المجلة العراقية للعلوم الاحصائية (16) 2009 م ص [131 – 148

(RAIC, RSIC, RC_p ,)

RVC, RSC, RF, RAPE

RAPE

The Use of Robust Criteria in Selecting Effective Variables in Linear Regression Model for Blood Sugar Analogy

Abstract:

The research deals with the topic of variable selection in linear regression using robust procedures as resistant to outliers and other failures of assumptions . The objective of the research is using robust criteria (RAIC , RSIC, RC $_p$, RVC, RSC, RF,

2009/ 6/ 29 : 2009/3/16:

... [132]

RAPE) in selection of most adequate independent variables in the regression model used to estimate blood sugar as dependent variable and other independent variables and comparing the performance of these criteria. The results shows that the RAPE criterion was the best in selecting the most important variable compared with the other criteria.

M

M

1-1

(k-1) (n)

:[2]

 $Y = XB + U \qquad \dots (1)$

... [134]

$$(n \times k)$$
 X , $(n \times 1)$ Y (X_0)

$$(k \times 1)$$
 B , $(n \times 1)$ U , $\sigma^2 I$

(1) , X

M (1)

.

$$\min \sum_{i=1}^n (y_i - x_i'B)^2$$

$$\min \sum_{i=1}^{n} \rho \left(\frac{Y_i - x_i' B}{\sigma} \right) \qquad \dots (2)$$

$$.X \qquad (i) \qquad x_i'$$

$$.\rho$$

B ρ

:

$$\sum_{i=1}^{n} \psi(\frac{y_i - x_i' B}{\sigma}) x_{ij} = 0 \qquad j = 1, 2, ..., k$$

$$\psi = \frac{\partial \rho}{\partial B}$$

:

$$\sum_{i=1}^{n} w_i x_{ij} (y_i - x_i' B) / S = 0 j = 1, 2, ..., k ...(3)$$

 w_i

$$w_{i} = \frac{\psi[(y_{i} - x_{i}'B_{0})/S]}{(y_{i} - x_{i}'B_{0})/S} \qquad i = 1,2,...,n$$

$$b_{M} \qquad (3)$$
:[3]

$$b_i = (X'WX)^{-1} X'WY \qquad i = 1, 2, ..., M$$

$$B_0 \quad w_i \qquad W$$

 $egin{array}{cccc} b_1 & & w_i \ & & b_2 \end{array}$

. b_M

... [136]

 (σ)

 $S = 1.483 \ median \left| r_i - median(r_i) \right|$ $r_i = y_i - x_i' B_0$

ho

:[4] Huber

 $\rho(r) = \begin{bmatrix} r^2/2 \\ C|r| - C^2/2 \end{bmatrix} \qquad \psi(r) = \begin{bmatrix} r & |r| \le C \\ C \operatorname{sign}(r) & |r| > C \end{bmatrix}$ $C \qquad r \qquad \operatorname{sign}(r)$

C=1.345

X

.(q) (q) (p-1) :[2] (1) (p-1)

 $Y = X_p B_p + X_q B_q + U \qquad \dots (4)$

[137] المجلة العراقية للعلوم الاحصائية(16) 2009 _____

X $X_{\rm q}$ $X_{\rm p}$ $(n \times q)$ $(n \times p)$ $X_{\rm p}$

 X_0

 $X_{\rm q}$

 $\boldsymbol{\mathit{B}}$ \boldsymbol{X}

q

× 1) $B_{\rm q}$ $B_{\rm p}$ $(q \times 1)$ (pp

 $. \ k = p + q$

 $X_q X_p$ 2^{k-1}

 2^{k-1}

... [138]

.

.

.

AIC .1 :[9] AIC

 $RAIC = 2\sum_{i=1}^{n} \rho(\mathbf{r}_{i}) + 2\frac{\mathbf{E}\psi^{2}}{\mathbf{E}\psi'}p$...(5)

.RAIC

SIC .2 :[6] SIC

 $RSIC = \sum_{i=1}^{n} \rho(r_i) + \frac{1}{2} p Ln n \qquad ...(6)$

.RSIC

 C_p .3

:[10]

$$RC_{p} = \frac{W_{p}}{\hat{\sigma}^{2}} - (U_{p} - V_{p})$$
 ...(7)

 V_p U_p

:

$$V_p \cong tr(RM^{-1} QM^{-1})$$

$$U_p - V_p \cong E \|\psi\|^2 - 2tr(NM^{-1}) + tr(LM^{-1}QM^{-1})$$

L , N , Q , R , M

$$M = E(\psi'XX'), R = E(w^{2}XX'), Q = E(\psi^{2}XX'), N = E(\psi^{2}\psi'XX')$$

$$L = E[(\psi'^{2} + 2\psi'w - 3w^{2})XX']$$

$$\left\|\psi\right\|^2 = \sum_{i=1}^n \psi_i^2$$

(full) RC_p

:

 $\hat{\sigma}^2 = W_{full} / U_{full}$

[140]

 \mathbf{CV} .4 :[11] $RCV = \sum_{i=1}^{n} \rho(y_i - x_i' b_M^{(i)}) / \hat{\sigma}$...(8) $b_{\scriptscriptstyle M}^{\scriptscriptstyle (i)}$ M $\hat{\sigma}$ (i) RCV

RCV

SC:[8,7]

 $RSC = \sum_{i=1}^{n} \rho(\frac{r_i}{\sigma}) + \frac{1}{2} Ln \ E\psi' + \frac{1}{2} Ln \big| X'X \big| + Ln \prod_{i=1}^{p} \frac{|b_i| + n^{-1/4}}{\sigma} \qquad ...(9)$

RSC

F

:[12]

$$RF = \frac{\sum_{i=1}^{n} \rho(r_{pi}) - \sum_{i=1}^{n} \rho(r_{i})/q}{\hat{\lambda}_{M}} \qquad ...(10)$$

$$\hat{\lambda}_{M} = D^{2} \frac{\sum_{i=1}^{n} \psi_{i}^{2} / (n - \rho)}{\left[\sum_{i=1}^{n} \psi_{i}' / n\right]^{2}}$$

Huber

D

:

$$D = 1 + \frac{p}{n} \frac{Var(\psi')}{n[E(\psi')]^2}$$

:

$$E(\psi') = \sum_{i=1}^n \psi_i' / n$$

$$Var(\psi') = \sum_{i=1}^{n} [\psi'_i - E(\psi')]^2 / n$$

 (H_0)

 \mathbf{F}

RF

(n - k)

q

F

RF

•

APE

.7

:[1]

... [142]

...(11) $RAPE = \sum_{i=m}^{n} \rho(\frac{y_i - b'_{M(i-1)} x_i}{S})$

 \mathbf{M} m

S . M b_M

•

RAPE

.

:

.

:

$$= Y$$
$$= X_1$$

$$= X_2$$

$$= X_3$$

.

... [144]

(1)
$$X_2 X_1$$
 ()

M (11), (10), (9), (8), (7), (6), (5)

(2)

RCV, RF, RC_P, RAIC

 X_2

RAPE

 $X_2 (02)$

(0) (03) RSC RSIC

RAPE -1

RAPE

... [146]

RCV, RF, RC_P, RAIC -2

RSC RSIC

: (1)

-3

No.					
1	288	50	71	23	212
2	358	55	60	48	253
3	170	49	61	23	185
4	225	65	65	32	272
5	238	36	85	26	280
6	260	52	98	54	148
7	292	53	56	22	148
8	260	43	60	22	130
9	250	60	80	38	254
10	415	70	71	48	171
11	225	45	75	18	275
12	302	54	60	26	206
13	224	53	96	23	166
14	285	65	52	26	265
15	180	48	72	24	220
16	243	48	71	27	240
17	188	52	75	24	240
18	247	55	70	23	262
19	212	54	80	29	231
20	200	58	73	26	233
21	247	60	68	24	186
22	280	45	72	32	119
23	195	70	61	32	175
24	288	48	73	28	156
25	352	44	68	23	220
26	392	50	73	30	280

27	193	47	72	19	216
28	175	55	81	31	125
29	166	50	87	33	185
30	170	57	80	38	150
31	204	70	60	38	220
32	190	46	66	23	198
33	192	57	81	40	355
34	278	52	86	29	320
35	285	67	68	72	257

: (2)

	RAIC	RSIC	RSC	RCP	RF	RCV	RAPE
(01234)	14.396	14.509	16.398	-	-	57.007	11.815
(0123)	13.860	12.767	12.983	0.691	0.200	0.257	11.232
(0124)	15.680	13.553	13.238	0.661	4.193	0.290	11.839
(0134)	15.655	13.485	13.299	0.668	3.806	0.288	12.313
(0234)	14.664	13.056	13.143	0.687	1.804	0.270	11.651
(012)	15.085	11.817	10.237	1.464	2.197	0.275	11.438
(013)	15.012	11.741	10.218	1.507	2.010	0.370	11.574
(014)	15.842	12.126	11.380	1.522	2.962	0.292	12.001
(023)	13.993	11.288	10.120	1.472	0.952	0.254	11.028
(024)	15.029	11.786	10.300	1.469	2.110	0.270	11.153
(034)	15.096	11.766	10.279	1.525	2.87	0.276	12.015
(01)	15.180	10.387	9.487	2.411	2.096	0.277	11.649
(02)	14.398	10.044	9.380	3.286	1.470	0.257	10.807
(03)	14.399	10.008	9.372	2.390	1.442	0.260	11.267
(04)	15.090	10.352	9.54	2.386	1.985	0.273	11.426
(0)	14.428	<u>8.620</u>	9.492	2.508	1.548	0.261	11.092

.. [148]

," ",(2007), -1 .69-55 ,1 ,2 ,

- 2. Hocking, R. R., (1976), "The Analysis and Selection of Variables in Linear Regression", Biometrics, 32, 1-40.
- 3. Holland, P. W. & Welsch, R. E., (1977), "Robust Regression Using Alternatively Reweighted Least Squares', Comm. Statist., A(6), 813-827.
- 4. Huber, P. J., (1981), "Robust Statistics", New York, John Wiley & Sons.
- 5. Launer, R.L., & Wilkingson, G. N., (1979), "Robustness in Statistics",
 Acadimic Press, Inc., New York.
- 6. Machado, J. A. F., (1993), "Robust Model Selection and M Estimation", Economatric Theory, 9, 478 493.
- 7. Qian, G. & Kunsch, H., (1998), "Some Notes on Rissanen's Stochastic Complexity", IEEE, Trans. Inform. Theory, 44, 782–786. (By Internet).
- 8. Qian, G. & Kunsch, H., (1998), "On Model Selection in Robust Linear Regression", J. Stat. Plan. & Inform. (By Internet).
- 9. Ronchetti, E., (1985), "**Robust Model Selection in Regression**", Statistics of Probability Letters, 3, 21-23.
- 10. Ronchetti, E.,& Robert, S., (1994), "Robust Version of Mallows C_p", J. Amer. Statist. Assoc., 89, 550 559.
- 11. Ronchetti, E., Field, C., & Blanchard, W., (1997), "**Robust Linear Model Selction by Cross Validation**", JASA, 92, 1017 1023.
- 12. Schrader, R. M. & Mckean, J. W., (1977), "**Robust Analysis of Variance**", Comma Statist., A6 (9), 879 894.