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1. Introduction

Romberg's rule is a numerical integration method that provides a more precise approximation of definite integrals by
combining Richardson extrapolation with the trapezoidal rule. It is especially helpful for smooth functions that polynomials can
accurately approximate.
Romberg's rule yields a more accurate estimate than the trapezoidal rule by itself when combined with Richardson extrapolation
and also Efficiency: Compared to other approaches, it needs fewer function evaluations, particularly for smooth functions. The
integral fab f(x) dx may be approximated with excellent precision by using a large number of subdivisions n, which divide the
time period into subintervals and yield accurate and correct results. Romberg's rule is important since it yields approximate
findings. Compared to earlier techniques that rely on employing fewer divisions, this approach is quicker and has a lesser
inaccuracy since it uses high ranks. A useful method for estimating definite integrals, Romberg's rule is a potent numerical
integration approach that improves the accuracy of the trapezoidal rule by Richardson extrapolation.

In this research, the following lower triangular matrix of integers is produced using Romberg's method and is all an
approximation of the result of the above integral:

R(1,1)
R(2,1) R(2,2)
R(n, 1) R(n,2) ... R(n,n)

where R(1,1), R(2,1), and so on for each member of the matrix indicate the first, second, and subsequent approximate
values, respectively, using the trapezoid rule.
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2. Research Method (Bold, 12 pt)

The following relationships, which rely on the matrix's argument, can be used to locate the elements of the matrix.
The trapezoid rule is used to determine the initial value.
R(1,1) = =2 [f(a) + f(b)]
The first value determines the remainder
R(k 1) = {R(k—1,1) + hy Y&, f(a+ (i—0.5))

b-
hy_; = zk—i ,k=23,..n
The values obtained from the interpolation are shown in the other columns. The remaining elements in the matrix may be
found using the following law:
R(k, i) = 41-1 R(k,i-1)- R(k-1,i-1)

4i-1-q
ki=23,..,n

R(1,1)

l

R(2,1) - R(2,2)

|

+ R(3,1) - R(3,2) = R(3,3)

|

L R(4,1) » R(4,2) > R(4,3) > R(4,4)

Figure 1. The elements in the matrix Romberg's rule
3. Results And Discussion
3.1 Derivation of Romberg Rule
When the value of the function and its derivatives fall in the interval [a,b], Romperk's method provides a multiple
arithmetic approximation of the integral by bisecting h once more.

b h n-1 o
f £(x) dx = — [fo +E 42 Z fi] + Z oh?
a 2 i=1 j=1

where h is the period's duration and o is the set of all j values independent of h.
Assuming T (k,0),k=0,1,2.... represents the use of the preceding approximation and hy = %
[=Teo + ashy® + aghy* + azhy ® + -0 (1)
The number of subintervals is now divided in half and doubled.
I=Teeso + 00 (92 + ap () + a5 ()¢ + -+
= Typro + %alhkz + iazhk‘* + $a3hk6 + .2
We may now remove the components that include h"2. To do this, multiply equation (2) by (4) and deduct equation (1) from it.
The result is

3 15
3l = 4Tk+1’0 - Tk‘o - Zath4 — Ea3hk6 + -

1 1 5
I=2(4Tirr0 — Tio) — 2oy = Sy ® . (3)
Where the error value is represented by i ayhy* and

T _ ATk+1,0-Tko
k+1,1 — 3

46



EDUSJ, Vol, 34, No: 2, 2025 (45-50)

It's called completing your first romper.

Equation (3) makes it evident that the value of I is approximated to be of the fourth order, which makes it more accurate
(T(k,0),T(k+1,0)) than the second order. As a result, estimations of the sixth order may be obtained by repeating the external
interpolation procedure.

[= Ty, + Brhe? + B+ o (4)

Since B4,B; is independent on of h, we may derive it by halving h and doubling the subintervals.

[=Tyyq1 + Bl(_k)4+B ( -6 +

1
= Tey11 + Rﬁlhk + a Bzhk6 + .. (5)
After subtracting equation (4) from equation (5) and multiplying it by (4), we obtain
1= = (16Teurs — Tex) = 55 B’
The second Romberg interpolation, or T(k+1,2), is the prior equation. From there, we proceed to get the best estimate.
Common law
[= Tk+1,j+1 + 0(h2j+4)
When J=0 Romperk I T(k+1,1)+0(h*)
When J=1 Romperk II T(k+1,2)+O(h%)
When J=2 Romperk IIT T(k+1,3)+O(h*)
AT Ty Ty
4141
By using Romberg's rule foz x? dx, where n=3 we have
R(1,1)
R(2,1) R(2,2)
R(3,1) R(3,2) R(3,3)
R(1,1) = Z*[F(a) + F(b)]

So it is possible to calculate Tyt 141 =

=220 +4] =4

hy_q :k__az , K=2

h, = bz—oa —h, =

h,=2=1

R(21) =5 [R(1,1) +h; 3L, f(0 +0.5)(2)]
= >[4+ 2f(0+ 05(2)] =3

R(3,1) =5 [R(2,1) +h, 32, f(a + (i — 0.5)h,]
%[3+f(0+05)+f(0+5)]

s ds =275

We apply the following formula to get the matrix's remaining members
R(k i) = 41-1 R(k,i-1)- R(k-1,i-1)

4i-19
R(2,2) = 4R(2,1)-R(1,1)
_4(3)-4

4-1
3

= § = 2.66667

4R(3,1)-R(2,1
R(3,2) = RERED

=2.66667
3—-1 _
R(3,3) = ¥ RG2-R@2)

43711
_ 16(2.66667)—2.66667
- 15

=2.66667
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This is equivalent to the integral's actual value

2 x3
2 — 2
fox dx—3 0

=2 =2.6666
If the following table is used to represent the speed of an automobile at time t, then
T 0 12 24 36 48 60 72 84 96 108 120
\Y% 0 360 10.08 1890 21.60 18.54 1026 530 450 540  9.00

Determine the distance the car travels in a time limit of no more than two minutes using Romberg's rule.

R(1,1) = Z2[f(a) + f(b)]
f(b) = f(120) = 120
R(1,1) = =210 + 120] = 7200
R(k 1) = 2R(k— 1,1) + hy_, Y27 f(a+ (i—0.5))
hy_4 =2bk;_az ,k=23,....n
b_
hy_, = 2](—_a2 , k=2
hy; = 12200_0 =120

R(2,1) = Z[R(1,1) + 120 £, (0 + (i — 0.5)]
= ~[7200 + 120(0.5)] = 216000
R(k i) = 41"1R(Kk,i-1)— R(k—1,i—-1)

4i-1-1
R(2,2) =

4271R(2,1)-R(1,1)
__4(216000)—7200

42711
~ 280600
The results are in the form of the following matrix:

7200 0
216000 280600

Table 1. Romberg's rule is better to the trapezoidal rule because it allows for faster convergence to the integer value.

O(h) h? h* h® h8
1
h Too
K To Tio
% To Tiq Ty
% To,3 Ty, Ty Tsp

3.2 Algorithm of Romberg Rule
Step 1: type f, a, b, and n.
Step 2: We determine the first integral's value R(1,1) = ? [F(A) + F(B)]

Step 3: The values of h are determined utilizing h = %
Step 4: For any value of k and i, we compute the following integral's value.

R(k, 1) = 2[R(k— 1,1) + by T2, f(a+ (i - 0.5))
Wherek=2,3,..,n, i=12,..,2k?2
Step 5: We calculate Romperk's rule
. 41-1R(k,i-1)-R(k-1,i-1)
R(k i) = £ REIDR
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K,i=2,3,...n
Step 6: Print the integral value

3.3 Program of Romberg Rule

f= input('f='); %function needed to integrate
a= input('a="); % start point of interval
b= input('b="); % end point of interval
n= input('n=");
r(1,1)=((b-a)/2)*(subs(f,a)+subs(f,b));
for k=2:n

h=(b-a)/(2"(k-2));

s=0;

for i=1:2"(k-2)

s=s+ subs(f,(a+(i-0.5)*h));

end

r(k ,1)=0.5*(r(k-1,1)+h*s);

end

for i=2:n

for k=i:n

r(k,i)=((4"(-1)*r(k, i-1) - r(k-1, i-1))/(47(i-1)-1));
end

r
4. Conclusion
The use of a high number of subdivisions, n, in the approximation of the integral is one of the most significant

. . b _ . .
characteristics of using fa f(x) dx. Romberg's rule has a significant effect on the outcomes as higher n increases the number of

times the function values are computed. As a consequence, it may be applied to mathematical analyses of a variety of
mathematical issues and produces fast, highly accurate answers with minimal mistakes, improving the outcomes of the
rules before.
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