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Introduction

In 1963, the ideas of semi-open sets were introduced ([13]). Askandar, S.W. 2012 ([4]) introduced the idea of i-open sets
in conventional topological spaces., in 2020 and 2022([5,6]), Askandar and Mohammed introduced the concepts of soft i-open
sets and soft i-continuous mappings. Soft sets and their characteristics have been discussed by Molodtsov, and a variety of
experts in 1999, 2003, 2009, 2011, 2014, and 2015 ([15], [14], [2], [20], [19], [10]). Chen, B., and Kannan, K., respectively,
provided concepts for soft semi-open sets and soft o -open sets in soft topological spaces in 2013 ([8]) and 2012 ([11]). In
2014, Ozturk, T. Y. and Bayramov, S., ([18]) incorporated soft point notions into the study ([7]). Soft point principles from
the paper ([21]) have been employed in this work.

As a generalization of totally continuous functions, T. M. Nour ([16]) presented the idea of totally semi-continuous
functions, and numerous features of totally soft semi-continuous functions were established. This paper introduces and studies
soft semi-totally continuity, a new generalization of soft strong continuity that is more robust than soft totally continuity.
Additionally, these functions' fundamental characteristics and soft semi-totally continuous functions' preservation theorems
are examined. Also introduced and researched are soft semi-totally open functions in soft topological spaces. We concluded
by introducing the sot i-totally continuous mappings and contrasting them with the ideas previously presented.
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Material and methods

Definition 1. Let X represent the initial universe, P(X) represent its power set, 7' represent its parameter set, and (@ #4 S7).
A pair (K,4) is referred to as a soft set (sS) over X, where K is thought of as mapping K: 4 — P (X). A parameterized
collection with X subdivisions is known as a soft set. If " t€4, that is, " Ky= {K (f): t€ AS T, K:A —P (X)}" then K(?) is
termed a soft set (K,4) group of t-approximate factors in Specific ¢t €4. The family of all these soft sets over X is designated as
SS(X4) ([15]).

Definition 2. If @1, X7, the union of any number of soft sets in 7, as well as the intersection of any two soft sets in 7, all belong
to 7, then 7 is said to be soft topology on X. The triple consider (X, t,7) and is a soft topological space (s7s). Soft open sets are
referred to as the embodiment of 7 . If the complement (K, 7)° of (K,T) in (X, t,T)is known as a soft closed set. The collection
of all soft closed sets over X is denoted by the symbol (sCs) ([20]).

Definition 3. The soft closure of (K,T) is defined as the intersection of all the soft closed sets that include (K,7), and is
denoted by CI(K,T) containing (K, T) ([20]). The (K,7) soft interior, denoted by Int(K,T)([9]), is the union of the complete
soft open sets contained in (K, 7).

Definition 4. Let (X,7,7) and (Y,p,T') consistently imply soft topological spaces written as (sTs) and

Sou :SS( X7 ) — SS(Yy. ), while mappings includeu : X - Y ,andp . T > T".
1. Forasoftset (FJ)in (X,7,T), (fu(W,J),Z), Z=p(J) ST"is a soft setin (Y, p,T’ ) given by:

U(Uaep-1(pyna W (@), if p7(B)N] = @
¢, otherwise

For g € Z CT', (fu(W,J), Z) is referred to as a soft image of a soft set (W,J).([1]).

2. IfM,1) isasoftsetin (V,p,T"), where, IET",

Then (f,u(M,1),L), L=p7(I), is a soft setin (X,7,T), defined by:

ut (M(P(a))),if pla) €1
o, otherwise

I (MI)((X)—{

For a € M CT. (f,,(M,I),L) is referred to as a soft set (M,I) inverted image. ([1]).

Definition 5. If (W,T ) is a (sS) in(X,7,T ), it would be considered:
i.  Soft semi-open set written as (sSOs) if: a. (W,T)CCl(Int(W,T)). b. If a sOs (O,T)#¢ X exists and
(O,T)Z(W,T)Z CI(O,T) is present ([8]).
ii. IfasOs (O,T)=¢ X exists wherein (W,T)E CI((W,T)(\(O,T)), soft i-open set written as (sIOs) is used ([5]).
The complement sSOs is called a soft semi-closed set written as ( sSCs ). The soft semi-closure of (W,T) and
designated SCI(W,T ) is the intersection of all sSCs over X containing (W,T ). A soft semi-interior of a soft set (W,T) is
the union of all sSOs over X contained in (W,T ), and it is represented by SInt(W,T ). The collection of all sOs ,sSOs , (
sCs ’sSCs )in (X,7,T) are denoted by sOs( X, ))( sSOs(X; ), ,sCs(Xy),sSCs(X; ).
The term "soft clopen set" written as ((sCOs ) ) refers to a set that can be soft open and closed. (sCOs( X)) stands
for the family of all soft clopen sets. A soft semi-clopen set is written as (sSCOs ) is a set that can be soft semi open and semi

closed. (sSCOs( X ) designates the family of all soft semi-clopen sets.

Definition 6. A f,, - SS(X; ) — SS(Yy. ) soft mapping with p:7 —T"and u - X — Y is known as:
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(i) Continuous [21] written as (sCONm )if f,!(D,T" )& sOs(Xy ) ¥(D,T' )€ sOs(¥y.).

(ii) Semi-continuous [12] written as (sSCONm ) if p"uI (D,T")E sSOs(X; ) ¥(D,T' ) € sOs(Yy, ).

(iii) Totally continuous written as (sTCONm ) if f;u](D,T’) € sCOs(X; ) Y(D,T' )€ sOs(Yy:).

(iv) Strongly continuous written as (sSTRCONm ) if fp_ul (D,T")E sCOs(X;) Y(D,T')C Y.

(v) Totally semi-continuous written as (sTSCONm ) if, fp‘ul (D,T" )€ sSCOs(X; ) ¥Y(D,T'") € sOs(Yy. ).

(vi) Strongly semi-continuous written as (SSTRSCONm ) if, fl;,f (D, T')E sSCOs(X;) Y(D,T")C Y.

(vii) Irresolute written as (sIREm ) [12] if, fp_uj(D, T')E sSOs(Xy ) Y(D,T' ) € sSOs(Yy).

(viii) Semi-open written as (sSOm)[12] if, f,,(D,T)€ sSOs(Yy) ¥(D,T )€ sOs(Xr).

(ix) Semi-closed written as (sSCm ) [12]if, f,,(D,T )€ sSCs(Y;.) Y(D,T)EsCs(X;).

Example 1. Let X ={1113,15},Y={246}.T={t,q}, T'={t,q'},

t={r. Xp.(BT )L T)(B3.T)} s p={dp Y (DT )}

Where, (5,.T)={(t,{11}), (¢, {11D}.(5,.T)={(¢,{13}), (¢, {131},

(B3.T)={(t,{11,13}),(q,{11, 13D}, (D,.T")={(t",{2,4}), (¢, {2,4D}.

sOs (Xp)={¢r. Xr.( BT )( B2, T).(B3.T )}, sOs (Y )y={ ¢r . Yr (DT},

(O Xe (BT )BT B3, T )} A A 11,150),(q,111,153)},4(1,113,15}).(q.,113,15})} } € sSOs (X7 ).

sCOs (Xp)={¢r. X1}

Describe the mapping f,, : SS(X; ) — SS(¥;. ) at this time, where p:T —T"and u: X —Y are distinguished by: p(t) =1,
plq)=q', u(ll)=2,u(13)=6,u(15)=4.

Plainly, f,, is not sCONm since (D,,T') is an sOs in Y but f,/(D,T')={(tu™ (D)(p(t).(q.u” (D,(p(q' )} =
(™ (D ))(q.u7 (DL )] =™ (124 (@™ (124 D)} =H(t4 1115 D.(0{ 1115 )} s notan sOsin X .
/, is n0t STCONm since (D;,T') is ansOs in Y but £,/(D;,T')isnota sCOs in X .

fyu 1810t SSTRCONm since (D;,T") isansS in ¥ butf[;,](DI,T')is nota sCOsin X .

S pu 18 sSSCONm .

Main Results

Definition 7. A mapping f,, - SS(X;)—> SS(Y;.), with p:T —>T"and u: X - Y, is called soft semi-totally continuous
mapping written as (sSTCONm )if, p_uI(D, T )€ sCOs(X;) Y(D,T') € sSOs(Yy. ) .

Example 2. Let X =Y ={0,12}, T={tq}and T'={t,q'}, "v={¢r. Xp.(W,,T),(W,,T)}" and p={¢p..Yr.(D;, T" )},
where " (W), T ) ={(t,{0}), (g, {OD}",(W,.T)={(¢t,{1,2}), (¢, {1,2D)},
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(D,,T" )={(t',{0}), (q',{0})}. Describe the mapping Sou :SS(X7)— SS(Yr.)at this time, where p:T —>T'and u: X —>Y
are distinguished by p(t)=t",p(q)=q",u(1)=u(2)=0,u(0)=2.
sSOs(Yp )={ @r, Yp, (D, T') "{(¢ 0,11, q",{0.1)}" {(,{0.2}),(q',{0,2})}}. Plainly, f, isa sSTCONm .

Proposition 1. Each sOsis sSOs.[5]
Proposition 2. Each sSOsis a sI0s .[5]

Theorem 1. A soft mapping f,, - SS(X;)—>SS(Yy) is (sSTCONm) if and only if fI;Lf(D,T')E sCOs(Xy )
Y(D,T') € sSCs(Y. ).
Proof. Assume that (W,T) is sSCsin Y. Then Y \(W,T) is sSOs inY. We get, f}(Y \(W,T))is sCOs in . That is,
X\fnt(W,T) is sCOs in X . We have, f,,} (W, T) is sCOs in .

Conversely, if (W, T) is sSOsinY, then, Y \(W,T) is sSCs in Y. By hypothesis, f! (Y \(W, T)) = X \f;22 (W, T)
is sCOs in X, then, f,}(W,T) is sCOs in X. Henceforth, f 18 (SSTCONm ).
Theorem 2. Each (sSTCONm ) is(sTCONm ) .
Proof. Suppose that £, - SS( X7 )— SS(Yy.)is (sSTCONm) and (U,T) is (sOs)in . By (Proposition 1) we get, (U,T) is
(sSOs)in Y. By suppose we have, f,,' (U, T) is (sCOs ) in X. Henceforth, fpu is (sTCONm ).
Example 3. Let X=Y={0,12}, T={tq} and T'={t,q'}, 1={¢p, Xp.,(W,,T)(W,,T)} and p={p.Yp,(D;, T")},
where, (W,,T) = {(t,{0}), (q,{OD}, (W,.T)={(t,{1,2}), (q,{1,2D}, (D;.T") ={(t',{0}), (q",{0})}. Describe the mapping
Sou :SS(Xyp)—> SS(Yp ) at this time, where p:T —>7" and u:X —Y are distinguished by p(1)=t", p(q)=4q" ,
w(0)=0u(l)=1u(2)=2.
sSOs(Yp )={ Dr, Y., (D, T") {(t',{0,1}),(q",{0,1})} ,{(t',{0,2}).,(q',{0,2})}}. Plainly, fpu is a sSTCONm . But it isn’t
sSTCONm , because, (W, T )={(t,{0,1}), (¢,{0,1})} is sSOsinY, but, fz;}(W, T) = (W,T)isnotsCOs in X.
Theorem 3. Each (sSTRCONm ) is (sSTCONm ) .
Proof. Assume that f,, :SS(X;)—> SS(Yy )is (sSTRCONm) and (U,T) is (sSOs)in .,We get, f;," (U, T) is (sCOs) in X
"(by assumption)". Henceforth, f o is (sSTCONm ).
Example 4. Let X=Y={0,12} , T={tq} and T'={t',q} , 1={¢:, X0, (W,,T)(W,,T)(W;,T)(W,,T)} and
p={¢p.Yr.(D,T'),(D,,T" )}, where
(W,,.T)={(t,{0}), (q, {01}, (W,,T)={(t, {1}), (¢, {1},
(W3, T)={(6,{0,1}), (q, {010}, (W, T) = {(£,{0.2}), (g, {0,2})},
(D, T")={(t',{0}), (¢",{0D}, (D, T") ={(¢', {1,2}), (¢, {1.2})}.
:SS(X;)—> SS(Y;. )at this time, where p : T — T"and u : X — Y are distinguished by p(t)=t',

Describe the mapping f,,

p(a)=q" ,u(0)=Lu(1)=0,u(2)=2.
sSOs(Yr )={ @r, Y., (D;,T") ,(D,,T") }. Plainly, fpu is a sSTCONm . But it isn’t sSTRCONm , because, for (W,T)

={(t’, {1}), (¢, {1} in Y, but, £,}(W,T) = {(¢,{0}), (¢, {0})} is not sCOs in X.
Theorem 4. Every (sSTCONm ) is(sTSCONm ).

Proof. Let 1, : SS(X1 ) — SS(Yy.) be (sSTCONm ) and (M,T) is any (sOs) in Y. By (Proposition 1) and by assumption, we
get, it (M, T) is (sCOs) and then it is(sSCOs ) in X. . Henceforth, fis (sTSCONm ).
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Example 5. Let X=Y=/{0,12} , , T={tq} ad T'={t,q} tv={¢p. X0, (W, T)(W,,T)(W;,T)} and
p={¢p . Yp.(D.T")} where, (W.T)={(t,{0}), (q,{OD},(W,.T)={(t,{1}), (¢, {1},

(W;.T)={(,{0,1}),(q,{0,1D}.," (D, T") ={(¢",{0}), (¢, {0})}",

:SS(X;)—> SS(Y;. )at this time, where p : T — T"and u : X — Y are distinguished by p(t)=t',

Describe the mapping f,,

p(a)=q u(0)=0u(l)=u(2)=1.
sSOs(Yp )={ &r, Yp, (D, T") {(,{0,1}),(¢", {0,113}, {(¢',{0,2}), (¢',{0,2})} }. Plainly, fpu 18 @ STSCONm . But it isn’t
sSTCONm , because, forsSOs (W, T )={(t',{0}), (¢, {0D} in Y, but, £, (W, T) = {(t,{0}), (g, {0})} is notsCOs in X.
Theorem 5. Every (sSTCONm ) is(sSCONm ) .

Proof. Let [, : SS(X;)—> SS(Yy.) be (sSTCONm) and (M,T) is any (sOs) in Y. By assumption, we get, fr,'(M,T) is
(sCOs) and then it is(sSCOs ) in X. Then, f,;' (M, T) is (sSOs)in X. Henceforth, fis (sSCONm ) .

Example 6. Let X=Y={012}, , T={t,q} and T'={t,q'}, 7={¢p, X7,(W,,T )} and p={¢;,Yr,(D;,T' ),(D,,T")}
.where, (W), T)={(¢,{0}), (q,{0D}.(D,.T")={(",{0}), (¢, {0D}.(D,,.T") ={(¢',{0,1}), (¢, {0,1D}.

Describe the mapping f,, - SS(X; ) — SS(Y;. )at this time, where p:7 — 7" and u . X — Y are distinguished by p(¢)="¢,

pu
p(q)=q ,u(0)=0u(l)=1u(2)=2

sSOs(Yp )={ @7, Y., (D, T"),(D,,T"), {(t',{0,2}),(q’,{0,2})}}. Plainly, fpu is a sSCONm . But it isn’t sSTCONm ,
because, for (W,T)={(t',{0}), (¢’,{0})} in Y, but, £} (W, T) = {(t',{0}), (¢’, {0} is notsCOs in X.

As a result, there is the following connection:

"Soft Strong continuity" = "Soft semi-totally continuity" = "Soft totally continuity" = "Soft total semi-
continuity” = "Soft semi-continuity".
In general, The contrary is not true.
Theorem 6. Let f,, - SS(X;)— SS(Yr.) be a function with s7s values for X and Y. Consequently, the following arguments
are equivalent:
(i) f,, is (sSTCONm ).
(i) for every x € X and each, (sSOs) (M,T) inY with f,,(x,T)E(M,T)VteT, there is a sCOs (U,T) in X st x&(U,T)

and f

w(UT)S(M,T) .

Proof, (i) = (ii): Let fpu be (sSTCONm ) and (M,T) be any (sSOs) inY containing f,,(x,T) so that fop’u](M,T) .
fle](M,T) is sSCOs in X "(by assumption)". Let (U,T):fp‘u’(M,T) then (U,T) is sCOs in X and x € f(U,T) . Also
SoilU.T)= [ [ (M,T))E(M,T ). Henceforth, f,,(UT)E(M,T)

pu

(i) = (i): Let(M,T) be (sSOs)inY Letx € p_u](M,T) be any arbitrary point, we get, f,,(x,7)€(M,T)VteT . From (ii),
we have, sCOs , f,(D,T)ZX , containing x s.t. f,,(D,T)S(M,T) , we conclude that (D,T):fl;f(M,T) ,
x€(D, T)§f,;,f(M,T), then, fp‘uI(M,T) is clopen neighborhood of x, because x is arbitrary, we get, fp‘,f(M,T) is clopen

neighborhood every one of its points. Henceforth, it is SCOs in X. Thus, f 1S (SSTCONm ).
Theorem 7. The composition two (sSTCONm ) is (sSTCONm ).
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Proof. Let f,, :SS(X7)—>S8S(Yr ), u: X >Y,p:T—>T and g, :SS(Yp) > SS(Zyn), u':Y > Z,p'":T'>T" be any
two (sSTCONm ). Let (M,T'" ) be sSOs in Z. Since g is (sSTCONm ), we get, g;fu,(M,T”)is sCOs inY, so it is sOs inY.
By ( Proposition 1), we get, g, (M,T") is (sSOs) in Y , since fpu is (sSTCONm) , we get,
(g (M. T ))=(fog)”(M,T" )is sCOs inX.Hence go [ :SS(Xy)—>SS(Zy)is (sSTCONm ).

Theorem 8. If f, :SS(X;)—>SS(Yy) is (sSTCONm) and g, :SS(Yp)—>SS(Zp) is (sIREm) , then
go f:SS(X;)—>SS(Zpn)is (sSTCONm).

Proof. Assume that f,, : SS(X;)— SS(Yy)be (sSTCONm) and g, : SS(Yr ) —> SS(Zy) be (sIREm) . Let (M,T"") be
sSOs in . g (M, T"")is sSOs inY "(by assumption)". Also, f,/(g ! (M, T"))=(fog)"(M,T"")is sCOs in X.

pu

Henceforth, go f is(sSTCONm ).

Theorem 9. If [, :SS(X;)—> SS(Yy) is (sSTCONm) and g, :SS(Yp)—> SS(Zpw) is  (sSCONm) , then
gof:885(X;)—>S8S(Zpw)is (sTCONm ).

Proof. Let (M,T"" )besOs in Z . Since g is soft semi-continuous, we get, g;fu,(M,T”)is $SOs inY "(by assumption)".
Also, f]:ul(g;r;r(M,T”)):(fog)_l(M,T")is sCOs in X. Henceforth, go 1 : SS(X;)—> SS(Z;.)is (sTCONm ).

Theorem 10. Let f, :SS(X;)— SS(Yr) be (sSTCONm) and g, :SS(Yy ) — SS(Zr.) be any mapping. Then,
gof:88(Xp)—>S8S(Zy)is (sSTCONm) iff &, is (SIREm).

Proof. Suppose that g, : SS(Y. ) —> SS(Zy.)be (sIREm) . Then the proof is complete(Theorem 8)

On the other wise, let go fbe (sSTCONm), let (M, T"" )be sSOs inZ. We get, f;(g;fu,(M,T”)):(gof)_l(M,T”)is
sCOs inX. Also, g;{u,(M,T”)is s8O0s inY. Henceforth, g, is (SIREm) .

Definition 8. A soft mapping f,, - SS(X;)—> SS(Y;.) is said to be soft semi-totally open written as (sSTOm) if
Sou(M,T)E sCOs(Yp:) Y(M,T)EsSOs(X; ).

Example 7. Let X ={7,1117},Y={24,6}, T={t,q}, T'={t.q'}

t={¢r. Xp.(W.T)}, p={p.Yp.(D,T").(D,,T").(D3, T" )},

Where, (W,, T )={(t,{7,11}), (q,{7,11})},

(D.T")=((¢",{2]), (q",. {21}, (D,,T") ={(¢',{4]), (¢", {4D}, (D;,T") ={(t",{2,4D), (q'. {24D}.

Describe the mapping f, - SS( X7 ) —> SS(Yy.)at this time, where p:7T —7"and u: X — Y are distinguished by: p(7)=1",
p(q)=q' u(17)=4u(11)=6,u(7)=2 sOs( Xy )={¢p. Xp.(W.T )}

{0r X (WL T )07 Dtand T DM L) LDt (707 Do, 7,07 ),

(1117 ), (10,( 1117 )}} E 5805 (X7p),

sCOs(Yp ) ={¢p. Yp }

fouisnota sSTOm because f,,(W;,T)={(t'",{2,6}),(q",{2,6D} & sCOs (Y}.),

If p={ ¢ Yy ( DT (Do, T )(Dy,T').( Dy, T )(Ds, T ),( Dy, T' )
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Where, (D;,T")={(t',{2}), (@' {2D}.(D,.T") = {(¢'.{4}), (¢, {4},

(D3, T")={(t',{6}), (¢, {6D}.(D,.T" ) = {(t', {2,4D), (¢', {2,4D}.( D5, T' ) = {(t',{2,6}), (', {2,6 )},

(D, T')={(t',{4,6]),(q', {4,61)}, then, £, is sSTOm .

Theorem 11. If a bijective f,, : SS(X7 ) = SS(¥;. )is (sSTOm ), then the image of each sSCs in X is sCOs inY.

Proof. Let (M,T)be sSCs in . Then X | (M,T)issSOs in X. We get, f,,(X | (M,T))=Y1 f,,(M.T) is sCOs in Y "(by

assumption)". Henceforth, f, (M,T )is sCOs inY.

Theorem 12. The composition of the two (sSTOm ) is(sSTOm ) .

Proof. Assume that fpu and gof:SS(X;)—>SS(Zyp.) are any (sSTOm) . Let (M,T) be sSOs in . Consider
gof(M,T)=g(f(M,T)). Since f is (sSTOm), f,,(M,T) issCOs inY . Also, it is sOs inY. We get, itis sSOs inY

(Proposition 1). We get, g ,,( f,,(M,T))issCOs in Z "(by assumption)". Henceforth, go /" is (sSTOm).

Definition 9. A f, : SS(X;)— SS(Yy)soft mapping with p .7 — 7" and u : X — Y is known as:
(i) i-continuous written as (sICONm) [6]if f,/(D,T" )& sIOs( Xy ) ¥(D,T" )€ sOs(Yy.).

pu

(ii) Totally i-continuous written as (sTICONm ) if f,!(D,T" )& sICOs(Xy) ¥(D,T" )& sOs(Yy.).

(iii) Strongly i-continuous written as (sSTRICONm ) if f,!(D,T" )& sICOs(X; ) ¥(D,T')E Yy..

(iv) i-irresolute written as (silREm) if f,!(D,T")& sIOs(Xy) ¥(D,T" )€ slOs(Yy ).

(v) i-totally continuous written as (sITCONm ) if f,!(D,T")& sCOs(Xy) V(D,T') & slOs(¥y.) .

Example 8. Let X ={1113,1517},Y={24},T={tq}, T'={t',q'}.

Obviously, 7 ={ ¢, Xr.( BT )( BT (B3 T)} s p={ b Yps(11;,T' ),(11,,T' )} are sTs over X and Y individually. Where,
(B1.T)={(t,{13}),(q, {13D} (5,.T)={(¢t,{15,17}), (q,{15,17})},

($;.T)={(t,{13,15,17}),(q,{13,15,17D}, (w1, T")={(¢',.{2]), (q", 2D}, (1. T" ) ={(¢', {41, (q', {4D}.

Describe the mapping £, - SS(X; ) —> SS(¥;. )at this time, where p:T —7"and u: X —Y are distinguished by: p(t)=1',
plq)=q"  u(13)=4, u(1l)=u(15)=u(17)=2.

sOs (X7 )={¢r. Xp.(B.T)( 2. T ).(B3.T)}

sCs (Xp)={@p, Xy, A(6{11,15,17),(q.{11,15,17})}{(t.A11,13)).(q, {11,131}, {(t.{13}),(q.{I3})}}

(. X (BT B T)( B3 T)} A6 A11,15,173),(q,{11,15,17})} € sI0s (X7).

{6, X0 (BT ) (6 {11,15,17),(q,111,15,17})} € sICOs (X1 ). sOs( Yy ) = s10s(Yp: ) ={ ¢y Yy, (01, T ). (112,77 )}

fpu isa sSICONm ,sTICONm , sSTRICONm , silREm , SITCONm

Proposition 3. Each (sSCONm ) is (sICONm ) .[6]
Theorem 13. Each (sTSCONm ) is (sTICONm ) .[6]
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Proof. Suppose that f,, - SS(X;)—> SS(Y )is (sTSCONm ) and (U, T") is (sOs)in . By suppose we have, j;,;l(U, T is
(sSCOs )in X. Thus, f,,} (U, T") is (sICOs)in X (Proposition 2). Henceforth, fpu is (sTICONm ) .

Theorem 14. Each (sSTRSCONm ) is (sSTRICONm ) .

Proof. Suppose that f,, :SS(X;)— SS(Yr ) is (sSTRSCONm) and (U, T")is any soft subset of . By suppose we
have, f,,} (U, T") is (sSCOs ) in X. Thus, f,,,' (U, T") is (sICOs)in X (Proposition 2). Henceforth, Sou18 (SSTRICONm ) .

Theorem 15. Each (sSTCONm ) is (sITCONm ) .

Proof. Suppose that f,, :SS(X;)— SS(Y;) is (sSTCONm) and (U,T') is any (sSOs) in Y . By suppose we

have, f,,} (U, T") is (sCOs)in X. Also, (U, T") is (s1Os) in Y (Proposition 2). Henceforth, fpu is (sITCONm) .

Conclusions: From above we concluded many important theorems as follows: each (sSTCONm ) is (sTCONm ), each
(sSTRSCONm ) is (sSTRICONm ) , each (sTSCONm ) is (sTICONm ), the composition of two (sSTOm ) is(sSTOm ), and the
composition of two (sSTCONm ) is (sSTCONm ) .
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