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1. Introduction

Anthranilic acid, which is known as 2-aminobenzoic acid, is an aromatic compound of significant biochemical and
industrial relevance due to its structural versatility and bioactivity[1-3]. It serves as a key precursor in the synthesis of various
biologically active molecules, including alkaloids, dyes, and pharmaceutical agents[4,5]. Several studies have highlighted its
pharmacological properties, particularly in anticancer, antimicrobial, and anti-inflammatory applications[6-8]. Additionally,
derivatives of anthranilic acid have demonstrated potent inhibitory effects against metal corrosion, especially for copper and its
alloys, in aggressive environments[9]. Transition metal complexes formed with anthranilic acid and its derivatives have
garnered considerable interest for their diverse geometrical arrangements, rich electronic structures, and potential therapeutic
benefits[10,11]. Their coordination behavior often leads to complexes with unique optical and catalytic properties, making
them valuable in various scientific and industrial applications[10-12]. In recent years, thiourea-based ligands incorporating
anthranilic acid moieties have emerged as promising candidates in coordination chemistry due to their bidentate nature and
electron-donating functionalities[13,14]. In particular, the incorporation of nitrobenzoyl isothiocyanate into such ligands can
modulate their electronic characteristics and enhance metal-binding affinities[15-17]. The present study introduces a ligand, 2-
(3-(4-nitrobenzoyl) thioureido) benzoic acid (NTB), synthesized via the reaction of 4-nitrobenzoyl isothiocyanate with
anthranilic acid. The novelty of this ligand lies in its dual donor centers (NH and C=0/S), enabling the formation of stable
complexes with a large range of divalent transition metals, including Hg(Il), Cd(1l), Zn(II), Cu(Il), Ni(II), Co(II), and Mn(II).
A comprehensive characterization of these complexes has been conducted using analysis of elemental, FT-IR, 'H with '*C-
NMR, UV-Vis spectroscopy, magnetic susceptibility, molar conductivity, and atomic absorption techniques. This research
contributes to the field of coordination chemistry by:
. Proposing a new ligand framework with tunable coordination sites.
. Demonstrating the formation of metal complexes with diverse geometries (e.g., square planar for Cu(Il) and the
tetrahedral for others).
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. Providing spectral and structural insight into metal-ligand interactions that may inspire further studies in bioinorganic
and materials chemistry.
Such findings not only deepen the understanding of ligand design but also expand the potential for developing new functional
materials with tailored properties.
2. Experimental
2.1 Chemicals and Reagents

In the present study, all chemicals were of analytical grade and procured from reputable suppliers, including BDH,
Merck, and Fluka. The primary materials included: Anthranilic acid, 4-nitrobenzoyl chloride, ammonium thiocyanate, acetone,
ethanol, and a series of metal salts: HgCl., CdCl2-H20, ZnCl., CuClz-2H-20, NiCl2- CoClz -6H20, and MnCl.-4H-O.
2.2 Instrumentation
The instrumentation deployed for the characterization includes:

- FT-IR Spectroscopy: Conducted using a Shimadzu 3800 instrument in the range of 400—4000 cm™! with samples prepared
as KBr discs.

- UV-Vis Spectroscopy: Measured using a Shimadzu UV-160 spectrophotometer in DMSO at 25°C.

- NMR Spectroscopy: 1H and 13C-NMR spectra were recorded using a Bruker UltraShield 300 MHz spectrometer.
- Elemental Analysis: Implemented by an Elemental Vario EL III analyzer (C, H, N, S).

- Magnetic Susceptibility: Determined with an MSB-MKI1 balance.

- Conductivity Measurements: Carried out using a Philips PW Digital Conductometer.

- Atomic Absorption Spectroscopy (AAS): Employed a Shimadzu AA-680G spectrometer for metal content analysis.
2.3 Synthesis of Ligand (NTB)
Step 1: Synthesis of 4-nitrobenzoyl thiocyanate. A solution of 4.87 g of 4-nitrobenzoyl chloride and 1 mmol of ammonium
thiocyanate in 25 ml of acetone was refluxed for 3 hours, helping obtain the benzoyl isothiocyanate intermediate [18]. After
filtration, the product is used in the next step.
Step 2: Synthesis of NTB, To the filtrate, 3.60 g of anthranilic acid in 20 ml of acetone was added under continuous reflux for
6 hours, as in green synthesis protocols using elemental sulfur for thiourea formation[19]. The precipitated yellow solid was
filtered, washed with acetone, and then recrystallized from ethanol.

Yield: 79%, Melting point: 240-242°C, Elemental Analysis: Caled. C (52,17%), H (3.21%), N (12.17%), O
(23,16%), S (9,28%). Elemental analysis found: C (51.99%), H (3.16%), N (12.11%), O (23,84%) ,S (8.90%), as shown in the
following Scheme 1
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2.4 Synthesis of Metal Complexes

The complexes were prepared by slowly adding a metal salt solution (1 mmol) dropwise to a potassium salt of NTB
solution. The mixture was stirred for 3 hours at room temperature. The resulting precipitate was filtered, washed with ethanol

and water, and dried under vacuum. Scheme 2 presents the general tetrahedral structure of the complexes [M(NTB):], while
Cu(II) exhibits a square planar geometry Scheme 3.
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Scheme 2. The proposed chemical structure formula of the complexes
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Scheme 3. The proposed chemical structure formula of the complex with Cu
2.5 Spectral and Physicochemical Characterization
a. NMR Spectra of NTB

The 1H-NMR spectrum, as shown in Figure 1, reveals characteristic peaks: DMSO solvent at 2.51 ppm, NH (amine)
at 7.35-7.74 ppm, NH (amide) at 11.64 ppm, and COOH at 13.14 ppm. The 13C-NMR spectrum (Figure 2) shows peaks at:
C=S (180 ppm), COOH (168.11 ppm), aromatic carbons (125-139 ppm), and amide C=0 (155.12 ppm).
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Figure 2. The C'3-NMR spectrum of ligand(NTB)
The '"H-NMR and '*C-NMR spectra of the free ligand (Figures 1 and 2) confirm the structure of NTB. The presence
of peaks at & = 13.14 ppm (COOH), 6 =~ 11.64 ppm (amide NH), and aromatic signals between & =~ 7.35-8.20 ppm are
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consistent with the expected proton environments. The '3C-NMR further supports the structure with signals for carbonyl
(C=0), thiocarbonyl (C=S), and aromatic carbons[22].

b. FT-IR Analysis
The FT-IR spectrum of the free ligand (NTB) is presented in Figure 3, displaying characteristic absorption bands at:

v(N=H and O-H): 3251-3460 cm™!, v(C=0): 1597 cm™!, and v(C=S): 1242 cm™.
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Figure 3. The FT-IR spectrum of Ligand (NTB)

Upon complexation, noticeable shifts and new bands appear in the metal complexes ' spectra. For example, the FT-IR
spectrum of the cobalt(Il) complex (Figure 4) reveals shifts in the v(COO™) symmetric and asymmetric stretching vibrations,
confirming coordination through the carboxylate group[20]. Additionally, new bands observed in the 400500 cm™ region are
attributed to M—O and M—N bond vibrations, providing further evidence of metal-ligand interaction.
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Figure 4. The FT-IR spectrum for the cobalt complex
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The key FT-IR frequencies for all complexes are summarized in Table 1, supporting the coordination through amide,
carboxylate, and thioamide functionalities.
Table 1. Some FT-IR frequencies in (cm-1) for (NTB) and its metal complexes

Compound | v(N-H) EECOO)SY W(COO)asym | v(C=0) | v(C=S) | vM-0) |vM—N)
(NTB) 3251 (m) | 1334(s) | 1678 (m) 597(5) | 242(5) | - -
[Mn(NTB)2] | 3375 (m) | 1474 (s) | 1623 (m) 1581 (w) | 1249(s) | 424 (m) | 443 (w)
[Co(NTB)2] | 3358 (m) | 1467 (m) | 1627 (s) 1588 (m) | 1265(s) | 438 (m) | 439 (w)
[Ni(NTB)2] | 3344 (b) | 1498 (m) | 1587 (m) 1585 (m) | 1256(s) | 432(w) | 462 (w)
[Cu(NTB)2] | 3300 (b) | 1488 (m) | 1605 (m) 1587 (m) | 1257(s) | 478 (m) | 532 (w)
[Zn(NTB)2] | 3362 (m) | 1480 (m) | 1589 (s) 1586 (m) | 1256 (s) | 428 (w) | 443 (m)
[CANTB)2] | 3348 (b) | 1493 (s) | 1608 (m) 1580 (w) | 1250 (m) | 416 (m) | 445 (m)
[Ha(NTB)2] | 3340 (b) | 1446 (m) | 1543 (s) 1584 (m) | 1253(s) | 435(m) | 493 (m)

b =browed, w=weak, s=strong, m medium

The FT-IR spectrum of NTB exhibits characteristic absorption bands for NH/OH stretching (~3251 cm™), C=0 (1597
cm'), and C=S (1242 cm™) functionalities. Upon complexation, shifts in the NH and COO- stretching bands and the
appearance of new bands assigned to M—O and M—N (in the 416493 cm™ region) confirm ligand coordination through the
oxygen of the carboxylate and nitrogen of the amide groups. These shifts are summarized in Table 2 and support a bidentate
coordination mode.
c. UV-Vis Spectroscopy

Figure 5 shows the UV-Vis spectrum of NTB, exhibiting n—n* at 34013 cm™ and n—n* at 28985 cm™, which are
characteristic of conjugated organic systems and agree with standard interpretations of such transitions[21]. The metal
complexes display d—d transitions and ligand field (L.F.) bands. Notably: [Mn(NTB):] shows a band at 10493 cm™ (°A:1 —
4T2), [Co(NTB)2] has multiple transitions including 20366 cm™ (*A2 — *T:P), [Cu(NTB):] shows 2B:g — 2A.g transition at
18450 cm™ (Figure 6), and [Zn, Cd, Hg] complexes primarily show charge transfer (C.T.) bands. Full spectral data and
assignments are given in Table 2.
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Figure 5. UV-VIS spectrum of the Ligand (NTB)
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Figure 6. The UV-VIS spectrum of the Co complex

Table 2. The electronic peaks, transitions, and structure geometries of (NTB) and its complexes

Compound A (nm) 0 (cm™) ABC €max Transition
294 34013 2.000 2000 n— ¥
(NTB) 345 28985 1.582 1582 n— m*
272 36764 0.936 936 LF
[Mn(NTB):] | 955 10493 0.025 25 N
275 36363 1.440 1440 L.F
[Co(NTB).] 491 20366 0.025 25 Aoy — “Tiew)
710 14084 0.018 18 4A2(F) - 4T|(F)
297 33670 2.226 2226 L.F
. 350 28571 1.500 1500 3T — *Tip
[Ni(NTB)] 504 19841 0.045 45 3T1EF: = 3A2((F))
571 17513 0.025 25 3T](]:) —>3T2(F)
297 33670 2.184 2184 LF
[Cu(NTB),] 542 18450 0.020 20 2By, —2A,
853 11723 0.018 18 2B, — By,
[Zn(NTB),] 290 34482 2248 2248 C.T
[CA(NTB),] 275 36363 1.091 1091 C.T
[Hg(NTB)] 298 33557 2.301 2301 C.T

C.T = Charge transfer ~, L.F=ligand field
Electronic spectra (Table 2, Figures 5 and 6) of the ligand show n—n* and n—=n* transitions. The metal complexes exhibit
additional d—d transitions characteristic of their coordination geometries. For instance:

[Mn(NTB):] shows a band at 10,493 cm™" corresponding to °A1 — *T1(G), indicating a high-spin tetrahedral geometry.
[Co(NTB):] displays multiple bands, suggesting a tetrahedral structure, while

[Ni(NTB):] exhibits bands assigned to *T:(F) — 3Ax(F), consistent with tetrahedral coordination.

[Cu(NTB):] exhibits bands supporting a square planar geometry, distinguishing it from the rest.

Complexes of Zn?*, Cd*, and Hg? show only charge transfer transitions due to their d'° configurations, confirming a
non-degenerate ground state.
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d. Physical Properties and Conductivity

As summarized in Table 3, the resulting metal complexes exhibit distinct colors and melting points, indicating
successful complexation. All complexes are thermally stable and soluble in polar organic solvents such as DMSO and DMF.
Molar conductivity measurements revealed that all metal complexes behave as non-electrolytes in DMSO, suggesting the
absence of ionic dissociation in solution, thus supporting the proposed neutral complex formulas [M(NTB):].

Table 3. Physical properties of (NTB) and its metal complexes

Compound M.wt Color M.p °C or | M% Molar condu. | peff (B.M)
(gm/mol) dec. Calculation Ohm™'Cm’mol

(Found) !

(NTB) 345 Yellow 240-242 - - -

[Mn(NTB);] 742.94 Pale yellow | 300-298 7.39 11 5.94
(744)

[Co(NTB),] 746.93 Green 320-322 7.89 5.12 4.88
(7.56)

[Ni(NTB:] 746.71 deep green 336-338 7.86 16.13 2.89
(7.45)

[Cu(NTB),] 751.55 green 338-340 8.46 18.8 1.73
(8.56)

[Zn(NTB),] 753.41 Yellow 288-290 8.68 15.19 0
(8.59)

[CA(NTB),] 800.4 Pale yellow | 350dec 14.04 19.2 0
(13.85)

[Hg(NTB):] 888.6 Pale yellow | 350 dec. 22.57 14.22 0
(22.26)

3. Results and Discussion

The synthesized ligand (NTB) AND its metal complexes with divalent transition metals (Mn?*, Co?', Ni?*, Cu?*, Zn*',
Cd?**, and Hg?") were successfully characterized using various analytical and spectroscopic techniques. The obtained results
provide comprehensive insight into the structural, spectroscopic, and electronic behavior of these complexes.
3.1. Complex Formation in Solution

Moler retio studies using UV-Visible spectroscopy confirm a 1:2 (metal: ligand) stoichiometry in solution, consistent
with the solid-state findings[23]. These results affirm the reproducibility and stability of the complexes in both states.
3.4. Proposed Structures
Based on spectral data, magnetic measurements, and molar conductance values, tetrahedral geometries are proposed for all
complexes except for the copper complex, which exhibits a square planar structure (Figures 7 and 8). These structural
assignments are supported by ligand field theory and observed transitions[24,25].
4. Conclusion

In this study, a new ligand,2-(3-(4-nitrobenzoyl)thioureido)benzoic acid (NTB), was successfully synthesized, and its
complexes with divalent metal ions (Mn?**, Co*", Ni**, Cu*", Zn**, Cd*", and Hg*") were prepared and characterized. Various
spectroscopic techniques, including FT-IR, UV-Vis, 'H and *C-NMR, alongside molar conductivity, magnetic susceptibility,
and elemental analysis, confirmed the proposed structures. The results revealed that the ligand acts as a bidentate donor,
coordinating through both nitrogen and oxygen atoms. All synthesized complexes exhibited a tetrahedral geometry, except the
copper complex, which adopted a square planar configuration.

The findings suggest strong metal-ligand interactions and structural stability of the complexes. This opens promising
directions for exploring their biological activities or catalytic properties in further studies. The consistent coordination
behavior across different metal ions highlights the ligand's versatility and potential for designing new coordination compounds.
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