowed in each testing period. 
    On the basis of these two assumptions, the elements of )(β  
can now be defined.  
    When )( j  is less than )(i  the probability, )( ijb  that the 

process is in state )( iµ  at time )(t   and in state )( jµ at time 

))/(( Rkt +  is simply the probability of rejecting )( 0H  (that 
is, iq ) at time )(t  multiplied by the probability )( ip  of shifting 
to )( jµ  during the production of the next )(k  units. Thus, 
for )( ij < , 
 

[ ]10...........jiij pqb =  

    For the case )( ij > , the probability of failing to reject )( 0H  
at time )(t   multiplied by the probability, )( ijp  of shifting 

directly (that     is, without returning to 0µ  ) from )( iµ  to )( jµ  
in the time required produce )(k  units must be added to the 
above equation.  
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    Thus far, the )( ,
ij sp  have not been defined. It seems 

reasonable to let )( ijp  be proportional to the probability of 

shifting from )( 0µ  to )( jµ  (that is, jp ).  
    One way to do this, while staying within the restriction that the 
process cannot get better by itself (that is, the process cannot 
shift directly from )( iµ  to )( jµ   when  ji >  ), is to let  

0
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for )( ji >  , and 0ij =p  for )( ji > . 

Thus, for )( ij > , ijb   becomes 
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for )0( ≠i , the probability, )( ijb , of being in state )( iµ  at time 
)(t  and also time ))/(( Rkt +  is equal to the probability of 

rejecting )( 0H  at time )(t , multiplied by the probability of 
returning  to )( iµ  during the production of the next )(k  units, 
plus the probability of failing to reject )( 0H  at time )(t , 
multiplied by the probability of remaining in state )( iµ  during 
the production of the next )(k  units. 
    Thus, for )0( =i , )( ijb  is  
 

ijiiiii )1( pqpqb −+=  ,        
and hence, 
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    Finally, the probability of shifting from state )( 0µ  at time )(t  
to state )( jµ  at time ))/(( Rkt +  is simple )( jp . Hence  
 

[ ]13...........jj0 pb =   
    It is easily shown that the elements of each row of the matrix 

)(β  defined above sum to one.  
    It is also clear from the definitions of these vectors are greater 
than zero but less that one.  
    Thus, it is easily shown that 
 

10 ij << b   
for ).,..........,2,1,0,( sji = . It is shown in many texts on stochastic 
processes )10(),6(  than the above conditions define a transition 
matrix of an irreducible a periodic positive recurrent markov 
chain.          Thus, there exists a vector )(α  such that  

,ααβ =   
where  

),..........,,,( s210 ααααα = and 1
s

0i
i =∑

=
α . 

    Further more, )( iα  is the long-run (or steady-state) un 
conditional probability of being in state )( iµ  regardless of the 
initial state of the process. 
    To solve for )(α , rewrite the above equation as 

0=− ααβ   
and, hence,  

[ ]14...........0)( =Ι−βα   
where 0 is a row vector of )1( +s  zeroes and )( Ι  is an 

)1()1( +×+ ss  identity matrix. 
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Adding the condition 

1
s

0i
i =∑

=
α    

to equation )14( , the result is 
 

[ ]15...........)1,0()1\( =Ι−βα  
 
    Where )1\( Ι−β  is the )( Ι−β  matrix augmented by a 
column vector of )1( +s  ones. 
    It can be shown that the sum of any )(s  of the first )1( +s  
restrictions represented by Equation )15(  implies the )1( +s  st 
restriction.  
    Thus to solve for )(α , any one of the first )1( +s  restrictions 
represented by Equation )15(  can be eliminated by eliminating 
any one of the columns on the left side of the equation and the 
corresponding zero on the right side. 
    The column labeled ‛0’ will be arbitrarily eliminated. The 
resulting equation is 

[ ]16...........,)1,0(=∗αβ   
where )0(  is now a vector of )(s  zeroes and the elements of 

)( ∗β  (that is, )( ij
∗b , si .,..........,2,1,0=  and 

1.......,,3,2,1 += sj ) are defined as  

ijij bb =∗   
 
for 1−≠ ji   and  .1+≠ sj  
 

11s,i =∗
+b  

for  ,1+= sj  and  

1jjj,1j −=∗
− bb  

for .1+≠ sj  
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Since, according to Parzen )10(  , a unique solution for )(α  

exists, )( ∗β must have an inverse. Thus )(α  becomes 
 

1)1,0( −∗= βα  
 
If )( 1

ij
−∗b  are the elements of )( 1−∗β , then for 

)........,,2,1,0( si =  
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4-3 PROBABILITY VECTOR   γ 
 
    The vector )(α , where )( iα  is the steady-state probability that 
the process is in state )( iµ  at the time a sample is taken, was 
developed. 
    In order to determine the cost of producing defectives, as 
defined in Equation )4( , the steady-state probability, )( iγ , of the 
process being in state )( iµ  at any point in time is required.  
    In order to define the elements of )(γ , it is necessary to 
analyze further those intervals in which the process shifts out-of-
control. Duncan )4(  shows that, given a shift between the )( thn  
and the )1( stn +  sample, the average fraction of the interval 
that elapses before the shift occurs is  
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where )(h  is the number of hours between samples.  
    Again let )/( Rλλ =′  and )( Rhk = , the above equation 
becomes 
 

[ ]18...........
)1(

)1(1
k

k

λ

λ

λ
λ

′−

′−

−′
′+−

=
ek

ekF  



___________MINIMUM COST QUALITY CONTROL TESTS ]16[

where )(k  is the number of units produced between samples. 
    Since the process is assumed to be unable to correct itself, 

)( 0γ  depends only on the probability of the event that the 
process is in state )( 0µ  at the time a sample is taken and remains 
there until the next sample is taken, and the probability of the 
event that the process is in state )( 0µ  at the time the sample is 
taken but shifts to a new state sometime during the production of 
the next )(k  units. Thus, )( 0γ  is 
 

[ ]19...........)1( 00000 pFp −+= ααγ    
 
    where )(F  is the fraction of time spent in state )( 0µ  before 
the shift occurs, )( 0α  is the steady-state probability of being in 
state )( 0µ  at the time a sample is taken, and )( 0p  is the 
probability of remaining in state )( 0µ  during the production of 
the )(k  units. 
    The probability )0,( i ≠iγ  depends upon the probability of 
the event that the process is in state )( iµ  at the time a sample is 
taken and stays there during the production of the next )(k  units, 
    The probability of the event that the process is in state )( 0µ  at 
the time a sample is taken and shifts to state )( iµ  during the 
production of the next )(k  units, the probability of the event that 
the process is in some lower state (say, mµ  where im <  ) at the 
time a sample is taken and shifts to state )( iµ  during the 
production of the next )(k  units, and the probability of the event 
that the process is in state )( iµ  at the time a sample is taken and 
switches to some higher state (say, nµ  where in >  ) during the 
production of the next )(k  units. 
    It is assumed that the fraction of time a process spends in the 
lower state when a switch is mode to a higher state is on the 
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average the same fraction, )(F , of time the process spends in 
state )( 0µ , given that a shift to some other state has occurred. 
Thus, )( iγ , for 0=i , is  
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    Where the third term is zero when )1( =i  and the last term is 
zero when )( si =  [that is, it is impossible to shift to state )( 1µ  
from any other state except )( 0µ , and it is impossible to shift 
from state )( sµ  to some higher state]. 
 
5- SOULUTION METHOD 
       
    Tabulation of optimal quality central test parameter for the 
model as shown in equation (5) would require rather extensive 
tables in order to include several values of each of the cost 
coefficients ,,,( 321 aaa  and )4a  and a prior distribution some 
simplification is possible by letting 
 

[ ]21..............kk λ ′=   
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and  

[ ]23...........)()(
4a
cEcE =∗  

 
By dividing Equation [ ]5   by )( 4a  and making the above 
substitutions, the simplified model  
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[ ]24..........)( tt321 γα fq
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AcE +++=∗  

is obtained. 
    A two-stage numerical procedure )9(  was developed for 

choosing the values of (n, k and )l  which minimize [ ])(cE ∗  .  

    In the first stage, the expected costs [ ])(cE ∗  are computed for 
a wide variety of test parameters (  that is, n, k and )l , cost 
coefficients (that is, ,, 21 AA  and 3A ), and for the desired values 
of the a priori distribution parameters (that is, π  and s ).  
    From these results, the general behavior of the model can be 
studies and preliminary estimates of the optimal values of (n, k 
and l ) can be obtained. 
    In the second stage, the preliminary estimates obtained from 
the first stage are used as the starting point for a search method 
designed to locate the optimal values of the test parameters 
within any desired accuracy.      
 
 
6-  SOME NUMERICAL RESULTS 
     
 To illustrate the design of an optimal sampling plan, consider the 
following example: 
 
a1=10 Dr. per sample. 
a2= 1 Dr. per unit sampled. 
a3= 100 Dr. per investigation. 
a4= 10 Dr. per defective unit produced, 
 = 0.001 (that is, on the average, the process shifts out of control ג
every 1000 units),and 
π =0.376 (that is ,on the average shift is 2.4 σ ) 
From Equation 22 
 
 
 

n
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  A1= 001.0
4

1 =
′

a
a λ  

  A2= 0001.0
4

2 =
′

a
a λ  and 

  A3= 01.0
4

3 =
′

a
a λ  

From Table 1, the optimal sampling plan is shown as  
E*( c )=0.0737 , n=3 
K=0.046, and L=2.75. 
Since K=ג k, the optimal value of k is  k= 46

001.0
046.0

=  

Thus, the optimal testing procedure is to take a sample of three 

every (46) units and reject H0 if ( x > 0µ +2.75 σ or if x < 

0µ -2.75 σ). 

Since E*(c) = 
4

)(
a

cE  , the expected cost per unit associated with 

the optimal testing procedure is  
                     E ( c) = 10(0.0737)= 0.737 Dr. 
As an aid to understanding the meaning and the interrelation 
ships that exist between several of the variables used in the 
model, some of the intermediate calculations performed in the 
above sample problem will be presented. 
First, consider the effect of k,ג  and π on the a prior distribution 
of the process mean µ  
In the sample problem, it was assumed that, on the average, 1000 
units are produced before the process goes out of control ( that is,  
  =0.001 ). It was also assumed that when the process goes out of ג
control the mean µ shifts on the average 2.4 σ. using Equations 
8 and 9, and the fact that ii += 0µµ  σ , it can be shown that 
π must equal 0.376 in order for the expected value of µ , given 

that µ is out of control (that is , given µ ≠ 0µ ), to equal 

0µ +2.4 σ . If a sample is taken every 40 units ( that is, k=40 ), 
then K=ג k=(0.001)(40)=0.04 and, thus, the a priori distribution 
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of µ from Equations 8 and 9 is ( p0,p1,p2,p3, p4,p5,p6)=(0.961, 
0.009, 0.013, 0.011, 0.005, 0.001, 0.000 ). 
If the number of units between samples should be increased ( 
say, from 40 to 80 ) it would be exacted that the probability of 
finding the process in control ( that is , p0) should decrease and 
the other values of pi should increase. Using K=(0.001)(80)=0.08 
in equations 8 and 9, the following a priori distribution is 
obtained: 
 (p0 , p1 , p2 , p3 , p4 , p5 , p6 )=(0.923, 0.018, 0.026, 0.021, 0.010, 
0.002, 0.000).  
in order to obtain the transition probability matrix B, the 

probability of rejecting H0,given that µ = iµ  (that is, qi ), is 
required for all values of i. these probabilities are a function of 
the control limits L and the sample size n. For example, when 
n=4 and L=3, the vector q is calculated, using Equations ( 6 ) and 
( 7 ), as 
(q0 ,q1 ,q2 ,q3 ,q4 ,q5 ,q6 )=(0.003,0.159,0.841,0.998,1.000,1.000 
1.000). 
Using the above values for the vectors p and q for ( k=40, n=2, 
and L=3), the modified transition probability matrix B* defined 
in Equation ( 16 ) is calculated as  
    
 

B*=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

 

 
The steady-state vector (α ) of probabilities that the process mean 
is  iµ at the time a test is conducted is obtained by finding the 
last row of the inverse of the above matrix. 
The results for (k=40, n=2 and L=3 ) are 
 ( α0,α1,α2,α3,α4,α5,α6 ) =(0.949, 0.011, 0.018,0.014, 0.006, 0.002, 
0.000 ). 

-0.8078     0.2895     0.2326     0.1051     0.0253     0.0025 
    1.0 

0.0075     -0.8984     0.0527     0.0238     0.0057     0.0006 
    1.0 

0.0089      0.0134    -0.9879     0.0051     0.0012     0.0001 
    1.0 

0.0089      0.0134     0.0108    -0.9951     0.0012     0.0001 
1 0
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The steady-stute vector ( γ ) of probabilities that the process 
mean is iµ  at any point in time is calculated using Equation 
(19) and ( 20 ). The result for ( k=40, n=2, and L=3 ) are 
(γ0,γ1,γ2,γ3,γ4,γ5,γ6 ) =(0.931, 0.011, 0.022, 0.022, 0.011, 0.003, 
0.000). 
The only additiond information required in order to calculate the 
expected cost is the vector (f ) of probabilities of producing a 

defective given that the process mean is iµ . Since it has been 
assumed that a defective is any unit whose measurement falls out 
side the range( iµ -3 σ ) to ( iµ +3 σ ), the vector ( f ) can easily 
be obtained from tables of the standard normal deviates as  
(f0 , f1 , f2 , f3 , f4 , f5 , f6 )=( 0.003, 0.023, 0.159, 0.500, 0.841, 
0.977, 0.999 ). 
Using the cost coefficients of the sample problem and values of 
(k=40, n=4, and L=3 ), the expected sampling and testing cost 
per unit can be calculated as 
E( c1 )= 350.0

40
)4)(1(

40
1021

=+=+
k
na

k
a .   

The expected cost per unit associated with rejecting the null 
hypothesis can be calculated as  
 E ( c2 )= 104.0)0417.0(

40
1003

==iq
k
a α  , 

and the expected cost per unit associated with accepting the null 
hypothesis can be calculated as 
E( c3 )=a4f iγ =10(0.0297)=0.297. 
To illustrate the behavior of the three cost components as the 
number of units produced between samples is increased. As 
would be expected, using a fixed sample size, (n=4 ) and fixed 
control limits ( L=3 ), the expected sampling and inspection costs 
per unit E(c1) and the expected cost per unit associated with 
rejecting the null hypothesis E(c2) both decrease as the number of 
units produced between samples increases. The expected cost per 
unit E( c3), of course, increases as the number of units between 
samples increases. Since n=4 and L=3 are close to the optimal 
values of n=3 and L=2.75 of the sample problem, it is not 
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surprising that the total expected cost achieves a minimum at a 
value of k close to the optimal value of 46. 
To illustrate the effect of changing k, n, and L, the total expected 
cost was calculated using the five values of k ( 20, 40, 60, 80, 
100 ), three values of n ( 2,3,and 4), and two values of L ( 2 and 
3) 
The minimum total expected cost was obtained with a sample 
size of three ( n=3 ), three sigma control limits ( L=3), and a 
frequency of sampling of 40 units between samples (k=40).The 
total expected cost associated with this scheme is 0.745 Dr. per 
unit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Iraqi Journal of Statistical Sciences (13) 2008______________ 

  

]23[ 

 
 

 
 
 
 

A priori Distribution Parameter π 
 Cost  

 A2 
Cos

t   
A3 

Param-eter 

.376 .597 .800 

Cost   A1 Cost   A1 Cost   A1 
   

.0001 .001 .01 .001 .01 .1 .001 .01 .1 

E*(c) .0341 .0610 .1543 .0782 .2065 .5796 .0846 .2335 .6711 
n 2 2 4 2 3 4 2 2 2 
K .022 .046 .15 .026 .105 .36 .03 .09 .29 

.001 

L 2.25 1.75 1.0 3.5 1.75 3.0 2.75 2.25 3.75 
E*(c) .0460 .0737 .1662 .0875 .2205 .5830 .0941 .2430 .6789 

n 2 3 8 2 3 9 2 2 2 
K .02 .046 .15 .034 .085 .42 .03 .085 .29 

.01 

L 3.0 2.75 2.25 3.0 3.75 2.0 3.5 3.25 3.75 
E*(c) .1378 .1635 .2517 .1784 .3044 .6571 .1836 .3297 .7480 

n 2 4 10 3 4 12 2 3 5 
K .02 .05 .16 .036 .095 .44 .03 .095 .37 

.0001 

.1 

L 3.75 3.5 3.0 3.75 4.0 3.0 4.0 3.75 3.5 
E*(c) .0777 .0907 .1665 .1201 .2228 .5859 .1305 .2521 .6690 

n 2 2 2 2 2 2 2 2 2 
K .062 .076 .16 .046 .115 .38 .048 .10 .36 

.001 

L 1.5 1.25 0.5 3.5 1.25 2.5 2.5 2.25 1.5 
E*(c) .0923 .1058 .1842 .1285 .2404 .5918 .1401 .2615 .6776 

n 2 2 2 2 2 2 2 2 2 
K .06 .072 .16 .054 .09 .41 .048 .10 .36 

.01 

L 2.25 2.25 1.75 2.75 3.5 2.25 3.25 2.75 2.25 
E*(c) .1844 .1978 .2738 .2194 .3249 .6673 .2290 .3486 .7546 

n 2 2 3 2 2 3 2 2 2 
K .062 .074 .17 .056 .115 .45 .05 .10 .37 

.001 

.1 

L 3.0 3.0 2.75 3.25 3.0 2.5 3.75 3.5 2.75 
E*(c) .2174 .2196 .2516 .2888 .3392 .6186 .3393 .3869 .7166 

n 2 2 2 2 2 2 2 2 2 
K .14 .15 .21 .15 .18 .48 .095 .17 .40 

.001 

L 0.25 0.25 0.25 2.0 1.5 0.25 3.75 1.75 1.25 
E*(c) .2266 .2307 .2658 .3010 .3521 .6302 .3480 .3962 .7250 

n 2 2 2 2 2 2 2 2 2 
K .22 .23 .29 .15 .18 .47 .095 .17 .40 

.01 

L 1.5 1.5 1.25 2.5 2.25 1.75 3.75 2.5 2.0 
E*(c) .3158 .3195 .3526 .3895 .4394 .7136 .4309 .4806 .8015 

n 2 2 2 2 2 2 2 2 2 
K .23 .24 .30 .16 .20 .48 .10 .17 .39 

.01 

.1 

L 2.5 2.25 2.25 2.75 2.75 3.5 3.75 3.25 

3.75 
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