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Bayes Estimator of one parameter Gamma distribution
under Quadratic and LINEX Loss Function
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ABSTRACT

In this paper we derive Bayes' estimator for the Scale
parameter 0 in Gamma distribution when a 1s known and equal
2, ie. X.,X,,.,X, ~Ga(2,0), we take a=2 to estimate one
parameter of gamma distribution which is 0 (Scale parameter),
where gamma distribution is considered as an important model of
the life time models . These estimators are obtained depending on
squared error and LINEX loss function , Then comparisons of
risks for 6 under squared and LINEX loss function have been
made . Simulation study is given to illustrate that the proposed
estimators 0, is preferable to 0, for the sample sizes n =10,20,30

from above distribution with parameters (a.=2,0=1) and for all
values of "a" (a=+0.5+1,%2) .
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1- Introduction

In Reliability studies the models which are used in life
testing include the Exponential, Gamma, Lognormal,
...distributions. If the failure is mainly due to aging or wearing
out process, then it's reasonable in many applications to choose
one of the above mentioned distributions (see Chhikara & Folks
(1977), Sinha & Kale (1980), Von Alven (ed.)(1964), Sherif &
Smith (1980) .
The Gamma distribution is the most widely used in life
experiment , it has probability density function (p.d.f) with two
parameters o and 0 is :

a—l1

X
f(x;0,0) =
( ) 0°Ta
In this paper we will use the gamma distribution with one
parameter 6 where o is known and equal 2, so it has probability

density function (p.d.f) as follows :

X
eXp(—g) x>0, 0,020

f(x;@):ex—zexp(—%) x>0 , 0,020 (1)
And the distribution function of X is :
0 L X X toot t
F(t) = ! f(x;0)dx = ! e—zexp(—g)dx =1- exp(—g) —6exp(—6) t>0

The Reliability function, the probability of no failure before time
tis:

t t
R(t)=1-F(t)=[1- 6] eXP(-g)

Then the Hazard function which is the failure rate of a gamma
distribution is :

(o arexp()
H(t) = ®__ 0 o0 _ ¢t
RO - eexp-g) Y07

2)

In Bayesian estimation, we consider two types of loss functions.
The first is squared error loss function (quadratic loss) which
classified as a symmetric function and associates equal
importance to the losses for overestimation and underestimation
of equal magnitude. The second is the LINEX (linear-
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exponential where the name LINEX is justified by the fact that is
this loss function rises approximately linearly on one side of zero
and approximately exponentially on the other side) loss function
which is asymmetric, was introduce by Varin (1975). These loss
functions were widely used by several authors; among them are
Rojo (1987), Basu and Ebrahimi (1991), Pandy(1997), Soliman
(2000) and Nassar and Eissa (2004).

The quadratic loss for Bayes estimate of a parameter 6, The
posterior mean assuming that exists, denoted by 0,. The LINEX

loss function may be expressed as :

L(A) oc exp(cA)—cA—1 c#0 3)
Where A=0-6. The sign and magnitude of the shape parameter
c reflects the direction and degree of asymmetry, respectively.

(If ¢>0), the overestimation 1is more serious than
underestimation, and vice-versa). For ¢ closed to zero, the
LINEX loss is approximately squared error loss and therefore
almost symmetric.

The posterior expectation of the LINEX loss function equation
3)i1s:

E[L(0 — 0)] o exp(cO)E[exp(—c0)] — c(6 — E(0)) — 1 4)
By result of Zellner(1986), the Bayes estimator of 6, denoted by
6, under the LINEX loss is the value 6 which minimize (4), is
given by :

6, =1

—;ln{E[eXp(—Ce)]} )

When the expectation E[exp(—c0)] exists and finite [see Calabria
and Pulcini(1996)].

2- LINEX loss function and its properties
Thompson and Basu (1996) identified a family of loss
functions L(A), where A is either the estimation error (§—0) or

the relative estimation error (6—0)/0, such that
e L(0)=0
e L(A)>(<)L(-A)>0 forall A>0
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e L(-) is twice differentiable with L'(0)=0 and L"(A)>0 for all
A#0 .

e 0<L'(A)>(<)-L'(-A)>0 forall A>0.

Such loss function is useful whenever the actual losses are
nonnegative , increases with estimation error, overestimation is
more (less) serious than under estimation of the same magnitude
and losses increase at a faster (slower) rate with overestimation
error .

Considering the loss function

L (A) oc bexp(aA) +cA +d
and with the restriction L' (0)=0 , (L")'(0)=0, we get d=-b and
c=-ab,see Thompson and Basu (1996). The resulting loss
function is:

L"(A) oc blexp(aA) —aA —1] (6)
Which is considered as a function of 6 and 6, is called the
LINEX loss function, a and b are constants with b >0 so that the
loss function is nonnegative . The shape of the LINEX loss
function (6) 1s determined by the constant a , and the value of b
will be taken equal one (i.e. b=1).

In figure 1, values of exp(aA)—aA—1 are plotted against A for
selected values of a. It is seen that for a >0, the curve rises
almost exponentially when A >0 and almost linearly when A <0

on the other hand, if a<0 the function rises almost
exponentially when A <0 and almost linearly when A >0. So the
sign of a reflects the direction of asymmetry, a>0(a<0)if
overestimation is more (less) serious than underestimation; and
its magnitude reflects the degree of asymmetry. The important
view is that for small values of |a| the function is almost

symmetric and not far from a squared error loss (SEL).
The expanding exp(aA)~1+aA+a’A’/2, L(A)~a’A*/2, a SEL
function.
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Figure 1. The LINEX loss function.

3- Bayes' Estimator for o

In this section we derived the estimation of unknown
parameter 6 of the Gamma distribution based on random sample
of size n.The likelihood function is given by :

n

n HXi _Zn:Xi
L(X|9)=Hf(Xi|9)= ":éh exp( ":é ) (7

The natural logarithm of the likelihood function (7) :

¢=InL(X|0) = Y InX, —2n1ne—%
A X.
2 ®)

=0 =5

Here we consider the non-informative prior f(0) which is derived

from (7) as follows :
0’0 2n 2).X, —0*(. 2n
= = FI=-E =—
00> 0’ 0’ [ 00° ] 0’
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Then the prior distribution of 6 is :

£(0) =+FI=+/2n/6 c1/0 9)
By combining the prior distribution f(0) in (9) with the
likelihood function L(X|06), using Bayes theorem we get the

posterior distribution :
n(6]X) o« L(X[0).£(8)

—(2n+1 ZXi
= m(6]X) oc 6~ exp(—T)

Which is the kernel distribution of Inverse gamma distribution,
then

Tc(9|X) = (ZF%)“@-““” exp(—%) 0>0 (10)

And from (10), the expectation of the posterior distribution
above, we get :
A > X,
E(0[X)=0,,,., =“~—— 11

( | ) Bayes 2n_1 ( )
we observe that, if n is large and approach to o, then Bayes'
estimator will be same as the estimator of Maximum Likelihood,
1.e.
=0, -

ifn—oow =6,

4- Bayes' Estimator of o under squared error loss
function

Under squared error function L(6,0) = (6 -6)*, and by using
(10),we have

L(6,0) = (6—0)°
Then we minimize

j (60— 6)*n(6]X)do

0

The Bayes' estimator of 6 denoted by 6, (SB=Squared Bayes) is
the posterior mean
X,

0., =E_(0)=
SB n() 2n_1

(12)



Iraqgi Journal of Statistical Science (16) 2010 [19]

5- Bayes' Estimator of ¢ under LINEX loss function
Suppose that A:g—l, where 6 is an estimate of 6 .

consider the loss function :

L(A) =exp(aA)—aA -1 a#0
Under this LINEX loss function ,the posterior mean of the loss
function L(A) with respect to n(6/X) in (10) is :

7 6 6
E[L(A)]= I {exp[a(g -D]- a(g —1) - 1}m(6]X)do (13)
0
By using the integration by part we get :

0

E[L(A)]= | {exp[a(g ~D)]}(0[X)d6 - ja(g —~1)m(6]X)d0 — [ m(6[X)d0

0

. exp(—a)E[exp{a(g)}]—aE[(%)—1]—1 (14)

The value of 6 that minimizes the posterior expectation of the
loss function L(A) denoted by 6,, (LB=LINEX Bayes) is
obtained by solving the equation :

BBELA _ o @ iy amcdy =
o =E[e 6e><p(a(6)] aE(e) 0

1 0 1
= E[gexp{a(g)}] =e E(g) (15)

Provided that all expectations exist and finite, then we will use
(10) and (15) to find the expectations and get the optimal
estimate for 0,

[z expla()}] = [ expfa()}n(0[X)d0

_(Z‘,Xi)znOO —(2n+2) é _ZXi
=S [0 expla( ) exp(— )0

0

_(Z:Xi)znOO —(2n+2) _1 a0
== !e exp e(in a0)do

N X 2n 2 X 2n
n O .X; —ab) O X, —ab)
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And also
© 2n ©
é = én(6|X)d6—(Zr je (2042) oyp(— L ZX )do
0

(ZXi)Z“ , Ton+l
an (ZXi)ZnH
2n

X
Then from (15), we have :
2n(ZX )Zn B m g (ZX )2n+1 .
(Z X )2n+1 Z Xi (Z X 2n+1
af _ 72:+1
>x)

2n+1 — e—a — (1 _

ZX
X. —
Za 1 (1 —e 21‘1+1) (16)

For more information (see Canfield (1970),Varin (1975) and
Zellner (1986)) .

=0, =

6- The Decision Theory, Risk function & Risk Efficiency

The decision theoretic approach begins with a careful
definition of all the elements of a decision problem. It is
imagined that there is a decision-maker who is to choose an
action from a set A. He is to do this based upon observation of a
random variable, or data X. This X (typically a vector
X,y X, ) has a probability distribution which depends on an
unknown parameter 6. Here 6 denotes a state of nature. The set
of all possible values of 0 is the parameter space © .
The decision is to be made by a statistical decision function (or
rule) d; this is a function which specifies d(x) as the action to be

taken when the observed data is X = x. On taking action 6 = d(X)
the decision-maker incurs a loss of L(8,0). A good decision
function is one that has a small value of the risk function :
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I [L@.0)fx:0)dx

Ry

R(6,0) = E[L(6,6)] =| or (17)
> L(6,6)p(X;6)

xeRy

Clearly if R(0,6,)<R(6,0,) for all 6 and R(6,0,) <R(6,0,) for
some 6 then the risk efficiency for 6, is better than the risk

efficiency for 6,. We say that 6, is inadmissible. For more
information see Weber (2007) .

7- The Risk Efficiency of ¢,, with respect to 6., under

squared error loss function
The risk functions of the estimators under squared error
loss are denoted by R(6,,,0) and R(fg,,0),are given by :

0)dx,dx,.....dx (18)

Let S= ZXi , because x,,i=12...,n are identically distributed and

independent from gamma distribution with parameters (2,0) then
S=) X; ~Gam(2n,0), so that :

2n-1

A . A S S
Rg(0,,,0)=[ (02, —26,,0+6%) % ———exp(—>)dS
S LB I'; LB LB 92 1_,211 e

© R 2n-1 S 0 R Sanl S 0 Sanl S
=167, = exp(—=—)dS—216, .0« ——exp(——)dS+ [ 62 = exp(——)dS
{ s * gy P ! WO g, SXPCY) ! nron P

Thus
. 0’[2n(2n+D(1—-¢ 21)*] 0°[4n 1—e_2:+1
I{S(f)LBae) — [ ( zf ) ]__ [ ( )] +_92
a a
. _ _2;+1 2 _ _21?+1
— R (0,,,0) = 92[211(211 + 1)(12 e ) B [4n(1—-¢ )] Y (19)

a
By the same way we can find R (,,0) under squared error loss :

0)dx,dx,......dx (20)

Let S=> X, then:



[22] Bayes Estimator of one parameter...

2n-1

A 2 A A S
RS(OSB’e) = I(eéB - 29SBe + 62) * eznrzn

S
exp(——)dS
p( e)

OOA 2n-1 S2n—l S
_ 2 it et 2 o~ >
= ! 050 * g X )dS 2j 0550 o ex )dS+ j 0" » expt )dS
Thus
A 2n(2n+1)0°  4nO’ )

R (D,.0) = - 0

s (s.9) Q-1  (@n-1

~R (GSB’O) 2n(2n+1) 4n ] 1)

(2 -1)> (2n-1)
The risk efficiency of 6,, with respect to 6, under squared
error loss function is denoted by :

a a

) (2nCn+D(1- e )" [4n(l—e )] o1
R(8,5,0) _ a’ a (22)
RS(éSB,G) [2n(2n +1)  4n o
(2n-1>  (2n-1)

RES(éLB’ éSB) =

8- The Risk Efficiency of 6, with respect to 6, under
LINEX loss function

The risk functions of the estimators 6,, and 6, under
LINEX loss are denoted by R, (6,,,0) and R, (f,,0), where the

subscript L denotes risk relative to LINEX loss and are given as
follows :

0
a[(—2)-1]

R, (0,5.0)=[fe° [( BY 1= T3 (X,, X3 oo X, |0)X 5 ndx, (23)

Let S= ZXi ,and as a mentioned above S=>"X; ~Gam(2n,0),
so that :

o (. A 2n-1
A B alCgh-1 9ﬂ o _§
R, (0,,.0)= j e Al 1= e —exp(—)dS
_J‘ ( oS o S exp(- 7)dS J' ( LB eSZIn_ exp(— 7)dS+J. ZF exp(ff)ds '[[922;21 eXp(fg)dS
Thus
R,(0,,,0)=¢ 2 —2n(l—e ) +a—1 (24)

By the same way we can find R, (8,,0) under squared error loss



Iraqgi Journal of Statistical Science (16) 2010 [23]

R, (04.0)= j{e aCpn [( B 1= (X, Xy oo X, |0)dX dX ... dx (25)
Let S= ZXi then :
2 (eﬁ) é 2n-1 S

R, (Og,0)= j {e —al(o) -~ 1=l exp(—g)dS
_w ﬂ[(%)*l] " S2"1 S B O, SZn*I S 2n-1 S ~ © 2n-1 _§
- l e T e)dS '([a( o) * e X )dS+ j —exp( ) jezllrznexp( ;s
Thus

. . - a
R;(0g,0)=¢"(1-—) " -1 (26)

2n—-1 2n -1
The risk efficiency of 6,, with respect to 6 under
LINEX loss function is denoted by :

a

R, (0,,.0) e —2n(l—¢ )+a-1

R, (0g;,0) P S S B
2 2n-1

REL(éLB’éSB) = (27)

9- Numerical Example

We generated N =500 samples of sizes n=10,20,30 from
equation (1) with 6=1, we used Minitab to generate these
samples and we take randomly the samples of size n=10,20,30,
respectively and then the risk functions are computed for the
estimators 0,, and 6y under the LINEX loss function and
squared error loss , and also computed the risk efficiency to
compare between the LINEX loss and squared error loss function
to check which estimator is inadmissible under theses functions .
The results are explained in tables from 1 to 6 .
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Table 1 : the estimators 0,,, 6y, the risk efficiencies
RE, (0,,,05,), RE((8,,,0,,) under the prior f(8) for the value of
a=2

n | O B R, (05.0) R (0s5.0)

10| 1.0511 0.9071 0.0911 0.1465

20| 1.0361 0.9619 0.0443 0.0600

30 1.02 0.9760 0.0324 0.0375

n | Rg(0,5.0) | Rg(045.0) | RE (85.05) | RE(0,,.04)

10| 0.0495 | 00581 1.6081 1.1737

20| 0025 | 0027 13544 1.08

30| 00166 | 0.0175 1.1574 1.0542
Table 2 : the estimators 6,,, 6, the risk efficiencies

RE, (0,,,05,), RE((0,,,0,,) under the prior f(8) for the value of

a=1
n Oss 01 R, (0,4.0) R, (0g5,6)
10| 1.2042 0.5320 0.0234 0.0318
200 1.1819 0.5553 0.0121 0.0139
30| 1.1766 0.5644 0.0082 0.0088
n | Rg(0,5.0) | Rg(04.0) | RE (84.04) | RE(0,,.04)
101 0.0481 0.0581 1.3589 1.2079
20| 0.0245 0.027 1.1487 1.1020
301 0.0165 0.0175 1.0731 1.0606
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Table 3 : the estimators 0,,, 6y, the risk efficiencies
RE, (0,.64,), RE((0,;.04,) under the prior £(0) for the value of
a=0.5

n | b O R, (0,5.6) R, (055.0)

10| 1.1072 | 02474 0.0059 0.0075

201 1.0859 0.2566 0.00305 0.00344

30( 1.0738 0.2585 0.0020 0.0022

n | Rg(0,5,0) | Rg(045,0) | RE (85.05) | RE(04,04)

10| 0.0478 0.0581 1.2711 1.2154

20| 0.0244 0.027 1.1278 1.1065

30 0.0164 0.0175 1.1000 1.0670
Table 4 : the estimators 0,,, 6y, the risk efficiencies

RE, (0,;,64,), RE((0,,,64,) under the prior f(0) for the value of

a=-2

n Oss 01 R, (0,4.0) R, (0g5,6)
10| 1.0409 0.9881 0.0984 0.1035
201 1.0376 1.0115 0.0495 0.0502
30| 1.0292 1.0119 0.0332 0.0336

n | Rg(0,5.0) | Rg(04.0) | RE (84.04) | RE(0,,.04)
10| 0.0499 0.0581 1.0518 1.1643
201 0.0240 0.027 1.0141 1.1250
301 0.0166 0.0175 1.0120 1.0542

[25]
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Table 5 : the estimators 0,,, 6y, the risk efficiencies
RE, (0,.64,), RE((0,;.04,) under the prior £(0) for the value of
a=-1

n | b O R, (0,5.0) R, (055.0)

10| 1.2081 1.1194 0.0242 0.0269

20| 1.1796 1.1359 0.0123 0.0130

30 1.1121 1.0845 0.0083 0.0085

n | R05.0) | Rs(055,0) | RE (O15.055) | REG(O,05)

10| 0.0482 0.0581 1.1115 1.2053

20| 0.0245 0.027 1.0569 1.1020

30| 0.0164 0.0175 1.0240 1.0670
Table 6 : the estimators 0,,, 6y, the risk efficiencies
RE, (0,;,64), RE((0,,,04,) under the prior f(0) for the value of
a=-0.5

n | Oy b R, (8:.0) R, (8s5.6)

10| 1.1679 1.0693 0.0060 0.0070

20 1.1347 1.0859 0.0030 0.0032

30 1.1241 1.0917 0.00205 0.00216

n | Rg(0,5.0) | Rg(045.0) | RE (85.05) | RE(0,,.04)

10| 0.0477 0.0581 1.1666 1.2180

20| 0.0244 0.027 1.0666 1.1065

30( 0.0165 0.0175 1.0536 1.0606

10- Conclusion

1- From tables (1-6), we observe that the risk efficiency
RE, (0,;,.0,,) is greater than 1, which means that the proposed
estimators 0, is preferable to 6, for the sample sizes n =10,20,30
from gamma distribution with parameters (o =2,0 =1)and for all
values of "a" (a=+0.5+1,%2) .
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2- A symmetric loss function is more appropriate than Squared
error loss function .
3- We note that the risk efficiency RE, (6,,,0,,) is greater than

the risk efficiency RE((0,,,6,) for all positive values of a, and
the risk efficiency RE((H,,,0,) is greater than the risk efficiency
RE, (0,,.0,) for all negative values of a and for all sample sizes
n =10,20,30 .
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