-----2013 34-11 4 24 -----

Micrococcaceae

(2013 / 2 / 18 2012/ 10 / 7)) 400 124 .2012 2011 (Micrococcus, Citrococcus, Kocuria 90 %16.1 %49.2 M.lylae Micrococcus luteus %8 %8.9 M.endophyticus M.antarcticus Kocuria varians %2.4 K. kristinae %4.8 K.rhizophila %1.6 .%0.8 Citrococcus spp. K.polaris Cluster analysis Simple Matching Coefficients(Ssm) 19 G, F, E, D, C, B, A B4, B3, B1, C4, C3, C2, C1 Α M.luteus C5 Citrococcus spp. B2, B5 **C**7 C6 K.varians K.rhizophila Ε K.kristinae D M.antarcticus F M.endophyticus . K.polaris G M.lylae 12

(GLC) Cas Liguid Chromatography

M.luteus

M.lylae

Micrococcus Citrococcus M.luteus

Valeric Stearic Kocuria

Micrococcus GLC

.Staphylococcus

.Kocuria Citrococcus Micrococcus

Numerical Taxonomy of Micrococcaceae

Saffaa A. Al-Musawy

Essra G. Al-Sammak

Department of Biology College of Science University of Mosul

ABSTRACT

Four hundred samples were collected from various sources (healthy skin of human, diabetics, thalassemic, turbculosis patients and soil, air samples) for the period from August 2011 to February 2012. One hundred twenty four isolates belonging to *Micrococcus* spp., *Citrococcus* spp., *Kocuria* spp. were identified to species level and classified depending on 90 morphological, Biochemical, Physiological and Molecular characteristics.

The highest rate of isolation was 49.2% which belonged to the species *Micrococcus luteus* and then 16.1% to *M.lylae*, followed by 8.9% to *Kocuria varians* and 8% to both of *M.antarcticus*, *M.endophyticus*, *K.rhizophila* 4.8%, *K.kristinae* 2.4%, two isolates of *Citrococcus* spp. 1.6% and one isolate of *K.polaris* 0.8%. Numerical classification by cluster analysis was carried out and six methods of clustering were compared of which the farthest neighbor linkage method proved to be the most convenient.

The percentage of similarity between the isolates determined using simple matching coefficient (Ssm), so the isolates were grouped into seven main clusters A, B, C, D, E, F,G, and 19 sub clusters. The first main cluster A and the sub clusters B4, B3, B1, C4, C3, C2, C1 included isolates of the species *M.luteus*, the sub clusters B2, B5 included isolates of the genus *Citrococcus* spp. and the sub cluster C5 included isolates of the species *K.rhizophila*, the sub clusters C6 included isolates of the species *K.varians*, the sub cluster C7 included isolates of the species *M.antarcticus*, the main cluster D included isolates which belonged to the species *K.kristinae*, the main cluster E included isolates belonged to the species *M.endophyticus*, the main cluster F included isolates belonging to the species *M.lylae*, the last cluster G included one isolate belonging to the species *K.polaris*.

Twelve isolates selected from most clusters in hierarchical dendrogram for separation of cellular fatty acids using Gas Liquid Chromatography (GLC) showed that 3 isolates

belonging to species *M.luteus* had the same fatty acid at different concentrations, although they belong to different clusters, also there is heterogencity in present and concentration of fatty acid between the species and this had a major role in the diagnosis of the species *M.lylae* from *M.luteus* also have a role in distinguished Citrococcus from the genera Micrococcus and Kocuria, the fatty acid stearic and valeric were absent in all isolates analyzed by GLC which have a role in confirming diagnosis of members of the genus Micrococcus and distinguishing them from the genus Staphylococcus.

Keywords: Numerical taxonomy, Micrococcus, Citrococcus, Kocuria.

Micrococcus

.(Emtizai et al., 2005)

3.5-0.5

%5.5

(Atlas, 1995; Holt *et al.*, 1994) 48-24 37 .(Kaprelyants *et al.*,1994) %75-65 GC

Micrococcus

.(Kocure *et al.*, 2006)

Arthrobacter, Nesterenkonia, Renibacterium, Citrococcus, Stomatococcus, Kocuria
Winn *et al.*,) Staphylococcus Planococcus, Dermacoccus, Kytococcus, (*A.agilis*)
.(2006

(LPS) Lipopolysaccharide

Lipoteichoic

(Sasse	20 er, 1990)		Iso	20-9 oprenoidquinones	Mycolic acid
		Micrococcus	.(Saue	r <i>et al</i> ., 2008) Lipo :	polysaccharide
			Micrococcus	•	.1
					.2
			(GLC) Gas I	iquid Chromatogra	
			:	(400)
Swab					:
Nutrient			Stuart's N		
37				%5.5 . 48	Agar -24
			5-2		•
48-24	37		%5.:	5	
		%5.5 ()	الهواء:

```
.(Santhini et al., 2009)
                                                                  %5.5
                                                               .(Winn et al., 2006)
                 %5.5
                                                                 -1:
     Micrococcus
            - 2 (Kezeli et al., 2009)
                                                                             Citrococcus
        - 4 (Atlas et al., 1995)
                                                  -3 (Macfaddin, 1985)
                         Bacitracin (B10u) FX100M/disc (Furazolidone)
Micrococcus
                                         - 5 .(Winn et al., 2006) Staphylococcus
                                                   -6.
                                                                                  Oxoid
                                                                 %1
        ) .
                                                  5
                                                             (\%0.5)
                 -7 .(Collee et al.,1996)
                                                                37
                                                24-18
                                                -8 .(Winn et al., 2006; Cowan, 1977)
                  - 9 .(Macfaddin, 1985)
                                               -12.
                                                                 -11.
(Macfaddin, 1985; Cruickshank et al., )
                                                                                     -10
                                  - 14 .(Atlase et al.,1995)
Harley and Prescott, )
                                                                            -13. 1974
                   -16 .(Winn et al., 2006; Macfaddin, 1985)
                                                                             -15 .(1996
                       4
                                                          -17 .(Frei et al.,1995)
100
                        -18 (Webster McGinley, 1997)
Lennette )
                                                                                     3
                                                                        -19 .(et al.,1985
                                    H<sub>2</sub>S
            Co_2
                                            -20.(Koneman et al.,1997)
Egg Yolk Agar
                                           Lipase
                                                                             Lecithinase
                                                          Protease
Winn et al., )
                               (Koneman et al., 1997) CAMP
                                                                   (Lennette et al., 1985)
                                                                             - 21.(2006
                                                                       (Macfaddin, 1985)
                                        NaC1
% 15.5-13.5-11.5-9.5-7.5-5.5-3.5 :
```

				Manitol Salt Ag	gar		.(Harley	and Pres	cott,1996)
	MacC	onk	ey Agar	Eusin methy	ylene blue	Thi	ioglycola	ite Agar	.%7.5
					:		-	22 .Oxoi	d
	37			N	Aullar Hinto	n Agar			Oxoid
.(V	andepi	tte e	t al., 200	3)					24-18
								:	
N	Aicroco	occu	s, Citroc	occus, Kocuria:					
	:								
				(m=90)		:Data	Matrix		-1
					(n=124)				
		(0	-)		(1 +)				
			$(m \times n)$:S	imilarity	Matrix		-2
Austin)					:Cluster a	analysis		-3
								(and Pri	est, 1986
									•

Cas Liguid Chromatography GLC

(Brooks et al., 1990; Lambert and Moss, 1983) GLC GLC Packard Model 438A Hewlett Packard .(Miller,1982) 3 1/8 (FID)Film Ionization Detector 300-120 $\sqrt{3}$ / 30 10 .(Shaw, 1974) $/^{3}$ 30

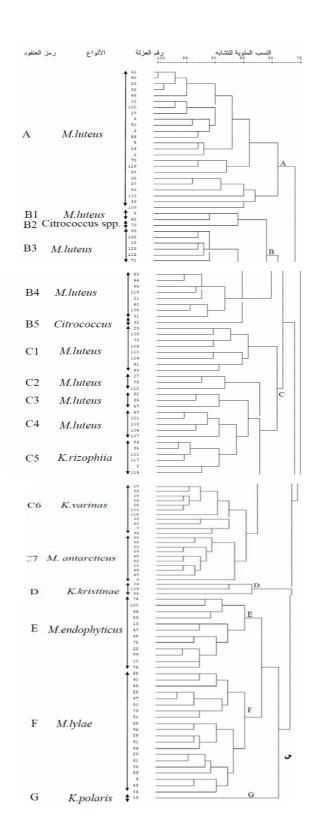
Micrococcus		124		180	
				Citrococ	cus Kocuria
			Micrococcus	\mathbf{S}	(1)
		Furazolidone	Baci	tracin	
			37		%15.5-5.5
				.(Winn et a	d., 2006)
			%5.5		
		Planococcus	Stomatococcus	Rothia	Micrococcus
			.(Collins	et al., 2000)	
				Kocuria	
					Kocuria
	Bacitra	ncin			
	Microco	ccus	Staphylococo	cus	Furazolidone
				N	aCl %9.5
		Staphylococcus	S	.(Red	dy et al., 2003)
	Citroc	occus	.(Winn e	t al., 2006; Kloo	os <i>et al.</i> , 1998a)
	37		48-24		
			.(20	006 ; Kez	zeli <i>et al.</i> , 2009)
(2)					
			Micrococcus	S	
M.luteus			Citrococcus	Kocuri	a
	%8.9	K.varians	%16.1	M.lylae	%49.2
%4.8	K.rhi	zophila	%8	M.endophyticus	M.antarcticus
		% 0.8	K.polaris	%2.4 <i>I</i>	K.kristinae
		(Kocure et a	l., 2006; Boudewi	jns et al., 2005; I	Liu et al., 2000)
M.lyla	ae 33%	%95 <i>M</i> .	luteus	2010	Savini
				%28	M.antarcticus
			.(Kovacs	et al., 1999)	

Micrococcus

(n	lidone mg)	S ol	2		%ľ	NaC	<u>'</u> 1							
Bacitracin (10u)	Furazolidone (100mg)	Rod-coccus		15.5	9.5	5.5	0		NaCl %5.5	37				
+	+	-	-	+	+	+	+			+	48-24	-+	+	Micrococcus
-	-	-	-	-	+	+	+			+	48-24	ı	+	Staphylococcus
+	+	-	-	-	-	+	+			+	48-24	-+	+	Kocuria
+	+	-	-	-	-	-	+			+	48-24	+	+	Rothia
~	~	+	+	~	7	~	+			+	48-24	+	+	*Arthrobacter
+	+	-	_	-	-	+	+			+	48-24	+	+	Citrococcus
~	~	-	-	-	-	-	+			+	48-24	-	+	Stomatococcus
~	~	-	-	-	-	+	-			+	48-24	+	+	Nesterenkonia•
~	~	~	~	~	~	~	~	7	~	~	~	ł	~	Renibacteriumo
-	-	-	-	-	-	-	+			+	48-24	ı	+	Planococcus
~	~	+	-	-	-	-	+			-	5	+	+	Dermacoccus•
~	~	-	-	+	+	+	+			+	92 -72	-	+	Kytococcus•

^{*} عدا النوع Arthrobacter agilis متحرك

لم يجرى هذا الاختبار - سالبة للاختبار + موجبة للاختبار - + متغايرة


[•] لم تعزل لانها لاتنمو بدون NaCl • لم تعزل لاختلاف مصدر العزل • لم تعزل لاحتياجها فترة تحضين طويلة

														1
					1	1		1						
p.					SI									
Citrococcus spp.	ris	nae	K.rhizophila	su	M.endophyticus	M.antarcticus	э	sn						
осси	K.polaris	K.kristinae	izop	K.varians	loph	ıtarc	M.lylae	M.luteus						
troc	K.I	K.k	K.rh	K.1	ena	A.an	N	M						
Ci					Z	<i>V</i>								
-	-	-	-	-	-	-	-	-			0	20		
-	-				_	-	-	-	%		0	5		20-5
1	_	1	1	2	4	2	4	22			0	0		
2.7	_	2.7	2.7	5.4	10.8	5.4	10.8	59.4	%		37	25		
1	_	_	-	-	-	-	2	5	70		0	0		
12.5	_	_	_	_	_	_	25	62.5	%		8	25		
-	_	1	_	4	2	1	-	2	70		0	0		
_	_	10	_	40	20	10	_	20	%		10	25		
_	_	-	_	-	-	-	_	1	70		0	0		
_	_	_	_	_	_	_	_	100	%		1	25		
_	_	1	2	4	2	1	10	9			12	20		
_	_	3.4	6.9	13.8	6.9	3.4	34.4	31.1	%	()	17	30		35-21
_	_	_	_	_	2	3	2	5		, ,	8	13		
-	-	-	-	-	16.7	25	16.7	41.7	%		4	12		
-	-	-	-	-	-	-	-	1			0	0		
_	_	_	_	_	_	_	_	100	%	()	1	20		
	-	-	-	-	-	-	-	1			1	25		
-	-	-	-	-	-	-	-	100	%		0	0		
	-	-	-	-	-	-	-	8		, ,	2	10		50-36
-	-	-	-	-	-	-	-	100	%	()	6	15		
-	-	-	-	-	-	1	-	3			4	35		
-	-	-	-	-	-	25	-	75	%				-	
-	-	-	-	-	-	1	1	1	_		3	25		
-	-	-	-	-	-	33.33	33.3	33.3	%				-	
-	-	-	3	1	-	1	1	3			10	35		
-	10	-	30	10	-	10	10	30	%				-	
2	1	3	6	11	10	10	20	61			124	400		
1.6	0.8	2.4	4.8	8.9	8	8	16.1	49.2		%				

(G, F, E, D, C, B, A) (7) (3) (1)

Kocuria Micrococcus

.(Jeffries, 1969)

Micrococcus, Citrococcus, Kocuria
Ssm

(1)

	%				
()	%78	M.luteus	23	A	1
				В	
()	%90	M.luteus	2	B1	
()	%85	Citrococcus spp.	1	B2	
()	%90	M.luteus	6	В3	2
	%88	M.luteus	8	B4	
	%85	Citrococcus spp.	1	B5	
				C	
	%84	M.luteus	8	C1	
	%87	M.luteus	3	C2	
	%90	M.luteus	3	C3	3
	%90	M.luteus	5	C4	
	%90	K.rhizophila	6	C5	
	%88	K.varians	11	C6	
	%86	M.antarcticus	10	C7	
	%83	K.kristinae	3	D	4
	%84	M.endophyticus	12	E	5
	%84	M.lylae	20	F	6
	%79	K.polaris	1	G	7

(1) :4

Column		-	-	-					62	G#		n.	D.1			D.4		رمز العنقود	
\$\text{\$\frac{\text{\$\text{\$\frac{\text{\$\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\tex{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\tex{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\tex{	G	F	E	D	C7	C6	C5	C4	C3	C2	C1	B5	B4	В3	B2	B1	A	-333	
\$\text{\$\frac{\text{\$\text{\$\frac{\text{\$\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\tex{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\tex{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\tex{																			
\$\text{\$\frac{\text{\$\text{\$\frac{\text{\$\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\tex{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\tex{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\text{\$\frac{\tex{																			
1			icus		sn		_					dds			dds			النه ع	
1	s		hyt	ıae	ctic	82	hila	>	8	>	>	sno	5	5	sno	5	6	الفوع	
1	olari	ylae	бори	istin	ntar	ırian	iżop	ıten	ıten	ıten	ıteu	эоэо	ıteu	ıteu	2020	ıteu	ıteu		
1	K.pc		M.eı	K.kr	M.a.	K.va	K.rh	M.lı	M.lı	M.lı	M.lı	Citro	M.lı	M.lı	Citr	M.lı	M.lı		
1											·								
1			l			l .					l .							الاختبارات	
100 500 531 532 533 60 60 70 100 1																			ألوان المستعمرات
100 500 531 532 533 60 60 70 100 1																			على اكار
100 500 531 532 533 60 60 70 100 1	-		_			_					_		_			_			NaCl%5.5
10		50			90					100	75		25	33.3		50	66.6		احجامها
10						_													
100 100																			سطح المستعمرة
The color The																			القوام
100																			
100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	رياعي	شكل الخلايا
0																			1
190	0	75	0	66.6	10	10	16.6	40	66.6	66.6	25	0	0	0	0	0	16.6	متوسطة	حجم الخلايا
0																			::i =1::1
100 0 0 0 33.3 0 9 0 0 0 0 0 0 0 0													25						بسی سریم
0 0 0 0 0 0 0 0 0 0						_													
1																			انتاج انزيمات
100 S 33.3 33.3 20 36.3 0 20 0 0 0 0 0 16.6 0 0 33.3 1.5		0	0	100	60	0		0	0		0	0	0	0	0	0	12.5	اختبارCAMP	الصراوه
0																			
0																			
100 0 25 33.3 20 27 0 0 0 33.3 0 0 0 0 100 0 16.6 16.6 17.5			25								12.5						8.3	مانوز	
O S 25 66.6 O 36.3 33.3 O O O O O O O O O																			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	25										_						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																			اكسدة
0 0 33.3 6.66 0 9 0<								20			12.5						37.5	دكستروز	اسریت
0 0 83.3 66 0 100 0 0 0 0 0 0 0		·																	
O S S C C C C C C C C	0	0	83.3	.66	0	100	0	0	0	0	0	0	0	0	0	0	0	اربينوز	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																		ساليسين	
0 0 8.33 0 100 90 100 0 0 0 12.5 0 <		٠				_				v								دكسترين	
O O O O O O O O O O																			اختزال
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														_					تحليل
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	10	41.5	0	0	0	100	60	33.3	100	50	0	62.5	16.6	0	0	16.6	الثايوكلايكوليت	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100		02.1	100		01.0					100								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																		NACL	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																			النمو على وسط
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	5.5	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																			1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																			1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																		13.5	1
0 5 8.33 0 0 10 0 0 12.5 100 0 100 33 8.33 K/A والحديث													12.5						النمو علي
0 0			0	0		9	0	0	0		0	0	12.5	16.6	0	50	16.6	A/K	وسط ثلاثي السكر
0 0																			
0 0																			إنتاج غاز
0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ة النمو في الوسط السائل	دور
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																			-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		100	33.3	0	90	0	16.6	0	0	0	12.5		12.5	66.6	0	0	12.5	النين	sta = 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																		ميثيونين	الاحماض
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																			الامينيه
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	كلوتامين	
0 10 8.33 0 0 0 100 0 66.6 0 12.5 100 25 0 0 0 16.6 100<																		لايسين الستريت	
اكتبار المثيل الأحمر 27 33.3 0 0 100 12.5 0 50 0 0 37.5	0	10	8.33	0	0	0	100	0	66.6	0	12.5	100	25	0	0	0	16.6	المالونيت	استهلاك
																		تليورايت البوتاسيوم اختيار المثبل الاحمر	<u> </u>

G	F	E	D	C7	C6	C5	C4	С3	C2	C1	B5	B4	В3	B2	B1	A	رمز العنقود	
K.polaris	M. lylae	M.endophyticus	K.kristinae	Mantarcticus	K.varians	K.rhizophila	M.luteus	M.luteus	M.luteus	M.luteus	Citrococcus spp.	M.luteus	M.luteus	Citrococcus spp.	M.luteus	M.luteus	النوع	
100	75 M10	91.6	66.6	30 M10	10	0	M16.6	0	100	0	M25	0	M12.5	83.3 M16.6	100	M25	Piperecilin 100mg/disc	
M100	95	91.6 M8.3	M33.3	60 M20	M72.7	100	83.3 M16.6	100	100	100	50 M25	0	87.5 M12.5	83.3 .16 M6	100	50 M41.6	Tetracycline30mg/disc	
M100	M100	M83.3	M33.3	M90	81.8	M100	83.3 M16.6	M100	M75	M25	M75	0	M100	M100	M100	M83.3	Ceftazidime30mcg/disc	
100	M100	91.6	100	100	90.9	100	100	80 M20	100	100	75 25M	100	100	100	100	m58.333.3	Tobramycin10mg	
100	100	100	100	100	100	100	100	80	100	100	100	100	100	100	100	M95.84.16	Nitrofurantoin300mg/disc	
100	95	100	66.6	100	100	0	100	100	M75	100	75 M12.5	100	100	M83.3	100	M83.38.3	Carbenicillin100mcg/disc	
0	95	100	100	100	100	100	100	100	100	100	12.5	0	100	50 M50	50	83.3	Penicillin10u/disc	
0	100	100	100	100	90.9	100	100	80	100	75	25	100	100	66.6	0	100	Cefoperazone30mcg/disc	الحساسية للمضادات
0	80 M50	25 M8.3	33.3 M33.3	60 M10	100	0	66.6 M16.6	100	100	25	62.5 M12.5	100	87.5 M12.5	83.3	50	M16.68.33	Cefotaxime30m/disc g	للمضادات الحيوية
0	90 M10	100	100	100	100	100	83.3 M16.6	80	100	100	100	100	100	100	0	100	Nitrofurantoin300mcg/disc	
0	100	100	100	100	27.2	100	100	100	100	100	25	100	100	66.6 M33.3	100	M91.68.33	Erythromycin15mcg/disc	
M100	5 M55	M83.3 16.6	M66.6	20 80 M	M72	M100	100	M100	M100	25	25 M50	M100	50 M50	M100	50	50 M33.3	Chloramphenicol30mg/disc	
0	95	M83.3	M66.6	100	90.9	M100	83.3 M16.6	M80	75	M75	M100	0	100	M100	50	M58.3	Cephalothin30mg/disc	
M100	0	M8.3	M33.3	0	M10	0	0	M20	M25	0	0	100	0	0	0	M4.1	Amikacin10mcg/disc	
M100	M100	M100	M100	100M	M90.9	M100	M83.6	M100	M100	M100	M100	M100	M100	M100	50	100	Azithromycin15mg/disc	

100%: موجبة للاختبار أو حساسة للمضاد الحيوي 0%: سالبة للاختبار أو مقاومة للمضاد الحيوي M: متوسطة الحساسية للمضاد الحيوي

M.luteus: A

(Jones et al., 1995)

M.luteus : C4, C3, C2, C1B1B4, B3,

A

.Micrococcus Citrococcus

Citrococcus spp. :B2

M.luteus

Citrococcus

Micrococcus

2010 Dastager (Kezeli et al., 2009)

Citrococcus Micrococcus 16srRNA

.%85 %87

25

Micrococcaceae

B2 Citrococcus spp.

:B5

K.rhizophila

:C5

K.varians

:C6

(Reddy et al., 2003)

.(Li et al., 2006)

M.antarcticus

:C7

%15.5

%7.5 Kocuria

(1)

%15.5

(2)

.(Qudiz et al., 2004)

K.kristinae

:**D**

CAMP

(Saviniet al., 2010)

Micrococcus

(Winn et al., 2006)

Micrococcus

16srRNA CG

Micrococcus

.(Young et al., 2010) Kocuria

M.endophyticus

:E

.(Koch and Stackebrandt, 1995)

(Kovacs et al., 1999)

M.lylae

:**F**

M.luteus

M.lylae

M.luteus

(Winn et al., 2006)

M.lylae

A, B1, B3, B4,

M.lylae

F

M.luteus

C1, C2, C3, C4

.(4)

%15.5

K.polaris

:**G**

30

42-5

2010

Savini

M.antarcticus

Micrococcus

%7.5

.

Micrococcus

Kocuria

2003

Gillevet Ta

Tang

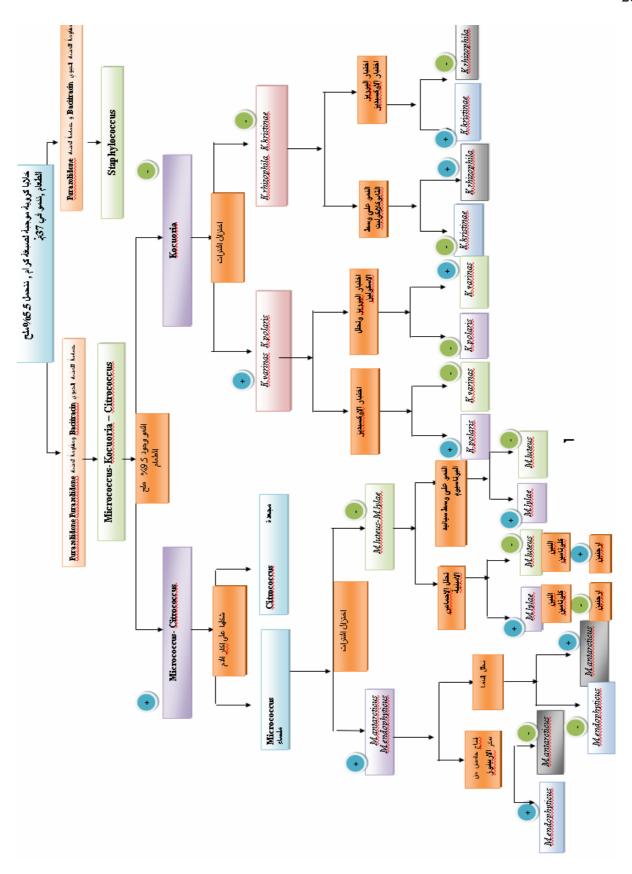
Micrococcus

Becker Kocuria

16sr DNA 2002

. Micrococcus Kocuria

.(2)


%7.5 :1

M.antarcticus -5K.kristinae - 4K.varians -3K.rhizophila - 2K.polaris -1
Citrococcus spp. -10 M.luteus - 9M.endophyticus -8M.lylae -7M.luteus - 6

%15.5 Kocuria :2

M.antarcticus - 5 K.kristinae - 4 K.varians - 3 K.rhizophila - 2K.polaris -1 Citrococcus spp.-10 M.luteus -9M.endophyticus -8M.lylae - 7M.luteus -6

29

(GLC) -

12

M.luteus 3

(5)

(Giacomini et al., 2005)

Citrococcus .(Bertone et al., 1996)

Oleic acid M.luteus, M.antarcticus spp.

F Caprilic M.lylae Capric

Butyric Lenoleic Palmatic Heptanoic M.lylae

Capric M.endophyticus M.antaracticus Oleic M.luteus

M.lylae M.luteus Lenoleic

K.polaris G .(Welch, 1991)

Oleic Lenoleic Palmatic Heptanoic Capric

.(Durham and Kloos, 1978)

Micrococcus Staphylococcus

Stearic acid Valeric acid

(Welch, 1991; Athalye et al., 1985)

						.3	
0.0789	7.58	7.837	Heptanoic acid	A	55	M.luteus	1
0.068	11.24	11.995	Palmitic acid				
0.1557	12.64	12.49	Linoleic acid				
0.0341	12.78	12.725	Oleic acid				
0.1532	15.75	15.85	Butyric acid				
0.0037	5.49	5.467	Capric acid	B2	72	Citrococcus spp.	
0.0081	7.58	7.796	Heptanoic acid				
0.0031	11.24	11.44	Palmitic acid				
0.0025	12.64	12.49	Linoleic acid				
0.0078	15.75	15.78	Butyric acid				
0.0008	7.58	7.46	Heptanoic acid	В3	71	M.luteus	
0.0026	11.24	11.508	Palmitic acid				
0.0007	12.64	12.608	Linoleic acid				
0.0077	12.78	12.944	Oleic acid				
0.0035	15.75	15.94	Butyric acid				
0.0036	7.58	7.19	Heptanoic acid	C2	112	M.luteus	
0.0023	11.24	11.42	Palmitic acid				
0.0043	12.64	12.53	Linoleic acid				
0.0056	12.78	12.384	Oleic acid				
0.0043	15.75	15.95	Butyric acid				
0.0076	5.49	5.54	Capric acid	C5	95	K.rhizophila	
0.0023	7.58	7.788	Heptanoic acid				
0.0045	11.24	11.47	Palmitic acid				
0.0062	12.64	12.47	Linoleic acid				
0.0026	12.78	12.942	Oleic acid				
0.1278	15.75	15.502	Butyric acid				
0.0002	7.58	7.367	Heptanoic acid	C6	101	K.varians	
0.0016	11.24	11.467	Palmitic acid				
0.0045	12.64	12.525	Linoleic acid				
0.001	5.49	5.55	Capric acid	C7	46	M.antarcticus	
0.0006	7.58	7.608	Heptanoic acid				
0.0014	11.24	11.96	Palmitic acid				
0.0051	15.75	15.768	Butyric acid				
0.001	7.58	7.65	Heptanoic acid	D	114	K.kristinae	
0.0006	11.24	11.34	Palmitic acid				
0.0012	12.64	12.58	Linoleic acid				
0.002	15.75	12.85	Oleic acid				
0.0031	5.49	5.83	Capric acid	Е	77	M.endophyticus	
0.0022	7.58	7.87	Heptanoic acid				
0.0028	11.24	11.96	Palmitic acid				
0.0095	7.58	7.763	Heptanoic acid	F	92	M. lylae	1
0.0024	11.24	11.443	Palmitic acid			,	
0.0034	12.64	12.4	Linoleic acid				
0.0001	15.75	15.6	Butyric acid				
0.0011	7.58	7.49	Heptanoic acid	F	66	M.lylae	1
0.0066	11.24	11.55	Palmitic acid				
0.0066	12.64	12.63	Linoleic acid				
0.007	15.75	15.81	Butyric acid				
0.0073	5.49	5.03	Capric acid	G	16	K.polaris	1
0.0005	7.58	7.73	Heptanoic acid	3			'
0.0005	11.24	11.35	Palmitic acid				
0.0002	12.64	12.53	Linoleic acid				

.(2006)

- Athalye, M.; Noble, W.C.; Minnikin, D.E. (1985). Analysis of cellular fatty acids by gas chromatography as a tool in the identification of medically important coryneform bacteria. *J. Appl. Bacteriol.*, **58**, 507-512.
- Atlas, R.M. (1995). "Principles of Microbiology". Von Hoffmann press, Mosby-year book. Inc. U.S.A., pp. 664-685.
- Atlas, R.M.; Parks, L.C.; Brown, A.E. (1995)." Laboratory Manual of Experimental Microbiology". Mosby-year book, Inc. U. S. A., pp. 94-198.
- Austin, B.; Priest, F. (1986). "Modern Bacterial Taxonomy". Billing and Sons Ltd. Worcstor U. K., pp.14-48.
- Becker, K.; Schumann, P.; Wulenweber, J.; Schulte, M.; Weil, H.P.; Stackebrandt, E.; Peters, G.; Von Eiff, C. (2002). *Kytococcus schroeler*. sp. nov., anovel grampositive actinobacterium isolated from ahuman clinical source. *Int. J. Syst. Evol. Microbiol.*, **52**, 1609-1614.
- Bertone, S.; Giacomini, M.; Ruggiero, C.; Piccarolo, C.; Calegari, L. (1996). Automated systems for identification of heterotrophic marine bacteria on the basis of their fatty acid composition. *Appl. Environ. Microbiol.*, **62**, 2122-2132.
- Boudewijns, M.; Vandeven, J.; Verhaegen, J.2+(2005). Vitek 2 antomated identification system and *Kocuria kristinae*. *J. Clin. Microbiol.*, **11**, 5832.
- Brooks, J.B.; Daneshvar, M.I.; Haberberger, R.L.; Mikhail, I.A. (1990). Rapid diagnosis of tuberculous meningitis by frequency-pulsed electron-capture gas-liquid chromatography detection of carboxylic acids in cerebrospinal fluid. *J. Clin. Microbiol.*, **28**, 989-997.
- Collee, J.G.; Fraser, A.G.; Marmion, B.P.; Simmons, A. (1996). "Mackie and McCarthey Practical Medical Microbiology". 14th ed. Longman Singapore Publishers, Ltd. Singapore., pp. 343-359.
- Collins, M.D.; Huston, R.A.; Baverud, V.; Falsen, E. (2000). Characterization of a Rothia like organism from a mouse: description of *Rothia nasimurium* sp. nov. and reclassification of *Stomatococcus mucilaginosus* as *Rothia mucilaginosa* combi., nov. *Int. J. Syst. Evol. Microbiol.*, **50**,1247-1251.
- Cowan, S.T. (1977). "Cowan and Steels Manual for Identification of Medical Bacteria". 2nd ed. Cambridge University Press. Cambridge, London., pp. 57-67.
- Cruickshank, R.; Duguid, J.P.; Marmon, B.A.; Swan, R.H. (1974)." Medical Microbiology". Churchill Livingston, London, pp. 176-177.
- Dastager, S.G.; Deepa, C.K.; Pandey, A. (2010). Promoting *Micrococcus* sp. N11-0909 and its interaction with cowpea. Author version: *Plant physiol. Biochem.*, **48**(12), 987-992.
- Durham, D.R.; Kloos, W.E. (1978). Comparative study of the total cellular fatty acids of Staphylococcus species of human origin. *Int. J. Syst. Bacteriol.*, **28**, 223-228.

- Emtiazi, G.; Shakarami, H.; Nahvi, I.; Mirdamadian, S.H. (2005). Utilization of petroleum hydrocarbons by *Pseudomonas* spp. and transformed *Escherichia coli*. *African. J. Biotech.*, **4**(2), 172-176.
- Frei, J.; Heuck, C.C.; Risen, W.; Mang, H.; Hill, P.G.; Nageh, M.M.; Poller, L. (1995). "Production of Basic Diagnostic Laboratory Reagent". WHO, Egypt. pp. 1-280.
- Giacomini, M.; Bertone, S.; Canevasoumetz, F.; Ruggiero, C. (2005). An Advanced approach based on artificial neural networks to identify environmental bacteria. *Int. J. Computational Intelligence*, **1**, 2.
- Harley, J.P.; Prescott, L.M. (1996). "Microbiology". 3rd ed., McGraw Hill Companies, U.S.A. 141 p.
- Holt, J.G.; Krig, N.R.; Sneath, P.H.A.; Staley, J.T.; Willium, S.T. (1994). "Bergey's Manual of Determinative Bacteriology". 9th ed., Williams and Wilkins, Baltimore., pp. 605-703.
- Jeffries, L. (1969). Menaquinone in the classification of Micrococcaceae with observation on the application of lysozyme and novobiocin sensitivity tests. *Int. J. Syst. Bacteriol.* **19**, 183-187.
- Jones, J.; Hoerle, D.; Stethscope, R. (1995). Apotential vector of infection. *Ann. Emerg. Med.*, **26**, 296-299.
- Kaprelyants, A.S.; Mukamolova, G.V.; Kell, D.B. (1994) Estimation of dormant *Micrococcus luteus* cells by penicillin lysis and by resuscitation in cell-free spent medium at high dilution. *FEMS. Microbiol. Lett.*, **115**, 347-352.
- Kezeli, C.; Larussa, J.; Benderm, J.; Schellenberg, K.; Burger, N.; Rigney, D.; Jones, D.; Wilson, H. (2009). Characterization of eight gram-positive, yellow-pigment bacteria with a description of *Citrococcus barcroftii* spp. nov. from the white mountains .NS ASM Spring.
- Kloos, W.E.; Ballard, D.N.; George, C.G.; Webster, J.A.; Hubner, R.J.; Ludwig, W.; Schleifer, K.H.; Fiedler, F.; Schubert, K. (1998a). Delimiting the genus Staphylococcus through description of *Macrococcus caseolyticus* gen. nov., comb. nov. and *Macrococcus equipercicus* sp. nov., and *Macrococcus bovicus* sp. no. and *Macrococcus carouselicus* sp. nov. *Int. J. Syst. Bacteriol.*, 48, 859–877.
- Koch, C.; Stackebrandt, E. (1995). Reclassification of *Micrococcus agilis* (Ali cohen 1889) to Arthrobacter as *Arthrobacter agilis*. *Int. J. Syst. Bacteriol.*, **45**, 837-839.
- Kocure, M.; Kloos, W.E.; Schleifer, K.H. (2006). The Micrococcus. *Prokaryotes.*, **3**, 691-971.
- Koneman, E.W.; Allen, S.D.; Janda, W.M.; Schreckenberger, P.C.; Jr, W.C.W. (1997). "Color Atlas and Text Book of Diagnostic Microbiology". 5th ed. Lippincott-Raven Publishers, Philadelphia., pp. 121-1395.
- Kovacs, G.; Burghardt, J.; Pradella, S.; Schumsnn, P.; Strackebrandt, E.; Marialigeti, K. (1999). *Kocuria plustris* spp. nov. and *Kocuria rhizophila* sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha an-gustifolia)., *Int. J. Syst. Bacteriol.*, **49**,167-173.
- Lambert, M.; Moss, C.W. (1983). Comparison of the effects of acid and base hydrolysis on hydroxy and cyclopropane fatty acids in bacteria. *J. Clin. Microbiol.*, **18**,1370-1377.

- Lennette, E.H.; Balows, A.; Hausler, W.J.; Shadomy, H.J. (1985)." Manual of Clinical Microbiology". 4th ed. American Society for Microbiology. Washington., pp. 1004-1083.
- Li, W.J.; Zhan, Y.Q.; Schnmann, P.; Chen, H.H.; Hozzein, W.N.; Tian, X.P.; Xu, L.H.; Jiang, C.L. (2006). *Kocuria aegyptia* sp. nov. anovel actinobacterium isolated from a saline, alkaline desert soil in Egypt. *Int. Syst. Evol. Microbiol.*, **56**,733-737.
- Liu, H.; Xu, Y.; Ma, Y.; Zhou, P. (2000). Characterization of *Micrococcus antarcticus* spp. nov., from antarctica. *Int. J. Syst. Evol. Microbiol.*, **50**, 715-719.
- Macfaddin, J.F. (1985)." Biochemical Tests for Identification of Medical Bacteria". 2nd ed., Williams and Wilkins, Waverly press, Inc. Baltimore, London., pp. 18-85.
- Miller, L.T. (1982). Single derivatization method for routine analysis of bacterial esters, including hydroxy acids. *J. Clin. Microbiol.*, **16**, 584-586.
- Qudiz, R.J.; Widlitz, A.; Backmann, X. J.; Camanga, D.; Alfire, J.; Brundage, B.H.; Barst, R.J. (2004). Micrococcus-associated central venous catheter infection in patients with pulmonary arterial hypertension. *Chest.*, **126**, 90-94.
- Reddy, G.S.; Prakash, J.S.; Prabahar, V.; Matsnmoto, G.I.; Stackebrandt, E.; Shivaji, S. (2003). *Kocuria polaris* sp. nov., an orange pigment psychrophilic bacterium isolated from an antractive cyanobacterium mat sample. *Int. J. Syst. Evol. Microbiol.*, **53**, 183-187.
- Santhini, K.; Myla, J.; Sajani, S.; Usharani, G. (2009). Screening of *Micrococcus* spp. from oil contaminated soil with reference to bioremediation. *Botany Research International.*, **2**(4), 248-252.
- Sasser, M. (1990). Identification of bacteria through fatty acid analysis In Z. Klement, K. Rudolph, and D. Sands," Methods in phytobacteriology". Akademiai Kiado, Budapest. pp.199-204.
- Sauer, S.W.; Okun, J.G.; Hoffmann, G.F.; Koelker, S.; Morath, M.A. (2008). Impact of short- medium-chain organic acids, cylcarnitines, and acyl-CoAson mitochondrial energy metabolism. *Biochim. Biophys. Acta.*, **1777**(10), 1276-82.
- Savini, V.; Catavitello, C.; Masciarelli, G.; Astolfi, D.; Balbinot, A.; Bianco A.; Febbo, F.; D'Amario, G.; D'Antonio, D. (2010). Drug sensitivity and clinical impact of members of the genus Kocuria. *J. Med. Microbiol.*, **59**, 1395-1402.
- Shaw, N. (1974). Lipid composition as a guide to the classification of bacteria. *Adv. Appl. Microbiol.*, **17**, 63-108.
- Tang, J.S.; Gillevet, P.M. (2003). Reclassification of ATCC 9341 from *Micrococcus luteus* to *Kocuria rhizophila*. *Int. J. Syst. Evol. Microbiol.*, **53**, 995-997.
- Vandepitte, J.; Verhae, J.; Engbaek, K.; Rohner, P.; Piot, P.; Heuck, C.C.(2003). "Basic Laboratory Procedures in Clinical Bacteriology". 2nd ed. World Health Organization Geneva, Switzerland., pp. 20-23.
- Webster, G.F.; McGinley, K.J. (1997). Use of Litmus milk agar for presumptive identification of cutaneous Propionibacteria. *J. Clin. Microbiol.*, **5**, 661-662.
- Welch, D.F.(1991). Applications of cellular fatty acid analysis. *Clin. Microbiol. Reviews.*, **4**(4), 422-438
- Winn, W.C.; Allen.; S.D.J.; Janda, W.U.; Koneman, E.W.; Procop, G.W.; Schreckenbenberger, P.C.; Woods, G.L. (2006). "Koneman's Color Atlas and Text

- Book of Diagnostic Microbiology". 6th ed., Lippincott Williams and Wilkins, U.S.A. pp. 643-661.
- Young, M.; Artsatbanov, V.; Beller, H.R.; Chandra, G.; Chater, K.F.; Dover, L.G.; Greenblatt, C.L. (2010). Genome sequence of the Fleming strain of *Micrococcus luteus*, a simple free-living Actinobacterium. *J. Bacteriol.* **3**(192), 841-860.