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Applications of Fractal Dimension 
 

Edrees, M. N. Mahmood*

ABSTRACT 
 

Today the method of determining the dimension is being 
applied to many kinds of observations, especially to time series in 
physics, engineering, and in fields as far apart as meteorology and 
neurophysiology. This paper has selectively surveyed some recent 
work in the vast and rapidly growing area on the behavior of the 
fractal dimension.We used the concept of dimension to distinguish 
between random noise and chaos , also to determine the order of 
Non-Linear Auto-regressive Model , finally it used to test the 
residuals of linear models  
 

������� 	
��� �
����� 

������ 
���� ���	
� ����
�� ���� ���
 ������
 �� �����
 ��� 
 �! ��
�
 ���"� ����� ���

 # $�����
 %
��& '���� �(!� # ��(	����
 # ��)��*�+�
 ����*�
 ,	-	�
 ��� ��.�� 
������
 /��*�+�
� �����
 /
���
 0�� ,��" .2(	� �
��& �3 4"
�
 
53 �� '���
 �&

65�5��
 ��
�
 7��	 ��� �8��"�
 �
�����
 9�
�.5

53 �! ��
�
 0��+� 0
���	
 0�
 ���
 0:��
� ���;�+�
 0:��
 ��
 *������ 4"
�
 <5�(�� �(
�� �(��"�� 7�5(=� ��)
�

�����
 <5����
 �>
�
 ��
��� ?�
���	
 0� �
���
� ����
 ��@ ��
5�
 �
�"��
 .

*College of Computers Sciences and Mathematics/University of Mosul. 
Received: 4/ 1 /2006   ____________________Accepted: 23/ 2 / 2006 



Applications of Fractal Dimension ______________________ ]55[

1. Introduction  
 

Many natural phenomena are better described using a 
fractional dimension, and fractals are thus used as descriptive 
models for the growth of plants, particle aggregation, river 
cartography, realistic images, and similar phenomena. Their 
fractal dimension characterizes most of these fractal models. In 
physical systems, the fractal dimension reflects some properties 
of the system. The physical characteristics of some bodies are 
related to the fractal dimension of their surfaces. For example, 
the growth pattern of bacteria has a fractal dimension of 1.7, and 
the fractal dimension of clouds is 1.30 to 1.33; for snowflakes it 
is 1.7, for coastlines in South Africa or Britain, 1.05 to 1.25, and 
for woody plants and trees, 1.28 to 1.90. In medicine, fractal 
dimension have been found for various biomolecules such as 
DNA and proteins. For instance, the fractal dimension of 
lysozyme (egg-white) is 1.614; for hemoglobin it is 1.583, and 
for myoglobin 1.728. The fractal dimension of the perimeter of 
surface cell sections has been used to distinguish healthy cells 
from cancerous cells. In analytical chemistry, the fractal 
dimension is used as a tool to characterize chemical patterns and 
problems of sample homogeneity. A given fractal dimension 
makes it possible to simulate a variety of systems: fluid 
extraction or contaminant mitigation techniques, the hybrid 
orbital model of proteins, or the growth of conflict rate in aircraft 
flight schedules. In the last years, fractal geometry has provided a 
new approach to traditional methods of antenna design. Several 
classical fractals of the initiator-iterator kind (for example, Von 
Koch's snowflake, Sierpinski's gasket) have been proposed as 
antenna prototypes. Certain properties of fractal antennae are 
related to their fractal dimension: An increase in the fractal 
dimension may be translated into higher gain, low return loss, 
and a shifting down of the resonant frequencies (Ortega et al.,  
2003). Fractal dimension provides an objective meaning for 
comparing fractals and they can be attached to clouds, trees, 
coastlines, feathers, networks of neurons in the body, dust in the 
air at an instant in time, the clothes we are wearing, the 
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distribution of frequencies of the light reflected by a flower, the 
colors emitted by the sun, and the wrinkled surface of the sea 
during a storm (Barnsley, 1993). 

 
2. Basic Concepts 
A fractal dimension of a set is a number that tells us how densely 
the set occupies the metric space in which it lies. It is invariant 
under various stretching and squeezing of the underlying space. 
This makes the fractal  dimension meaningful as an experimental 
observable, it possesses a certain robustness and independent of 
the measurement units.  
 The starting point is an attempt to generalize notions of 
geometric “ size “ of sets lying in Rn, from the conventional ideas 
of “ length “ (n=1), “ area” and “ arc length “ (n=2), and “ 
volume “ and “ surface area “ (n>2), in cases in which the 
complexity of the sets  of interest prohibits meaningful 
categorization by these familiar measures. The most readily 
understood class of measures involves the notion of trying to “ 
cover “ the set of interest, say S, lying in a compact subset of  Rn ,
with n-dimensional boxes with sides of length Є, small number. 
If n=1 and S is simply an interval of length L, clearly the “ 
number “ of  “ boxes “ used to cover the interval is 
approximately, ignoring integer part corrections, N(S, Є) = L / Є.
For S, a n-dimension cube with side L, we have  N(S, Є) = (L / 
Є)n . For such nice sets S, a little algebra suggests the usual 
interpretation of the dimension of S : 

.)/log(
),S(Nloglimn εεεε

εεεε==== →→→→εεεε 10

Different measures of dimension are based on this notion of “ 
covering “ S. For example, for an arbitrary, compact set S lying 
entirely in Rn to be covered by n-dimensional cubes, define the 
capacity of S (or the fractal dimension of S) as (for more details 
see Gulick, 1992): 
 .)/(log

),S(Nloglimd c εεεε
εεεε==== →→→→εεεε 10
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Capacity dimension is the simplest and is useful for 
illustrating what a fractional dimension means. It, however, treats 
the attractor as a static geometrical object ignoring the fact that 
there is a dynamical flow defined on it (and defining it). In a 
simulation or experiment, the attractor is not seen directly, only 
typical trajectories over finite time periods are observed. Thus 
capacity is of questionable use in a practical setting and serves as 
an upper bound to the fractal dimension of an attractor (see e.g. 
Parker and Chua,1987). 
 

There are other measures of dimension in addition to this 
mentioned above. Some of the measures often studied in the 
chaos literature may be motivated by the suggestion that one 
relate the geometry of attractors, the structure of ergodic 
distribution and the mathematical properties of chaos. For 
practical purposes the correlation dimension is strictly related to 
the fractal dimension (Berliner, 1992). To briefly discuss this, let 
us start with the 1-dimensional series, {{{{ }}}} k

ttx 1==== , and from this 
form the sequence of  N = k-m+1  m-dimensional vectors  

 {{{{ }}}} 1
111

++++−−−−
====−−−−++++++++==== mk
smssss x.....,,x,xX

The obtained plot is called phase portrait. In the dynamical 
systems literature, the ambient space in which we do the viewing 
is called the embedding space, it is dimension m is called the 
embedding dimension and each Xs is Known as an m-history of 
the series {{{{ }}}} k

ttx 1==== . This converts the original scalar series into a 
shorter series of N (m-dimensional) vectors with overlapping 
entries. Assuming that the true, but unknown, system which 
generated {{{{ }}}} k

ttx 1==== is θ-dimensional and provided that 
12 ++++θθθθ≥≥≥≥m , then the set of m-history recreates the dynamics of 

the data generation process and can be used to analyze the 
dynamics of the system . This is the basic content of the 
celebrated Takens theorem, (see Takens, 1981), which extends 
the classic embedding theorem of Whitney in topology to 
dynamical systems. The correlation dimension is obtained by 
considering the correlation integral, defined by Grassberger and 
procaccia, (1983) as  
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{{{{ }}}}Nt,s:)t,s(#)N(N),m,N(C ≤≤≤≤≤≤≤≤−−−−====εεεε 11
2 , where # 

denotes the number of elements in the set. The correlation 
integral is related to the  correlation dimension by the power law   

)(~)(C D 0→→→→εεεεεεεεεεεε . This results in the correlation dimension 
m
CD being defined as 
 )log(

)),m,N(Clog(D limm
C εεεε

εεεε====
→→→→εεεε 0

. In practice, one estimates m
CD

for m=1, 2, 3, ....., j for j no larger than around 10. 
The correlation dimension is a probabilistic type of 

dimension and is theoretically provides a lower bound to the 
fractal dimension of an attractor.     

 
We now give some basic applications of the fractal dimension 
 

1. Generation Fractal Objects  
We can set up some iterative procedures to generate fractal 
objects using a given value for the fractal dimension. With other 
procedures, we may be able to determine the fractal dimension 
from the properties of the constructed object. The fractal 
dimension dc of an object is always greater than the 
corresponding Euclidean dimension (or topological dimension), 
which is simply the least number of parameter, needed to specify 
the object. An Euclidean curve is one-dimensional, an Euclidean 
solid is three-dimensional. For a fractal curve that lies completely 
within a two-dimensional plane, the fractal dimension dc is 
greater than 1 (the Euclidean dimension of a curve). The closer dc
is to 1, the smoother the fractal curve. If dc = 2, we have a peano 
curve, that is, the “ curve “ completely fills a finite region of two-
dimension space. For 2 < dc < 3, the curve self-intersects and the 
area could be covered an infinite number of times. Fractal curve 
can be used to model natural object boundaries, such as 
shorelines. Spatial fractal curve (those that do not lie completely 
within a single plane) also have fractal dimension  dc greater than 
1, but dc can be greater than 2 without self-intersecting. A curve 
that fills a volume of space has dimension dc = 3, and a self-
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intersecting space curve has a fractal dimension dc > 3. Fractal 
surfaces typically have a dimension within the range 2 < dc < 3. 
If dc = 3, the “ surface “ fills a volume of space. And if dc > 3, 
there is an overlapping covering of the volume. Terrain, clouds, 
and water are typically modeled with fractal surfaces. The 
dimension of a fractal solid is usually in the range 3 < dc < 4. 
Again, if dc > 4, we have a self-overlapping object. Fractal solid 
can be used, for example, to model cloud properties such as 
water-vapor density or temperature within a region of space 
(Hearn and Baker, 1997). By adjusting the fractal dimension we 
can obtain highly realistic representation for terrain and other 
natural objects using affine fractal methods that model object 
features as fractional Brownian motion. This is an extension of 
standard Brownian motion, a form of “ random walk “, that 
describes the erratic, zigzag movement of particles in a gas or 
other fluid. Figure (1) illustrates a random-walk path in the xy 
plane. 
 

Figure (1). An example of Brownian motion (random walk) 
in the xy plane. 

Starting from a given position, we generate a straight-line 
segment in a random direction and with a random length. We 
then move to the end point of the first line segment and repeat the 
process. This procedure is repeated for any number of line 
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segments, and we can calculate the statistical properties of the 
line path over any time interval t. Fractional Brownian motion is 
obtained by adding an additional parameter to the statistical 
distribution describing Brownian motion. This additional 
parameter sets the fractal dimension for the (motion) path, for 
more details see (Barnsley et al., 1988).  
 Another method of generating statistically self-similar point 
sets (fractal sets) is called Levy flight. In a Levy flight, one 
“flies” from one point to the next by a length x∆∆∆∆ that is 
distributed according to a homogeneous (and thus scale-
invariant) power law, 

)x(obPr εεεε>>>>∆∆∆∆ ~ cd−−−−εεεε .
For a one-dimensional Levy flight and dc = 0.5, one finds the 
distribution of the 0s of the gambler’s ruin. For a tree-
dimensional fligth (with directions isotropically selected over the 
solid angle) and dc =1.23 one obtains the astronomically 
observed “lumpy” distribution of galaxies in our universe 
(Schroeder, 1989). 
 
3. Classification of Attractors 
 

In this section, we classify attractors using the concept of 
dimension. An attractor could be defined to be n-dimensional if, 
in a neighborhood of every point, it looks like an open subset of  
Rn . This is how the dimension of a manifold is defined in 
different topology. For instance, a limit cycle is one-dimensional 
since it looks locally like an interval. A tour is two-dimensional 
since, locally, it resembles an open subset of Rn . An equilibrium 
point is considered to have zero dimensions. The neighborhood 
of any point of a strange-attractor, however, has a fine structure 
and does not resemble any Euclidean space. Hence, strange 
attractors are not manifolds and do not have integer dimension, 
see table 1 ( Parker and Chua, 1987).      
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Table (1). Classification of Attracting sets. 
 

Steady State Flow Dimension 
Periodic Closed Curve 1 

Equilibrium Point Point 0 
Two-Periodic Tours 2 

K-Periodic K-Tours K 
Chaotic  Non integer 

2. Randomness and Chaos 
 

There is a deep philosophical question concerning the 
difference between determinism and stochasticity or 
(randomness). Indeed it can be said that the more you think about 
randomness the less random things get. Define (random process) 
to be a process whose dimension is (high). A (deterministic 
process) is a process with (low) dimension (Brock and Sayers, 
1998). Chaos theory deals with deterministic processes which 
look random but whose dimension is finite. Here, we are 
concentrating on low dimensional chaos and how to distinguish it 
from a random process. One of the characteristic measures of a 
chaos is its fractal dimension, which allows one to distinguish 
between deterministic chaos and randomness (Yamazaki and 
Mino, 1989). Grassberger and Procaccia (1983) suggested the 
correlation dimension as a tool for distinguishing random from 
chaotic time series. If, as embedding dimension increases, m

CD
continues to rise then this is symptomatic of a stochastic system. 
If, however, the data are generated by a deterministic process 
(consistent with chaotic behavior), then m

CD will reach a finite 
limit at some relatively small m. The correlation dimension can 
therefore be used to distinguish true stochastic processes from 
deterministic chaos (which may be low-dimensional or high-
dimensional). Figure (2) illustrates the theoretical relationship 
between log(C(N, m, Є) and log(Є) (see Chappell and Eldridge, 
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1997). For b)log(a ≤≤≤≤εεεε≤≤≤≤ , Є is too small and very few m-
histories lie with a distance Є of each other. For log(Є) > c, Є is 
too large and all m-histories will lie within a distance Є of each 
other. For b < log(Є) < c, C(N, m, Є) increases as m increases; 
C(N, m, Є) is the slope of the line for b < log(Є) < c . This slope 
will increase initially as m is increased. 
 

As mentioned above, if the data under consideration contain 
a detectable non-linear deterministic component, the correlation 
dimension should increase with increasing values of the 
embedding dimension. However, this should level off at some 
point and remain constant for all further values of the embedding 
dimension. On the other hand, if the true data generating process 
is purely random, then we would expect the correlation 
dimension always to increase with the embedding dimension. 
 

Figure (2). Theoretical relationship between log(C(N, m, Є) and 
log(Є) .

a

b

c

d

log(Є)

log(C(N, m, Є)

log(C(N, m, Є)
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Application: To show how powerful is the dimensional 
method to distinguish between deterministic chaos and 
randomness. The method is verified on two synthetic time series 
of 3000 data points. The first synthetic time series is a realization 
of Henon Map, given by  
 2

1 1 ttt xayx −−−−++++====++++

tt xby ====++++1 , with  a =1.4  and  b = 0.3. 
Unlike the previous signal, the second consists of purely random 
series (Gaussian white noise ).  
 For each of the two sampled time series, we use the 
Grassberger and Procaccia method to compute the correlation 
dimension, and the results are shown in figure (3) .  
 As can be seen from figure (3), the dimensional estimates of 
the Henon attractor (chaotic) converge to a finite value with 

01021 ..Dm
C ±±±±==== . Contrast this case with the case when the time 

series is purely random the correlation dimension keeps on 
increasing as a function of the embedding dimension and there is 
no sign that this levels off at some point. Thus it would seem that 
the correlation dimension would tend to measure the dimension 
of the noise as opposed to the underlying dynamics which are of 
interest.  
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Figure 3. Relationship between m
CD and m for a chaotic series   

and a purely random series.  
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4. Order of Non-Linear Auto-regressive Model  
Estimation of dimension might give indications of the number of 
lags that one should fit in non-linear auto-regressions if linear 
auto-regressions do not fit well (Brock and Sayers, 1998). 

The basic idea is a quite simple : to view a 1- dimensional 
object, say a loop, unambiguously we only need to live in a space 
not bigger than a  3-dimensional space. ( Needless to say, going 
beyond 3 will enable us to view the same object equally 
unambiguously but 3 will be sufficient to guarantee  unambiguity.) 
If the loop is non-intersecting, then we need to go all the way to 3. 
In other cases, a lower dimension will often suffice. More 
generally, to view an attractor say A unambiguously, we need to 
live in an m-dimensional space. In short,  )Adim(21 ++++ is the 
smallest dimension which will guarantee unambiguous viewing 
for all attractors of dimension dim(A), however "weird".  Just as 
going beyond the embedding dimension will not yield any 
additional information about the geometric structure of the 
attractor A, going beyond the  order of a non-linear auto-
regressive model will add nothing to the probabilistic structure of 
the stochastic process. Thus, the two concepts are linked at least at 
this level (Tong, 1994).  

For an embedding to be suitable for successful estimation of 
dimension, one must choose suitable values of embedding 
dimension. Recently, there have been many discussions on how to 
determine the appropriate embedding dimension for a scaler time 
series. one is that the correlation theorem is employed to estimate 
appropriate embedding dimension ( see e.g. Takens, 1981; 
Grassberger and Procaccia, 1983).  

That is, by increasing the embedding dimension, one notes, an 
appropriate dimension m when the value of the correlation 
dimension stops changing. Thus, the dimension estimates is 
computed for increasing embedding dimension m until the 
dimensional estimate stabilizes. This final m

CD is the proper value 
of the correlation dimension, and the lowest m yielding this value 
is the minimal dimension of the reconstruction space.  
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Figure(4) shows a phase portrait obtained by applying Takens 
procedure to the Henon time series. The correlation dimension 

m
CD obtained in this way is shown in figure(5) as a function of the   

embedding dimension m for the Henon time series. With 
increasing m, m

CD increases and becomes nearly constant, 
01021 ..Dm

C ±±±±==== , and the lowest m yielding this value is 2 and we 
need at least two equations to construct the time series.   

 

-1 0 1

-1

0

1

Figure(4). The Henon attractor. 
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Figure(5). Correlation dimension m
CD in Henon as a function of m 

 

5. Whiteness Diagnostic 
 
Estimates of dimension can be machined into methods to test the 
adequacy of linear models of both trend stationary and difference 
stationary type (Brock and Sayers, 1998). We can perform the 
whiteness diagnostic using the log(C(N, m, Є)) versus log(Є)
plot. 
 The whiteness diagnostic compared the dimensional 
estimates obtained from the correlation dimension for the 
residuals with dimensional estimates for a series of Gaussian 
pseudo random numbers of the same length, mean, and variance. 
If the two series have the same m

CD , then this is consistent with 
the residuals under scrutiny being Gaussian white noise. 
Evidence of non whiteness of the residuals which shows different 
estimates of m

CD for the two series. i.e. the difference between 
the original and the putatively white residuals sample correlation 
estimates should be statistically significant.  
 
Application: We demonstrate the application of the above 
method with computational simulation of a linear system  

ttttt eX.X.X.Y ++++++++−−−−==== −−−−−−−−−−−− 765 406080 , where   et is the model 
error. Two samples of the Y component are considered of this 

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1 2 3 4 5 6 7 8 9 10
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system. Let us consider two models to show how powerful is the 
method to  examine the performance and importance of the 
choice of modeling algorithm, the first model is 

ttt eX..Y ++++++++==== 7190000610 , and the second (after logarithmic 
transformation to the data points) is 

ttt eX..Y ++++++++−−−−==== 906008540 . A regression analysis of the two 
models is shown in Table(2).  

Table(2). Regression Analysis 
 

Model (1) 
Source DF SS MS F R-sq. R-sq.(adj.) 

Regression 1 36698 36698 412247.79 99.6 % 99.6 % 
Residual 

Error
1491 133 0    

Total 1492 36830     
Model (2) 

Source DF SS MS F R-sq. R-sq.(adj.) 
Regression 1 293.04 293.04 8828.81 85.6 % 85.5 % 
Residual 
Error 

1491 49.49 0.03    

Total 1492 342.53     

We have constructed our own Gaussian Pseudo random 
numbers and compared it with residuals of model (1) to test the 
accuracy of  it. We found that the two estimates are similar (as it 
should) according to the correlation dimension (see figure 6).  

 Figure(6). Dimensional estimate of model (1). 
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The same procedure has been applied to model (2). An 
analysis of the correlation integral yields clear evidence of non 
whiteness of the residuals. As is seen in figure 7, the dimensional 
estimates for the two series are different. 

 

Figure(7). Dimensional estimate of model (2). 

6. Spectral Indices 
In a lot of practically important cases, the power spectral density 
has a power-low, i.e., low frequencies have higher energies 
compared to high frequencies following the unique relationship 
 ββββ−−−−αααα f)f(p .
Here )f(p is the power spectral density, f is the frequency, 
and ββββ is a power-low index. A curve with a single power-low 
index for all frequencies is self-similar ( Koszma et al., 1998) . 
The following approximate relationship has been obtained ( 
Higuchi, 1990) between power-low index ββββ and the fractal 
dimension dc : over the range of  21 ≤≤≤≤≤≤≤≤ cd ,

23 /)(Ed c ββββ−−−−++++====
for a function of Euclidean dimension E. 
 Note that the above relation is just an approximation. It holds 
for a class of processes called fractional Brownian motion with 

31 <<<<ββββ<<<< , but it breaks down for 1<<<<ββββ and 3>>>>ββββ for more 
details see ( Kozma etal., 1998).  
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7. Hurst Exponent 
In 1951 Hurst found long-term correlation in fluctuation of 
outflows from the Nile River. He discovered that hydrological 
time series show longer periods of droughts and floods than were 
to be expected if the processes had both finite memory and 
variance (Van de Giesen and Mata, 2002) . His work was based 
on the methods used for reservoir design. The design of a 
reservoir seeks to determine the optimum capacity that will allow 
ideal performance over a range of years. The capacity that allows 
the reservoir to produce a uniform outflow and never empty or 
overrun is determined by adjusting a rivers cumulative discharge 
for the year by the sample average for the set of years in 
question, n. The difference between the maximum and minimum 
of these adjusted value is denoted by R(d), and is the optimum 
capacity for the reservoir. 
Using )t(R ∆∆∆∆ , otherwise known as the range, as a tool to 
investigate actual behaviour of river discharge records Hurst 
found that the cumulative fluctuations in outflow satisfied the 
following power law  
( Hastings and Kissell, 1998) :  
 {{{{ }}}} Hnconstntst:)s(yrange ××××====++++≤≤≤≤≤≤≤≤ .
Where the range is defined as the maximum deviation of 
cumulative actual behaviour from average behaviour within a 
sample. Mandelbrot and Wallis later confirmed that it was valid 
to model geophysical records using fractional noises (Mandelbrot 
and Wallis, 1969). 
The Hurst exponent, H, is a self-similarity parameter that 
measures the long-range dependence in a time series, and 
provides a measure of long-term non-linearity. The expected 
value of H lies between 0 and 1. For H=0.5 the cumulative 
behavior is a random walk and the process produces uncorrelated 
white noise. However in the cases where the Hurst exponent is 
either greater than or less than 0.5 there are underlying non-linear 
dynamics in the system. H < 0.5 represents anti-persistent 
behavior and H > 0.5 is fractional Brownian motion with 
increasing persistence strength as H approaches 1 ( Lange, 2003).       
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The process for estimating the Hurst exponent can be found 
in both (Weron, 2002) and (Peters, 1994). Hurst exponent 
estimation has been applied in areas ranging from biophysics to 
computer networking. However, the modern techniques for 
estimating the Hurst exponent comes from fractal mathematics 
(Ian, 2003). For a relationship between the power-law exponent 
ββββ , the Hurst exponent, and the fractal dimension cd is given 
(Barnsley et al., 1988) by ββββ=2H+1= 5-2 cd . The Hurst exponent, 
H, and the fractal dimension, cd , are related by the equation  H
= E +1 - cd , where E is the Euclidean dimension ( E = 0 for a 
point, 1 for a line, 2 for a surface ). For one-dimensional signals, 
H = 2 - cd .

Example ( Hurst exponent of Henon ) 
Using the equation outlined above the estimated value of the 
Hurst exponent for the Henon time series with a=1.4 and b=0.3 is 
approximately 0.7. The value of H is greater than 0.5 indicating 
that the time series is not random i.e. there is memory in the data 
and  persistent behaviour.  
 

8. Auto-correlation functions  
The mathematical definition of long-memory processes is given 
in terms of auto-correlation. When a data set exhibits auto-
correlation, a value Xi at time ti is correlated with a value Xi+s at 
time ti+s , where s is some time increment in the future. In a long 
memory-process auto-correlation decays over time and the decay 
follows a power law. A time series constructed from 30-day 
returns of stock prices tends to show this behavior. In a long-
memory process the decay of the auto-correlation function for a 
time series is a power law: 
 

αααα−−−−==== kC)k(P
where C is a constant and P(k) is the auto-correlation function 
with lag k . The Hurst exponent is related to the exponent alpha 
in the equation by (Ian, 2003 ):  
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21 αααα−−−−====H .
The value of the Hurst exponent ranges between 0 and 1. 
 

Since the power spectrum is the Fourier transform of the 
auto-correlation function, one can find the following relationship 
between the auto-correlation exponent αααα and the power spectrum 
exponent ββββ : ββββ−−−−====αααα 1 , where 10 <<<<αααα<<<< . The exponent αααα is 
related to the fractal dimension dc by the equation :  αααα = 2 dc - 2E 

9. Conclusions  
 
There are various numbers, associated with fractals, which can be 
used to compare them. They are generally refered to as fractal 
dimension. Fractal dimension is important because it can be 
defined in connection with real-world data, and it can be 
measured approximately by means of experiments.  
 Based on the examples in this paper, the fractal dimension 
technique appears to be a viable method for :  
 

Distinguishing between randomness and chaos. 
Indicating the order of nonlinear auto-regressive model. 
Testing the adequacy of the model. 
Estimating the Hurst exponent. 
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