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loops 𝐿, for which the multiplication group 𝑀𝑢𝑙𝑡(𝐿) is a six-dimensional decomposable 

solvable Lie group. Building upon the significant results presented in [1], which established 

class two central nilpotency for these loops, we derive explicit matrix representations for 

the associated Lie algebras. These representations are critical for completing the 

classification, as they facilitate verification of structural compatibility with the conditions 

dictated by the Lie bracket. We identify 26 distinct families of matrix Lie groups, including 
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1. Introduction 

 The concept of an appropriate multiplication group indicated by 𝑀𝑢𝑙𝑡(𝐿) and an inner mapping group indicated by 

𝐼𝑛𝑛(𝐿) associated with a loop 𝐿 was first systematically presented and studied by A. Albert and R. H. Bruck. Ever since their 

seminal works [2], [3], extensive literature has emerged exploring the structural relationships between loops 𝐿 and the associated 

groups 𝑀𝑢𝑙𝑡(𝐿) and 𝐼𝑛𝑛(𝐿). Notably, numerous studies have established connections between the nilpotency and solvability of 

loops and their corresponding multiplication and inner groups, as described extensively in references [4], [5], [6], [7], [8], [9]. 

M. Niemenmaa and T. Kepka [10]. Constituted criteria for 𝐺 where 𝐺 is a group to function as the multiplication group of a loop 

𝐿. Their conditions emphasize the crucial role played by two special transversal subsets 𝐴 and 𝐵, relative to a subgroup 𝐾. These 

transversal subsets form part of the left and right translation sets of the loop 𝐿, with the subgroup 𝐾 identified as 𝐼𝑛𝑛(𝐿) of 𝐿. 

The use of permutation groups 𝑀𝑢𝑙𝑡(𝐿) and 𝐼𝑛𝑛(𝐿), as well as their related transversal subsets 𝐴 and 𝐵, has been extensively 

addressed in literature focusing on finite loops (cf. [11], [12], [13], [14], [10], [15]). In their work [16], Nagy with Strambach 

thoroughly explored the topological and differentiable properties of loop 𝐿  characterized by continuous and differentiable 

sections within Lie groups. Their findings specifically detailed topological loops and loops possessing differentiable structures 

on low-dimensional manifolds, as explicitly described in Part II of their research. Building upon this foundational study, the 

current research aims to contribute to the understanding of connected three-dimensional topological loop L, whose multiplication 

groups are solvable Lie groups. Previous literature [17] confirms that every connected, two-dimensional topological proper loop 

associated with a Lie group as its 𝑀𝑢𝑙𝑡(𝐿) is necessarily centrally nilpotent of class two. This result extends to connected, 

topological loops has dimension 3 whose 𝑀𝑢𝑙𝑡(𝐿) are Lie groups has a solvable property of dimension at most five, or six-

dimensional solvable Lie groups (cf. [18], [19], [20], [21], [22], [23]). Furthermore, among solvable but non-nilpotent Lie groups 

with dimensions up to five, only decomposable groups may serve as the multiplication groups 𝑀𝑢𝑙𝑡(𝐿) of loop 𝐿 (cf. [19]). 

Recently, Al-Abayechi, Ameer, and Figula, Agota [1], classified all decomposable and solvable Lie groups of dimension up to 

six that serve as multiplication groups 𝑀𝑢𝑙𝑡(𝐿) for loop 𝐿. Their research established that every connected, three-dimensional 
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topological proper loop with a solvable Lie group of dimension at most six as its multiplication group exhibits central nilpotency 

of class two. Within this classification, 18 families of Lie groups with one-dimensional centers and 8 families with two-

dimensional centers were identified. This paper specifically examines these associated Lie algebras, aiming to determine 

appropriate linear representations for the Lie groups which are simply connected, thus completing the classification process 

effectively.   

2. Preliminaries 

 A non-empty set 𝐿 equipped with a special operation (𝑥, 𝑦) ↦ 𝑥 ⋅ 𝑦 is known as a loop in case there is an identity 

element, where for each 𝑥 in 𝐿 defined the left, respectively right 𝜆𝑥, respectively 𝜌𝑥, where 𝜆𝑥(𝑦) = 𝑥 ⋅ 𝑦 also 𝜌𝑥(𝑦) = 𝑦 ⋅ 𝑥 

are injective and surjective translations of 𝐿. Moreover, a loop 𝐿 will be proper if it does not satisfy the group condition.  

The permutation group is the set generated by 𝜆𝑥 and 𝜌𝑥 for all 𝑥 ∈ 𝐿 denoted by 𝑀𝑢𝑙𝑡(𝐿) and known as the multiplication 

group of 𝐿. Furthermore, the inner mapping group known as the set of 𝐿 stabilizer of a special element is the identity element 

and denoted by 𝐼𝑛𝑛(𝐿). 
 Let 𝔖 be a non-empty set satisfying the group conditions, 𝒦 is a subgroup of the group 𝔖, and let 𝒜 and ℬ be left two 

transversals to the set 𝒦 in 𝔖. The sets 𝒜 and ℬ are 𝒦-connected if they satisfy the condition that  𝑎−1𝑏−1𝑎𝑏 ∈ 𝐾 for every 

𝑎 ∈ 𝒜 ∧ 𝑏 ∈ ℬ. 

 The largest normal subgroup of 𝐺 contained in 𝒦 is the core 𝐶𝑜𝐺(𝒦) of 𝒦 in 𝐺. If 𝐿 is a loop, then the two sets 𝛬(𝐿) 
and 𝑅(𝐿)  are 𝐼𝑛𝑛(𝐿) -connected transversals in the group 𝑀𝑢𝑙𝑡(𝐿)  where 𝛬(𝐿) , respectively 𝑅(𝐿)  is the set of all left, 

respectively right transversals. 

 The following necessary and sufficient criteria are stated in the following assertion for a group 𝐺 to be the multiplication 

group of a loop 𝐿: 

2.1 Proposition [10]:- A group 𝐺 ≅ 𝑀𝑢𝑙𝑡(𝐿) if and only if 𝐺 = ⟨𝐴, 𝐵⟩ and there is a subgroup 𝒦 with 𝐶𝑜𝐺(𝒦) = 1 and 𝒦-

connected left two transversals 𝐴 and 𝐵.  

In loop theory, a normal subloop is a subloop 𝑁 of a loop 𝐿 that satisfies the following two conditions for all 𝑥, 𝑦 ∈ 𝐿, 

𝑥𝑁 = 𝑁𝑥 and (𝑥𝑁)(𝑦𝑁) = (𝑥𝑦)𝑁. 

The kernel of a homomorphism 𝛼 of a loop 𝐿 into a loop 𝐿′ is a normal subloop 𝑁 of 𝐿. The center 𝒵(𝐿) of a loop 𝐿 is 

made up of every component 𝑧 which satisfies the commutative and associative identity. 

If we put 𝒵0 = 𝑒 with 𝒵1 = 𝒵(𝐿) and 𝒵𝑖/𝒵𝑖−1 = 𝒵(𝐿/𝒵𝑖−1), then a series of 𝐿 normal subloops is obtained. When 

𝒵𝑛 = 𝐿 and 𝒵𝑛−1 is a proper subloop of 𝐿, 𝐿 is centrally nilpotent of class 𝑛. 

If 𝐿  is a topological space and the binary operations (𝑥, 𝑦) ↦ 𝑥 ⋅ 𝑦,  (𝑥, 𝑦) ↦ 𝑥 ∖ 𝑦, (𝑥, 𝑦) ↦ 𝑦/𝑥: 𝐿 × 𝐿 → 𝐿  are 

continuous, then a loop 𝐿 is said to be topological. 

3. Matrix Representation 

We discovered the essential conditions for those Lie algebras having dimension six, with solvable and decomposable, that can 

arise as the Lie algebra g of the 𝒎𝒖𝒍𝒕(𝑳) of 𝐿 in [1], sections 3, 4, and 5. The inner mapping group of 𝐿’s Lie sub algebras 𝑘 

were also obtained. In this section, we present a matrix Lie group representation for those Lie algebras having dimension six 

with solvable and decomposable. In (2005) Strugar, I., Ghanam, R., and Thompson, G., using a different strategy, created 

representations for all Lie algebras with dimensions of five or less in this publication (cf. [24]). We have combined these matrices 

to be appropriate with these decomposable Lie algebras, i.e., these Lie algebras are the sum of two proper ideals. We create in 

[1], §3, §4, §5, by using  [25], [26], and the matrices that satisfy all Lie brackets. 

3.1 The matrix representation with a discrete centre 

In this case, the Lie algebras are not the 𝒎𝒖𝒍𝒕(𝑳) of a topological loop 𝐿 of dimension 3 with connected property (cf. [1], §3). 

Since some cases satisfy the condition in [1] Lemma 3 c), we have to exclude these cases, i.e. we have to give a suitable matrix 

Lie group representation to complete the computations. The matrix representations of the Lie groups 𝐺2, 𝐺3 and 𝐺4, with simply 

connected property, using [24] §4. 

ℋ2 =

[
 
 
 
 
 
𝑒𝑥3 𝑥3𝑒

𝑥3 𝑥1 0 0 0
0 𝑒𝑥3 𝑥2 0 0 0
0 0 1 0 0 0
0 0 0 𝑒𝑥6 𝑥6𝑒

𝑥6 𝑥4

0 0 0 0 𝑒𝑥6 𝑥5

0 0 0 0 0 1 ]
 
 
 
 
 

,ℋ3 =

[
 
 
 
 
 
𝑒𝑥3 0 𝑥1 0 0 0
0 𝑒𝑥3 𝑥2 0 0 0
0 0 1 0 0 0
0 0 0 𝑒𝑥6 0 𝑥4

0 0 0 0 𝑒𝑥6 𝑥5

0 0 0 0 0 1 ]
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ℋ4 =

[
 
 
 
 
 
 
𝑒𝑥3 0 𝑥1 0 0 0

0 𝑒ℎ𝑥3 𝑥2 0 0 0
0 0 1 0 0 0
0 0 0 𝑒𝑥6 0 𝑥4

0 0 0 0 𝑒
1
ℎ
𝑥6 𝑥5

0 0 0 0 0 1 ]
 
 
 
 
 
 

, 𝑤ℎ𝑒𝑟𝑒 − 1 ≤ ℎ < 1, 

we exclude these cases since the Lie subgroup set of 𝐺 having dimension three and abelian, where 𝐴 and 𝐵 are 𝐾-connected and 

continuous left transversals to 𝐾 in 𝐺, such that 𝐴 ∪ 𝐵 generates 𝐺, and which does not contain any non-trivial normal subgroup 

set of 𝐺 (cf. [1], §3). 

3.2 The matrix representation with a 1-dimensional centre 

 The 18 families of Lie groups, which are multiplication groups of topological loops 𝐿, which is 3-dimensional connected simply 

connected present in this instance (cf. [1], §4). Using [24] §4, we derive a matrix Lie group in a sufficiently simple form so that 

its Lie algebra is isomorphic to the Lie algebra 𝑔𝑖, 𝑖 = 1, . . . ,18, through differentiation and evaluation of the identity, when the 

matrix 𝑇 is established based on six variables. 

𝑇1 =

[
 
 
 
 
 
𝑏𝑒𝑥3 0 0 0 𝑥4 0

0 𝑒𝑥5 −𝑥3𝑒
𝑥5 𝑥2 𝑥1 0

0 0 𝑒𝑥5 0 𝑥2 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 𝑥6 1]

 
 
 
 
 

, 𝑏 ≠ 0, 𝑇2 =

[
 
 
 
 
 
𝑒𝑥5 −𝑥3𝑒

𝑥5 𝑥2 𝑥5𝑒
𝑥5 𝑥1 0

0 𝑒𝑥5 0 0 𝑥2 0
0 0 1 0 0 0
0 0 0 𝑒𝑥5 𝑥4 0
0 0 0 0 1 0
0 0 0 0 𝑥6 1]

 
 
 
 
 

,  

𝑇3 =

[
 
 
 
 
 
 𝑒𝑥5 𝑥5𝑒

𝑥5
1

2
(2𝑥2 + 𝑥5

2)𝑒𝑥5 −𝑥3 𝑥1 0

0 𝑒𝑥5 𝑥5𝑒
𝑥5 0 𝑥4 0

0 0 𝑒𝑥5 0 𝑥3 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 𝑥6 1]

 
 
 
 
 
 

, 𝑇4 =

[
 
 
 
 
 
𝑒𝑥5 −𝑥3 0 𝑥2𝑒

𝑥5 𝑥1 0
0 1 0 0 0 0
0 0 𝑒𝑥5 𝑥5𝑒

𝑥5 𝑥4 0
0 0 0 𝑒𝑥5 𝑥3 0
0 0 0 0 1 0
0 0 0 0 𝑥6 1]

 
 
 
 
 

 

𝑇5 =

[
 
 
 
 
 
 𝑒

𝑥5 𝑥4𝑒
𝑥5

1

2
(2𝑎𝑥5 + 𝑥4

2)𝑒𝑥5 𝑥2 𝑥1 0

0 𝑒𝑥5 𝑥4𝑒
𝑥5 𝑥3 𝑥2 0

0 0 𝑒𝑥5 0 𝑥3 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 𝑥6 1]

 
 
 
 
 
 

, 𝑎 ∈ ℝ,  

𝑇6 =

[
 
 
 
 
 
𝑒𝑥5 0 0 𝑥2 0 0
0 𝑒𝑥4 0 0 𝑥1 0

0 0 𝑒𝑎𝑥5+𝑏𝑥4 𝑎𝑥3 𝑏𝑥3 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 𝑥6 1]

 
 
 
 
 

, 𝑎2 + 𝑏2 ≠ 0, 𝑇7 =

[
 
 
 
 
 
𝑒𝑎𝑥4+𝑥5 0 0 𝑥4 𝑥1 0

0 𝑒𝑥4 𝑥5𝑒
𝑥4 𝑥2 𝑥3 0

0 0 𝑒𝑥4 𝑥3 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 𝑥6 1]

 
 
 
 
 

, 𝑎 ∈ ℝ,

𝑇8 =

[
 
 
 
 
 
𝑒𝑎𝑥5+𝑏𝑥4 0 0 𝑏𝑥1 𝑎𝑥1 0

0 𝑒𝑥4𝑐𝑜𝑠(𝑥5) 𝑒𝑥4𝑠𝑖𝑛(𝑥5) −𝑥2 𝑥3 0

0 −𝑒𝑥4𝑠𝑖𝑛(𝑥5) 𝑒𝑥4𝑐𝑜𝑠(𝑥5) 𝑥3 𝑥2 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 𝑥6 1]

 
 
 
 
 

, 𝑎2 + 𝑏2 ≠ 0 

𝑇9 =

[
 
 
 
 
 
 1 𝑥4

1

2
𝑥4

2 𝑥1 0 0

0 1 𝑥4 𝑥2 0 0
0 0 1 𝑥3 0 0
0 0 0 1 0 0
0 0 0 0 𝑒𝑥6 𝑥5

0 0 0 0 0 1 ]
 
 
 
 
 
 

, 𝑇10 =

[
 
 
 
 
 
𝑒𝑥4 0 0 𝑥1 0 0
0 1 𝑥4 𝑥2 0 0
0 0 1 𝑥3 0 0
0 0 0 1 0 0
0 0 0 0 𝑒𝑥6 𝑥5

0 0 0 0 0 1 ]
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𝑇11 =

[
 
 
 
 
 
1 𝑥2 𝑥1 0 0 0
0 1 𝑥3 0 0 0
0 0 1 0 0 0
0 0 0 𝑒𝑥6 𝑥6𝑒

𝑥6 𝑥4

0 0 0 0 𝑒𝑥6 𝑥5

0 0 0 0 0 1 ]
 
 
 
 
 

, 𝑇12 =

[
 
 
 
 
 
1 𝑥2 𝑥1 0 0 0
0 1 𝑥3 0 0 0
0 0 1 0 0 0
0 0 0 𝑒𝑥6 0 𝑥4

0 0 0 0 𝑒𝑥6 𝑥5

0 0 0 0 0 1 ]
 
 
 
 
 

 

𝑇13 =

[
 
 
 
 
 
1 𝑥2 𝑥1 0 0 0
0 1 𝑥3 0 0 0
0 0 1 0 0 0
0 0 0 𝑒𝑥6 0 𝑥4

0 0 0 0 𝑒ℎ𝑥6 𝑥5

0 0 0 0 0 1 ]
 
 
 
 
 

, −1 ≤ ℎ < 1, ℎ ≠ 0 

𝑇14 =

[
 
 
 
 
 
1 𝑥2 𝑥1 0 0 0
0 1 𝑥3 0 0 0
0 0 1 0 0 0
0 0 0 𝑒𝑝𝑥6𝑐𝑜𝑠(𝑥6) 𝑒𝑝𝑥6𝑠𝑖𝑛(𝑥6) 𝑥4

0 0 0 −𝑒𝑝𝑥6𝑠𝑖𝑛(𝑥6) 𝑒𝑝𝑥6𝑐𝑜𝑠(𝑥6) 𝑥5

0 0 0 0 0 1 ]
 
 
 
 
 

, 𝑝 ≥ 0 

𝑇15 =

[
 
 
 
 
 
𝑒𝑥2 𝑥1 𝑥3 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 𝑒𝑥6 𝑥6𝑒

𝑥6 𝑥4

0 0 0 0 𝑒𝑥6 𝑥5

0 0 0 0 0 1 ]
 
 
 
 
 

, 𝑇16 =

[
 
 
 
 
 
𝑒𝑥2 𝑥1 𝑥3 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 𝑒𝑥6 0 𝑥4

0 0 0 0 𝑒𝑥6 𝑥5

0 0 0 0 0 1 ]
 
 
 
 
 

 

𝑇17 =

[
 
 
 
 
 
𝑒𝑥2 𝑥1 𝑥3 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 𝑒𝑥6 0 𝑥4

0 0 0 0 𝑒ℎ𝑥6 𝑥5

0 0 0 0 0 1 ]
 
 
 
 
 

, −1 ≤ ℎ < 1, ℎ ≠ 0 

𝑇18 =

[
 
 
 
 
 
𝑒𝑥2 𝑥1 𝑥3 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 𝑒𝑝𝑥6𝑐𝑜𝑠(𝑥6) 𝑒𝑝𝑥6𝑠𝑖𝑛(𝑥6) 𝑥4

0 0 0 −𝑒𝑝𝑥6𝑠𝑖𝑛(𝑥6) 𝑒𝑝𝑥6𝑐𝑜𝑠(𝑥6) 𝑥5

0 0 0 0 0 1 ]
 
 
 
 
 

, 𝑝 ≥ 0. 

 

3.3 The matrix representation with a 2-dimensional centre 

In this instance, the set of 3-dimensiona 𝑀𝑢𝑙𝑡(𝐿) topological loops 𝐿 (cf. [1], §5) form eight families of Lie groups. Using [24] 

§4, the appropriate matrix Lie group 𝐺𝑖 , 𝑖 = 1,… ,8, in simple form is defined as follows. 

ℳ1 =

[
 
 
 
 
 
𝑒𝑎𝑥4 0 0 𝑥1 0 0
0 𝑒𝑥4 𝑥4𝑒

𝑥4 𝑥2 0 0
0 0 𝑒𝑥4 𝑥3 0 0
0 0 0 1 0 0
0 0 0 𝑥5 1 0
0 0 0 𝑥6 0 1]

 
 
 
 
 

, 𝑎 ≠ 0,ℳ2 =

[
 
 
 
 
 
 𝑒𝑥4 𝑥4𝑒

𝑥4
1

2
𝑥4

2𝑒𝑥4 𝑥1 0 0

0 𝑒𝑥4 𝑥4𝑒
𝑥4 𝑥2 0 0

0 0 𝑒𝑥4 𝑥3 0 0
0 0 0 1 0 0
0 0 0 𝑥5 1 0
0 0 0 𝑥6 0 1]

 
 
 
 
 
 

 

ℳ3 =

[
 
 
 
 
 
𝑒𝑥4 0 0 𝑥1 0 0
0 𝑒𝑎𝑥4 0 𝑥2 0 0

0 0 𝑒𝑏𝑥4 𝑥3 0 0
0 0 0 1 0 0
0 0 0 𝑥5 1 0
0 0 0 𝑥6 0 1]

 
 
 
 
 

, −1 ≤ 𝑎 ≤ 𝑏 ≤ 1, 𝑎𝑏 ≠ 0 
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ℳ4 =

[
 
 
 
 
 
𝑒𝑎𝑥4 0 0 𝑥1 0 0

0 𝑒𝑏𝑥4𝑐𝑜𝑠(𝑥4) 𝑒𝑏𝑥4𝑠𝑖𝑛(𝑥4) 𝑥2 0 0

0 −𝑒𝑏𝑥4𝑠𝑖𝑛(𝑥4) 𝑒𝑏𝑥4𝑐𝑜𝑠(𝑥4) 𝑥3 0 0
0 0 0 1 0 0
0 0 0 𝑥5 1 0
0 0 0 𝑥6 0 1]

 
 
 
 
 

, 𝑎 ≠ 0, 𝑏 ≥ 0, 

ℳ5 =

[
 
 
 
 
 
𝑒𝑐𝑥5 0 0 0 𝑥4 0
0 𝑒𝑥5 0 0 𝑥3 0
0 0 1 𝑥5 𝑥1 0
0 0 0 1 𝑥2 0
0 0 0 0 1 0
0 0 0 0 𝑥6 1]

 
 
 
 
 

, 0 < |𝑐| < |,ℳ6 =

[
 
 
 
 
 
 
𝑒𝑥5 0 0 0 𝑥4 0

0 1 𝑥5

1

2
𝑥5

2 𝑥1 0

0 0 1 𝑥5 𝑥2 0
0 0 0 1 𝑥3 0
0 0 0 0 1 0
0 0 0 0 𝑥6 1]

 
 
 
 
 
 

 

ℳ7 =

[
 
 
 
 
 
1 𝑥2 0 0 𝑥1 0
0 1 0 0 𝑥5 0

0 0 𝑒𝑝𝑥5𝑐𝑜𝑠(𝑥5) 𝑒𝑝𝑥5𝑠𝑖𝑛(𝑥5) 𝑥4 0

0 0 −𝑒𝑝𝑥5𝑠𝑖𝑛(𝑥5) 𝑒𝑝𝑥5𝑐𝑜𝑠(𝑥5) 𝑥3 0
0 0 0 0 1 0
0 0 0 0 𝑥6 1]

 
 
 
 
 

, 𝑝 ≠ 0,ℳ8 =

[
 
 
 
 
 
𝑒𝑥5 𝑥5𝑒

𝑥5 0 0 𝑥1 0
0 𝑒𝑥5 0 0 𝑥2 0
0 0 1 𝑥5 𝑥3 0
0 0 0 1 𝑥4 0
0 0 0 0 1 0
0 0 0 0 𝑥6 1]

 
 
 
 
 

 

 

3.3.1 Example: - In case 3.3. Let 𝑔2 = ℝ2 ⊕ 𝑔4,4 =< 𝒻1, 𝒻2 >⊕< ℯ1, ℯ2, ℯ3, ℯ4 > be a six-dimensional decomposable 

solvable Lie algebra with 2-dimensional centre defined the Lie bracket in [1] as follows [ℯ1, ℯ4] = ℯ1, [ℯ2, ℯ4] = ℯ1 +
ℯ2, [ℯ3, ℯ4] = ℯ2 + ℯ3 and 𝒦2 =< ℯ1 + 𝒻1, ℯ2 + 𝑎2𝒻1, ℯ3 + 𝑎3𝒻1 >, 𝑎2, 𝑎3 ∈ ℝ. We show that the Lie group 𝐺2 allow 

continuous left transversals 𝒮 and 𝒯 to the subgroup 𝒦2 such that for all 𝔰 ∈ 𝒮 and 𝔱 ∈ 𝒯 one has 𝔰−1𝔱−1𝔰 𝔱 ∈ 𝒦2 and 

the set 𝒮 ∪ 𝒯 generate 𝐺2.  

Proof: - We will choose two transversals 𝒮 and 𝒯 to the group 𝒦2 in 𝐺2as  

𝒮 = {𝑔(𝒽1(𝓊, 𝓋,𝓌),𝒽2(𝓊,𝓋,𝓌),𝒽3(𝓊,𝓋, 𝓌),𝓊,𝓋,𝓌),𝓊, 𝓋,𝓌 ∈ ℝ}, 
𝒯 = {𝑔(ℊ1(𝓍, 𝓎, 𝓏), ℊ2(𝓍, 𝓎, 𝓏),ℊ3(𝓍, 𝓎, 𝓏),𝓍,𝓎, 𝓏), 𝓍,𝓎, 𝓏 ∈ ℝ}, 

Where 𝒽𝑖(𝓊,𝓋,𝓌):ℝ3 → ℝ and ℊ𝑖(𝓍,𝓎, 𝓏):ℝ3 → ℝ, 𝑖 = 1,2,3, be continuous functions such that 𝒽𝑖(0,0,0) = ℊ𝑖(0,0,0) =
0, by using the ℳ2 in case 3.3. we get the product 𝔰−1𝔱−1𝔰 𝔱 ∈ 𝒦2 if and only if the equations  

𝑒−𝓍(1 − 𝑒−𝓊) [ℊ1(𝓍, 𝓎, 𝓏) + 𝑎2ℊ2(𝓍, 𝓎, 𝓏) + 𝑎3ℊ3(𝓍,𝓎, 𝓏) − 𝑎2𝓍ℊ3(𝓍, 𝓎, 𝓏) − 𝓍ℊ2(𝓍,𝓎, 𝓏) +
1

2
𝓍2ℊ3(𝓍, 𝓎, 𝓏)] −

𝑒−𝓊(1 − 𝑒−𝓍) [𝒽1(𝓊,𝓋,𝓌) + 𝑎2𝒽2(𝓊,𝓋, 𝓌) + 𝑎3𝒽3(𝓊, 𝓋,𝓌) − 𝓊𝒽2(𝓊, 𝓋,𝓌) +
1

2
𝓊2𝒽3(𝓊,𝓋,𝓌) −

𝑎2𝓊𝒽3(𝓊, 𝓋,𝓌)] + 𝑒−𝓊−𝓍[𝓊ℊ2(𝓍, 𝓎, 𝓏) −
1

2
𝓊2ℊ3(𝓍, 𝓎, 𝓏) + 𝓊𝓍𝒽3(𝓊, 𝓋, 𝓌) − 𝓊𝓍ℊ3(𝓍, 𝓎, 𝓏) − 𝑎2𝓍𝒽3(𝓊, 𝓋,𝓌) +

𝑎2𝓊ℊ3(𝓍,𝓎, 𝓏) +
1

2
𝓍2𝒽3(𝓊, 𝓋,𝓌) − 𝓍𝒽2(𝓊, 𝓋,𝓌) = 0         …………. (1). 

Equation (1) holds precisely if the 𝒦2-connected transversals in 𝐺2 are the set  

𝒮 = {𝑔 (𝑒𝓊 − 1 − 𝓊3 +
3

2
𝑎2𝓊

2 + 𝓊(𝑎3 − 𝑎2
2), 𝑎2𝓊 −

3

2
𝓊2, −𝓊, 𝓊,𝓋, 𝓌) ,𝓊, 𝓋,𝓌 ∈ ℝ}, 

𝒯 = {𝑔 (𝑒𝓍 − 1 − 𝓍3 +
3

2
𝑎2𝓍

2 + 𝓍(𝑎2
2 − 𝑎3),

3

2
𝓍2 − 𝑎2𝓍, 𝓍, 𝓍, 𝓎, 𝓏) , 𝓍,𝓎, 𝓏 ∈ ℝ} , 𝑎2, 𝑎3 ∈ ℝ. 

 In this case, the set 𝒮 ∪ 𝒯 generate the group 𝐺2. Hence, by Proposition 2.1. 𝐺2 ≅ 𝑀𝑢𝑙𝑡(𝐿).  

4. Conclusion  

The explanation regarding finding linear representations for six-dimensional decomposable solvable Lie algebras which are 

multiplication groups of 3-dimensional topological loops 𝐿 with 𝐿 satisfy two important properties connected simply connected, 

is done. This work provides a novel framework for deriving explicit matrix representations of the decomposable solvable Lie 

algebras. The next idea is to consider the 7-dimensional solvable Lie algebras as the Lie algebra of the multiplication group of a 

3-dimensional connected topological loop. Those Lie algebras are not fully classified till now. However, in some special cases, 

the 7-dimensional decomposable solvable Lie algebras are determined. 
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لجبر لي المحلول القابل للتفكيك سداسي الأبعاد مثيل المصفوفيالت  
 

 امير العبايجي  
 

 قسم الرياضيات،  كلية علوم الحاسوب والرياضيات،  جامعة  الكوفة،  الكوفة، العراق  

 

 الخلاصة: 

، حيث تكون مجموعة الضرب فيها عبارة عن زمرة لي سداسية الأبعاد قابلة للتحلل  𝐿 توُسّع هذه الورقة تصنيف اللوب الطوبولوجية المتصلة ثلاثية الأبعاد 

، والتي أثبتت انعدام القوى المركزية من الدرجة الثانية لهذه الوب، نستنتج وبشكل صريح تمثيلات مصفوفيه لجبر لي [1]والحل. بناءً على النتائج المهمة الواردة في  

ن زمر  عائلة مميزة م  26ي. نحدد  المرتبط بها. تعُد هذه التمثيلات بالغة الأهمية لإكمال التصنيف، إذ تسُهّل التحقق من التوافق مع الشروط العملية المعرفة على جبر ل 

مجموعات ثنائية المركز. بالإضافة إلى ذلك، نُوضح التوافق بين هذه المجموعات وجبر لي المُشتق  8مجموعة تتميز بأحادية المركز و 18لي المصفوفية، بما في ذلك 

 .ب الطوبولوجية وزمر لي المُناظرة لها منها. تعُالج نتائجنا فجوة قائمة في الأدبيات من خلال توفير إطار منهجي لدراسة العلاقات المتبادلة بين الو

 

 


