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 This comparative study evaluates machine learning models for predicting arrest release 

outcomes using 5,226 marijuana possession cases from the Toronto Police Service (1997-

2002). The dataset exhibited significant class imbalance, with only 17.1% detention 

outcomes versus 82.9% releases. After preprocessing to handle missing values and convert 

categorical variables, we implemented two modeling approaches: a 500-tree Random Forest 

classifier with feature importance measurement and a binomial Logistic Regression model. 

Both algorithms demonstrated strong predictive capability for release cases, achieving 

comparable overall accuracy (83.2-83.4%) and excellent sensitivity (>98%), though they 

struggled with the critical minority class as evidenced by poor specificity (<7%). The 

models showed similar discriminative power, with Logistic Regression achieving a 

marginally higher AUC-ROC (0.733 vs 0.726). Feature importance analysis identified 

employment status and prior police background checks as the strongest predictors, while 

demographic factors, including race, also contributed significantly to predictions. These 

results highlight both the technical challenges of imbalanced classification in justice system 

data and the ethical considerations surrounding potential algorithmic bias, particularly 

given the high false positive rate for detention predictions that could exacerbate existing 

disparities. The study underscores the need for careful model evaluation and responsible 

implementation when applying predictive analytics to sensitive criminal justice decisions, 

balancing statistical performance with considerations of fairness and social impact. 
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1. Introduction  

 The integration of machine learning into criminal justice decision-making has emerged as a transformative development 

in computational criminology [5]. Recent advances in predictive analytics have demonstrated considerable potential for 

improving the accuracy of pretrial release decisions [7], while simultaneously raising critical questions about algorithmic 

transparency and fairness [11]. This study examines the comparative efficacy of Random Forest and Logistic Regression models 

in predicting arrest release outcomes using a well-documented dataset of cannabis possession cases from Toronto (1997-2002), 

originally compiled by Fox and Weisberg [14]. 

 The tension between model complexity and interpretability represents a fundamental challenge in judicial applications 

of machine learning [28]. While logistic regression maintains widespread adoption due to its transparent coefficient estimates 

[18], ensemble methods like Random Forest often achieve superior predictive performance by capturing complex, nonlinear 

relationships [8]. This trade-off carries particular significance in pretrial contexts, where prediction errors may substantially 
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impact defendants' liberties [2]. Our research builds upon recent methodological advances in fairness-aware machine learning 

[15] to evaluate whether improved accuracy necessarily comes at the cost of equitable treatment across demographic groups. 

The class imbalance inherent in judicial decision-making - with release outcomes (82.9%) substantially outweighing detentions 

(17.1%) in our dataset - presents additional analytical challenges [17]. Such skewness complicates model evaluation and may 

obscure differential performance across demographic subgroups [30]. Our methodological approach addresses these concerns 

through comprehensive performance metrics [13] and rigorous fairness auditing, contributing to ongoing discussions about 

responsible algorithm design for high-stakes decisions [12]. 

 This study makes three principal contributions to the literature. First, we provide an empirical comparison of modeling 

approaches under conditions common to justice system data, extending previous work by Kuhn and Johnson [19]. Second, our 

feature importance analysis yields novel insights into the factors influencing release decisions, including employment status and 

prior police contact. Third, we demonstrate how algorithmic design choices can either mitigate or exacerbate existing disparities 

in judicial outcomes [25]. These findings have immediate relevance for jurisdictions considering predictive tools for pretrial 

decision-making, particularly as cannabis policies undergo global reform. 

2. Methodology 

 The predictive analysis followed a rigorous computational methodology grounded in established machine learning 

practices [6,16]. Initial data preparation involved comprehensive cleaning of the arrest records dataset using the tidyverse 

ecosystem [35], where empty columns were systematically removed and categorical variables were converted to factors to ensure 

appropriate statistical treatment. Missing data were addressed through listwise deletion, a conservative approach recommended 

when data are missing completely at random [1], though future studies might consider multiple imputation techniques [33] for 

more robust handling. 

 The modeling framework implemented two conceptually distinct approaches following modern comparative machine 

learning protocols [21]. A Random Forest classifier [8] with 500 trees was trained using the randomForest package [22], with 

variable importance metrics calculated through mean decrease in accuracy. This ensemble method was specifically chosen for 

its ability to capture complex, non-linear relationships in criminal justice data [5]. Concurrently, a logistic regression model [18] 

was implemented as a baseline, providing interpretable coefficient estimates and serving as a benchmark for evaluating whether 

the more complex Random Forest's performance justified its reduced interpretability [27]. 

 Model evaluation employed a comprehensive suite of metrics recommended for imbalanced classification problems 

[17]. The custom evaluation function calculated not only overall accuracy but also sensitivity, specificity, and area under the 

ROC curve (AUC-ROC), with the latter recognized as particularly informative for binary classification tasks [13]. ROC curve 

analysis was implemented using the pROC package [26], following contemporary best practices for classifier evaluation [29]. 

Visualizations were generated using ggplot2 [34], adhering to principles of effective statistical graphics [32], with careful 

attention to color selection and labeling for accessibility [31]. 

 The entire analytical workflow was implemented in R version 4.3.1 [24] using a reproducible research framework [36], 

with fixed random seeds (set.seed(123)) to ensure complete replicability. This approach aligns with emerging standards for 

computational criminology research [7] and addresses recent calls for greater transparency in predictive policing applications 

[25]. 

2.1 Mathematical formulation of the entire analysis: 

1. Data Preprocessing[19,6]. 

Let the raw dataset be: 

𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛         (1) 

Where 𝑖 is an observation index:  Iteration from 1 to n(total observations)  

 𝑋𝑖: feature vector for the 𝑖 − 𝑡ℎ observation 

𝑦𝑖: Binary outcome (0/1 or “No”/”Yes”) for the 𝑖 − 𝑡ℎ observation 

𝐷: Original dataset with 𝑛 observations, 

The preprocessing pipeline: 

𝒟𝑐𝑙𝑒𝑎𝑛 = {𝑥𝑖\𝜒𝑛𝑢𝑙𝑙, 𝑓𝑎𝑐𝑡𝑜𝑟(𝑦𝑖)}       (2) 

𝒟𝑐𝑙𝑒𝑎𝑛:  A cleaned dataset where all null columns are removed, and the target variable is a    

  properly encoded factor and no missing values exist in any observation  

𝑥𝑖\𝜒𝑛𝑢𝑙𝑙: set of null/empty features (columns) to remove. 

𝑓𝑎𝑐𝑡𝑜𝑟(𝑦𝑖): Converts the binary outcome into a categorical variable with explicit levels  

(“No”, “Yes”)  

Train-Test Split[20] 

𝒟 = 𝒟𝑡𝑟𝑎𝑖𝑛 ∪ 𝒟𝑡𝑒𝑠𝑡      𝑤ℎ𝑒𝑟𝑒  |𝒟𝑡𝑟𝑎𝑖𝑛| = 0.7𝑛    (3) 

 𝐷 is partitioned into two disjoint subsets 

𝒟𝑡𝑟𝑎𝑖𝑛 is (70% of data, used for model training). 
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𝒟𝑡𝑒𝑠𝑡 (30% of data, used for evaluation 

0.7n is a mathematical expression representing 70% of the total number of observations  

(n) in your dataset 

2. Random Forest Model[8] 

 The Random Forest (RF) is an ensemble of B = 500 decision trees, where the final prediction is the majority vote of all 

individual trees: 

𝑓𝑅𝐹(𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 {𝑇𝑏(𝑥)}𝑏=1
𝐵      (4) 

Input: Feature vector 𝑥 (e.g., colour, age, employed). 

Output: Predicted class (y^∈{0,1}y^∈{0,1}, i.e., "No"/"Yes" for release). 

Each tree 𝑇𝑏 : Trained on a bootstrapped subset of 𝒟𝑡𝑟𝑎𝑖𝑛  (sampled with replacement). 

Tree Splitting Criterion: Gini Impurity[8] 

At every split ss, the algorithm minimizes the Gini impurity to partition data into purer subsets: 

𝐼𝐺(𝑠) = 1 − ∑ 𝑝𝑘
2

2

𝑘=1

                                    (5) 

where 𝑝𝑘  is the proportion of class k in node 𝑠 

3. Logistic Regression Model[16] 

 The logistic regression models the probability that an observation belongs to class 1 (here, "Yes" for release) using the 

sigmoid function: 

𝑃(𝑌 = 1|𝑥) = 𝜎(𝑤𝑇𝑥𝑖)
𝑦𝑖 =

1

1+𝑒−𝑤𝑇𝑥
      (6) 

where: 

𝑥: Feature vector (e.g., age, employed, checks). 

𝑤: Weight vector (parameters to estimate). 

𝜎(⋅): Sigmoid function, mapping 𝑅 → [0,1]. 
 

Parameters estimated via MLE[16]: 

The weights ww are estimated by maximizing the log-likelihood of the observed data: 

𝑤̂ = argmax
𝑤

∏ 𝝈(𝒘𝑻𝒙𝒊)
𝒚𝒊

𝑛

𝑖=1

(1 − 𝝈(𝒘𝑻𝒙𝒊))
1−𝑦𝑖

                                                         (7) 

Equivalently, minimize the negative log-likelihood (convex optimization): 

ℒ(𝑤) = − ∑[𝑦𝑖𝑙𝑜𝑔𝜎(𝑤𝑇𝑥𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝜎(𝑤𝑇𝑥𝑖))]                                     (8) 

𝑛

𝑖=1

 

4. Evaluation Metrics 

For any classifier 𝑓: 

Confusion Matrix[3,4,5]: 

For a binary classifier 𝑓 predicting release ("Yes"=1, "No"=0), the confusion matrix 𝐶 organizes predictions vs. true labels: 

𝐶 = [
𝑇𝑁 𝐹𝑃
𝐹𝑁 𝑇𝑃

] 

TN (True Negative): Correctly predicted "No" (detained). 

FP (False Positive): Incorrectly predicted "Yes" (false release). 

FN (False Negative): Incorrectly predicted "No" (false detention). 

TP (True Positive): Correctly predicted "Yes" (released). 

 

Performance Measures: 

a. Accuracy: Overall correctness 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑛
 

b. Sensitivity (Recall/TPR): Ability to detect releases ("Yes"). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

c. Specificity (TNR): Ability to detect detentions ("No"). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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4. ROC Curve: 

The Receiver Operating Characteristic (ROC) curve evaluates the classifier’s performance across all decision thresholds 𝑡[13]: 

𝑅𝑂𝐶(𝑡) = (𝐹𝑃𝑅(𝑡), 𝑇𝑃𝑅(𝑡))       ∀𝑡 ∈ ℝ                                                         (9) 

where: 

𝐹𝑃𝑅(𝑡) = 𝑃(𝑝̂ > 𝑡|𝑌 = 0) 

𝑇𝑃𝑅(𝑡) = 𝑃(𝑝̂ > 𝑡|𝑌 = 1) 

 

5. Feature Importance (RF)[8] 

For a feature 𝑗 (e.g., employed, checks), its importance in a Random Forest is computed as: 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑗) =
1

𝐵
∑ ∑ 𝐼𝐺(𝑠)

𝑠∈𝑆𝑏(𝑗)

𝐵

𝑏=1

                                                                           (10) 

Where 

𝐵 = 500: Number of trees (from your ntree=500 parameter). 

 𝑆𝑏(𝑗) are splits on feature 𝑗 in tree 𝑏. 

𝐼𝐺(𝑠): Gini impurity reduction at split ss (defined earlier). 

For each tree 𝑇𝑏, sum the Gini reductions (𝐼𝐺(𝑠)) across all splits 𝑠 where feature 𝑗 was used. 

6. Statistical Tests 

Wald Test for coefficients:  

                            𝑧𝑗 =
𝑤̂𝑗

𝑆𝐸(𝑤̂𝑗)
  ~  𝑁(0,1)                                                                            (11) 

where: 

𝑤̂𝑗: = Estimated coefficient for feature 𝑗 

𝑆𝐸(𝑤̂𝑗):  Standard error of the estimate 

Under 𝐻0;  𝑤𝑗 = 0,  the statistic follows a standard normal distribution. 

Likelihood Ratio Test 

Compares nested models (full vs. null model): 

𝛬 = −2𝑙𝑜𝑔                                                                                            (12) 

where: 

𝐿𝑛𝑢𝑙𝑙: Likelihood of intercept-only model 

𝐿𝑚𝑜𝑑𝑒𝑙: Likelihood of full model 

𝑘 :Difference in parameters between models 

 

Hosmer-Lemeshow Goodness-of-Fit Test[18] 

Evaluates calibration by grouping predicted probabilities into G=10G=10 deciles: 

𝜒𝐻𝐿
2 = ∑

(𝑂𝑔 − 𝐸𝑔)
2

𝐸𝑔 (1 −
𝐸𝑔

𝑛𝑔
)

  ~ 𝜒𝐺−2
2

𝐺

𝑔=1

                                                                                               (13) 

where: 

𝑂𝑔: Observed events in group 𝑔 

 𝐸𝑔: Expected events (sum of predicted probabilities) 

𝑛𝑔: Number of observations in group 𝑔 

 

2.2 Data Analysis 

 The Arrests dataset from the carData package in R provides a window into policing practices for marijuana possession 

in Toronto during the late 1990s and early 2000s. This dataset, compiled from Toronto Police Service records and popularized 

by Fox and Weisberg in their regression textbook, contains information on over 5,000 arrests for simple marijuana possession. 

The data captures not only basic demographic information about those arrested - including race, age, and gender - but also 

documents key outcomes like whether the individual was released or charged. 

Definition of each variable in the analysis 

1. rownames 

A unique identifier for each defendant/case in the dataset. Acts as an index rather than an analytical variable. 
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2. colourWhite 

A derived binary variable where: 1 = Defendant's race is White and 0 = Defendant's race is Black. Created by converting 

the "colour" column (containing "White"/"Black") into a numerical format for modeling. 

3. Year: The year associated with the defendant's case or birth year (ranging from 1997 to 2002 in the sample). 

4. sexMale: A binary indicator where: 1 = Male defendant and 0 = Female defendant.Converted from the "sex" column 

containing "Male"/"Female". 

5. employedYes 

Employment status indicator: 1 = Employed and 0 = Unemployed. Derived from the "employed" column ("Yes"/"No"). 

6. citizenYes 

Citizenship status: 1 = Citizen (all rows in sample) and 0 = Non-citizen 

From the "citizen" column ("Yes"/"No"), though all sampled cases show "Yes". 

7. checks 

A count variable showing: Number of prior background checks/arrests. Higher numbers suggest a more extensive criminal 

history. 

8. (Intercept) 

The baseline log-odds of release when: colourWhite=0, year=0, sexMale=0, employedYes=0, citizenYes=0, checks=0. 

Represents an abstract reference point for the model (not directly observable in data). 

 

Table 1: Class Distribution of Arrest Release Outcomes 

              Class Distribution 

 

 Released   Proportion 

1 No 0.171 

2 Yes 0.829 

 

 From Table 1, this analysis examines the distribution of a binary classification variable indicating whether items were 

released, revealing a substantial imbalance between the two outcome classes. The majority class ("released") comprises 

approximately 83% of cases, while the minority class ("not released") accounts for the remaining 17%. This 5:1 ratio between 

positive and negative cases has important implications for both data interpretation and predictive modeling approaches. 

 

Table 2: The random forest model summary 

                      Model Summary 

 

  Type of Random Forest : Classification  

                   Number of Trees : 500 

  No. of variables Tried at each split : 2 

 

         OOB estimate of error rate : 17.16% 

 

                     Confusion Matrix 

 

 No Yes Class.Error 

No 27 598 0.956800000 

Yes 30 3004 0.009887937 

 

 From Table 2, the random forest model summary reveals important insights about the classification performance for 

predicting item release status. With 500 decision trees and 2 variables considered at each split, the model achieves an out-of-bag 

(OOB) error rate of 17.16%, which interestingly matches the baseline proportion of non-released items in the dataset. 

The confusion matrix highlights a critical pattern in the model's behavior. For the minority "No" class (non-released items), the 

model shows high error (95.68%), correctly identifying only 27 out of 625 actual non-releases while misclassifying 598 as 

released. In contrast, for the majority "Yes" class, it demonstrates strong performance with just 0.99% error, accurately 

classifying 3004 out of 3034 releases. 
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Table 3: The logistic regression analysis 

                                                       Model Coefficients 

 

Coefficients 

 Estimate Std.Error Z value Pr(> |z|) 

Intercept 2.936e+01 6.777e+01 0.433 0.664848 

ColourWhite 3.645e-05 1.025e-01 3.554 0.000379 *** 

Year -1.417e-02 3.390e-02 -0.418 0.675991 

Age 1.154e-03 5.535e-03 0.208 0.834839 

SexMale -1.175e-01 1.829e-01 -0.642 0.520837 

EmployedYes 7.934e-01 1.013e-01 7.829 4.91e-15  *** 

CitizenYes 5.158e-01 1.246e-01 4.141 3.46e-05  *** 

Checks -3.536e-01 3.109e-02 -11.372 < 2e – 16  *** 

 

Signif. Codes : 0 ‘ *** ‘    0.001  ‘ ** ’  0.01   ‘ * ‘    0.05  ‘ . ‘   0.1   ‘  ‘    1 

 

                    (Dispersion parameter for binomial family taken to be 1) 

 

Null deviance :    3345.6    on   3658   degree   of   freedom 

Residual deviance :     3024.9   on   3650   degree   of   freedom 

 

AIC :  3042.9 

 

Number  of  Fisher  Scoring  iterations :  5 

 

 From Table 3, the logistic regression analysis reveals important patterns in the factors influencing release decisions 

while raising several considerations for model interpretation and refinement. The model identifies three particularly strong 

predictors that significantly impact the likelihood of release, with employment status emerging as the most influential factor. 

Individuals who are employed show substantially higher odds of being released compared to their unemployed counterparts, 

suggesting economic stability may play a key role in release determinations. Similarly, citizenship status demonstrates a notable 

positive association with release outcomes, potentially reflecting institutional preferences or policy frameworks. In contrast, the 

number of checks conducted shows a robust negative relationship with release probability, where each additional check 

corresponds to progressively lower chances of release. 

 

Table 4: Logistic Regression Coefficient with Odds Ratio 

              Logistic Regression Coefficient with Odds Ratio 

 

Coefficients 

 Estimate Odds Ratio Std.Error Z value Pr(> |z|) 

Intercept 29.3604 5637e+09 67.7712 0.43 0.66485 

rownames 0 1  0.84 0.40006 

ColourWhite 0.3645 1.4398 0.1025 3.55 <0.001 *** 

Year -0.0142 0.9859 0.3390 -0.42 0.67599 

Age 0.0012 1.0012 0.0055 0.21 0.83484 

SexMale -0.1175 0.8892 0.1829 -0.64 0.52084 

EmployedYes 0.7934 2.2109 0.1013 7.83 <0.001 

CitizenYes 0.5158 1.6749 0.1246 4.14 <0.001 

Checks -0.3536 0.7022 0.0311 -11.37 < 0.001 

 

 From Table 4, The logistic regression analysis of Toronto marijuana possession cases reveals key predictors influencing 

arrest release decisions. Employment status and prior police background checks emerged as the most significant factors. 

Employed individuals had 2.21 times higher odds of release than unemployed individuals, suggesting that employment may be 
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perceived as a sign of stability or lower flight risk. In contrast, each additional prior police check reduced the odds of release by 

about 30%, indicating a cumulative disadvantage effect. 

 The model also uncovered racial disparities: White individuals had 1.44 times higher odds of release than non-White 

individuals with similar case characteristics. Citizenship status further influenced outcomes, with citizens having 1.67 times 

higher odds of release compared to non-citizens. These findings align with concerns about systemic bias in judicial decision-

making. However, age and sex were not statistically significant, implying limited influence on release outcomes for this offense 

type. 

 While the model’s intercept produced an implausible odds ratio common in models with uncentered predictors, it should 

not be substantively interpreted. Variables like year of arrest and sex also lacked statistical significance, suggesting they may be 

excluded from a streamlined model. 

 Overall, the analysis highlights the influence of both legal and extralegal factors, particularly employment, race, and 

prior police contact on pretrial release decisions. These findings raise important equity concerns, emphasizing how systemic and 

social factors shape judicial outcomes even in minor drug-related cases. 

 

Table 5: The confidence intervals for the odds ratios 

 2.5% 97.5% 

Intercept 0.0000 2.97907e+70 

rownames 1.0000 1.00010e+00 

ColourWhite 1.1762 1.75850e+00 

Year 0.9225 1.05370e+00 

Age 0.9905 1.01220e+00 

SexMale 0.6141 1.26010e+00 

EmployedYes 1.8113 2.69500e+00 

CitizenYes 1.3097 2.13460e+00 

Checks 0.6604 7.46100e-01 

 

 From Table 5, the 95% confidence intervals for the odds ratios provide important insights into the precision and 

reliability of our effect estimates. For the key predictor of employment status, we can be 95% confident that the true odds ratio 

lies between 1.81 and 2.70, indicating that employed individuals have between 1.8 to 2.7 times higher odds of release compared 

to unemployed individuals. This relatively narrow interval suggests a precise estimate of this substantively important effect. 

Similarly, the number of police checks shows a consistently negative impact, with the confidence interval (0.66 to 0.75) entirely 

below 1, confirming that each additional check reduces the odds of release by between 25-34%. 

 The racial disparity in release decisions maintains statistical significance, with White individuals having 18-76% higher 

odds of release compared to non-White individuals (95% CI: 1.18 to 1.76). The citizenship effect also remains robust, with 

citizens showing 31-113% higher odds of release (95% CI: 1.31 to 2.13). These intervals all exclude the null value of 1, 

reinforcing our confidence in these effects. 

 For non-significant predictors like year, age and sex, the confidence intervals all include 1, consistent with their lack of 

statistical significance in the model. The extremely wide intervals for the intercept and row names reflect their lack of meaningful 

interpretation in this context. The precision of our key estimates, particularly for employment status and police checks, lends 

credibility to the practical significance of these findings for understanding judicial decision-making patterns. 

 

Table 6: Hosmer-Lemeshow Test 

Hosmer and Lemeshow goodness of fit (GOF) test 

 

Data:     lr_model$y,       fitted(lr_model) 

x-squared =14.687,     df = 8,        p-value = 0.06551 

 

 From Table 6, the Hosmer-Lemeshow goodness-of-fit test results (χ² = 14.687, df = 8, p = 0.066) suggest that the 

logistic regression model demonstrates adequate calibration between predicted probabilities and observed outcomes. The non-

significant p-value (greater than the conventional 0.05 threshold) indicates we fail to reject the null hypothesis that the model 

fits the data well. This means there is no strong evidence of systematic misfit between the model's predictions and the actual 

release outcomes across different probability deciles. 

 While the test statistic approaches but does not reach statistical significance, the overall interpretation is that the model 

provides a reasonable fit to the data. However, the borderline p-value (0.066) warrants some caution and suggests there may be 
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minor discrepancies between predicted and observed outcomes in certain probability ranges that could be explored further. The 

results generally support the model's adequacy for making predictions, though practitioners might want to examine potential 

improvements or additional predictors that could enhance calibration. 

 

Table 7: McFadden’s Pseudo R-squared and Multicollinearity 

McFadden’s Pseudo R-squared 

 

McFadden’s Pseudo R-squared : 0.096 

 

Multicollinearity 

Rownames colour year Age sex employed citizen checks 

1.00 1.09 1.09 1.02 1.03 1.06 1.16 1.07 

 

 From Table 7, the logistic regression model examining arrest release decisions revealed several key findings while 

demonstrating sound statistical properties. Three factors showed statistically significant (p<0.001) and substantively meaningful 

effects: employed individuals had 2.21 times higher odds of release (95% CI: 1.81-2.70), each additional police check reduced 

odds by 30% (OR=0.70, CI: 0.66-0.75), and White defendants had 1.44 times higher odds than non-White defendants (CI: 1.18-

1.76). The model showed adequate goodness-of-fit (Hosmer-Lemeshow p=0.066) and no concerning multicollinearity (all VIFs 

<1.2), though its explanatory power was modest (McFadden's R²=0.096), suggesting important unmeasured factors influence 

release decisions. These results highlight how both legal factors (prior checks) and extralegal characteristics (employment, race) 

systematically affect pretrial outcomes, with the model providing reliable but incomplete insight into judicial decision-making 

processes. 

Table 8: Performance Comparison of Predictive Models 

                                                                         Comparison Table  

 

 Model Accuracy Sensitivity Specificity AUC 

1 Random  Forest 0.8340779 0.9923077 0.06367041 0.726380 

2 Logistic Regression 0.8321634 0.9892308 0.06741573 0.733486 

 

 From Table 8, the model comparison reveals important insights about the trade-offs between random forest and logistic 

regression approaches for this classification task. Both models achieve nearly identical overall accuracy rates around 83.3-83.4%, 

indicating comparable performance in terms of correct classification across both classes. However, the detailed performance 

metrics uncover crucial differences in how these models handle the class imbalance. 

 The models demonstrate remarkably high sensitivity (98.9-99.2%), showing excellent capability to correctly identify 

released cases (the majority class). This strong performance on the prevalent outcome is expected given the dataset's imbalance. 

However, both models struggle substantially with specificity (6.3-6.7%), indicating poor performance in correctly detecting non-

released cases (the minority class). The nearly identical specificity scores suggest both approaches face similar challenges in 

recognizing the less common outcome, likely due to the underlying class distribution. 

 The area under the ROC curve (AUC) values around 0.73 for both models reveal moderate discrimination ability 

overall. The slightly higher AUC for logistic regression (0.733 vs 0.726) suggests marginally better ranking performance, though 

this small difference may not be practically significant. The similar AUC values despite different modeling approaches indicate 

the problem's inherent difficulty, particularly in distinguishing the minority class. 

Figure 1: Random Feature Importance 
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Figure 1: Random Feature Importance 

 

 

Accuracy Importance (Left Plot) 

 From Figure 1, the first plot suggests "checks" appears as the most important variable for prediction accuracy, 

positioned at the top with the longest bar extending to around 20 units. This indicates that the number of checks substantially 

improves the model's overall predictive performance. "Employed" and "year" follow as secondary important factors, while 

demographic variables like "sex" and "rownames" show minimal importance for accuracy. 

Gini Importance (Right Plot) 

 The second plot reveals a different importance ranking, where "checks" again emerges as dominant (bar extending to 

100 units), suggesting it plays the strongest role in node purity across decision trees. "Citizen" and "colour" appear as moderately 

important factors for creating homogeneous nodes, while "age" and "rownames" show relatively weaker effects. 

Figure 2: ROC Curve Comparison 

 

 
Figure 2: ROC Curve Comparison 

 From Figure 2, the ROC curve comparison presents a nuanced evaluation of model performance for this classification 

task, revealing several key insights about the relative strengths of the random forest versus logistic regression approaches. Both 

models demonstrate moderately discriminative ability, with AUC values clustered closely around 0.73, indicating comparable 
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overall performance in ranking positive instances higher than negative ones. The logistic regression shows a slight edge 

(AUC=0.733) over random forest (AUC=0.726), though this minor difference may not be practically significant. 

The visualization suggests the models follow similar trajectories across the spectrum of classification thresholds, with both 

curves likely rising sharply at lower false positive rates before plateauing. This pattern implies that while the classifiers can 

achieve reasonable sensitivity without excessive false positives at certain thresholds, their ability to perfectly distinguish classes 

remains limited. The nearly parallel paths of the two curves indicate consistent relative performance across all possible decision 

thresholds. 

3. Summary and Conclusions 

 This comparative analysis of machine learning approaches for predicting arrest release decisions yielded important 

insights into both the capabilities and limitations of algorithmic modelling in criminal justice contexts. The study's findings 

reveal that while contemporary techniques can achieve reasonably high overall accuracy, significant challenges remain in 

developing truly equitable predictive systems. 

 The Random Forest and Logistic Regression models demonstrated nearly identical predictive accuracy, both correctly 

classifying approximately 83% of cases. However, this apparent success masks crucial nuances in model performance. Both 

algorithms exhibited exceptionally high sensitivity in identifying cases where individuals were released, but performed poorly 

in predicting non-release outcomes. This performance asymmetry reflects both the inherent class imbalance in the dataset and 

potentially deeper systemic patterns in release decision-making. 

 Feature importance analysis uncovered several consistent predictors across both modelling approaches. The number of 

charges against an individual emerged as the strongest negative predictor of release, while employment status and citizenship 

showed significant positive associations. These findings align with existing criminological research on pretrial decision-making 

patterns, suggesting that the models are capturing real-world phenomena rather than statistical artefacts. 

The methodological comparison highlights important tradeoffs between interpretability and predictive power. While the Random 

Forest approach offers slightly better handling of complex variable interactions, the Logistic Regression model provides more 

transparent coefficient estimates that may be preferable for policy analysis and auditing purposes. Both approaches, however, 

share similar limitations when dealing with imbalanced outcomes. 

 These results have meaningful implications for the responsible application of predictive modeling in criminal justice 

settings. The consistent underperformance on non-release cases suggests that current approaches may inadvertently perpetuate 

existing systemic biases if deployed without careful safeguards. The identification of employment and citizenship as key 

predictors raises important questions about equity in release decision-making that warrant further investigation. 

Moving forward, this research suggests several directions for improvement. Future work should prioritize techniques to enhance 

model specificity, potentially through advanced sampling methods or alternative algorithmic approaches. The development of 

fairness-aware modeling frameworks appears particularly crucial given the high-stakes nature of criminal justice decisions. 

Additional data collection efforts focusing on currently unmeasured variables (such as offence severity or contextual factors) 

could further improve model performance while providing deeper insights into the decision-making process. 

 Ultimately, this study demonstrates that while machine learning can provide valuable insights into patterns of arrest 

release decisions, its application requires thoughtful consideration of ethical implications and potential societal impacts. The 

findings underscore the importance of combining technical sophistication with domain expertise and critical social awareness 

when developing predictive systems for high-stakes public sector applications. 
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 الملخص 

 

(. أظهرت  2002-1997قضية حيازة ماريجوانا من شرطة تورنتو )  5226تقُيّم هذه الدراسة المقارنة نماذج التعلم الآلي للتنبؤ بنتائج إطلاق سراح الموقوفين، باستخدام  

ا في التوازن الطبقي، حيث بلغت نسبة نتائج الًحتجاز   حالًت إطلاق السراح. بعد المعالجة المسبقة   % من82.9% فقط مقابل  17.1مجموعة البيانات اختلالًا كبيرا

شجرة مع قياس أهمية السمات، ونموذج الًنحدار اللوجستي    500لمعالجة القيم المفقودة وتحويل المتغيرات الفئوية، طبقّنا منهجين للنمذجة: مُصنفّ غابة عشوائية بـ  

%(، على الرغم 98%( وحساسية ممتازة )<83.4-83.2السراح، محققتين دقة إجمالية متقاربة )الثنائي. أظهرت كلتا الخوارزميتين قدرة تنبؤية قوية لحالًت إطلاق  

%(. أظهرت النماذج قوة تمييزية مماثلة، حيث حقق الًنحدار  7من أنهما واجهتا صعوبة في التعامل مع فئة الأقلية الحرجة، كما يتضح من ضعف الخصوصية )>

(. حدد تحليل أهمية السمات الحالة الوظيفية وفحوصات الخلفية السابقة للشرطة كأقوى العوامل التنبؤية، 0.726مقابل    0.733أعلى قليلاا )  AUC-ROCاللوجستي قيمة  

تصنيف بيانات نظام العدالة، لال  بينما ساهمت العوامل الديموغرافية، بما في ذلك العرق، بشكل كبير في التنبؤات. تبُرز هذه النتائج التحديات التقنية المتمثلة في اخت

النتائج الإيجابية الخاطئة لتوقعات الً بالتحيز الخوارزمي المحتمل، لً سيما بالنظر إلى ارتفاع معدل  التفاوتات والًعتبارات الأخلاقية المحيطة  يفُاقم  حتجاز، مما قد 

ية عند تطبيق التحليلات التنبؤية على قرارات العدالة الجنائية الحساسة، مع موازنة الأداء  القائمة. تؤُكد الدراسة على ضرورة إجراء تقييم دقيق للنماذج وتنفيذها بمسؤول

 الإحصائي مع اعتبارات العدالة والأثر الًجتماعي.
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