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1. Introduction

The concept of an appropriate multiplication group indicated by Mult(L) and an inner mapping group indicated by
Inn(L) associated with a loop L was first systematically presented and studied by A. Albert and R. H. Bruck. Ever since their
seminal works [2], [3], extensive literature has emerged exploring the structural relationships between loops L and the associated
groups Mult(L) and Inn(L). Notably, numerous studies have established connections between the nilpotency and solvability of
loops and their corresponding multiplication and inner groups, as described extensively in references [4], [5], [6], [7], [8], [9].
M. Niemenmaa and T. Kepka [10]. Constituted criteria for G where G is a group to function as the multiplication group of a loop
L. Their conditions emphasize the crucial role played by two special transversal subsets A and B, relative to a subgroup K. These
transversal subsets form part of the left and right translation sets of the loop L, with the subgroup K identified as Inn(L) of L.
The use of permutation groups Mult(L) and Inn(L), as well as their related transversal subsets A and B, has been extensively
addressed in literature focusing on finite loops (cf. [11], [12], [13], [14], [10], [15]). In their work [16], Nagy with Strambach
thoroughly explored the topological and differentiable properties of loop L characterized by continuous and differentiable
sections within Lie groups. Their findings specifically detailed topological loops and loops possessing differentiable structures
on low-dimensional manifolds, as explicitly described in Part II of their research. Building upon this foundational study, the
current research aims to contribute to the understanding of connected three-dimensional topological loop L, whose multiplication
groups are solvable Lie groups. Previous literature [17] confirms that every connected, two-dimensional topological proper loop
associated with a Lie group as its Mult(L) is necessarily centrally nilpotent of class two. This result extends to connected,
topological loops has dimension 3 whose Mult(L) are Lie groups has a solvable property of dimension at most five, or six-
dimensional solvable Lie groups (cf. [18], [19], [20], [21], [22], [23]). Furthermore, among solvable but non-nilpotent Lie groups
with dimensions up to five, only decomposable groups may serve as the multiplication groups Mult(L) of loop L (cf. [19]).
Recently, Al-Abayechi, Ameer, and Figula, Agota [1], classified all decomposable and solvable Lie groups of dimension up to
six that serve as multiplication groups Mult(L) for loop L. Their research established that every connected, three-dimensional
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topological proper loop with a solvable Lie group of dimension at most six as its multiplication group exhibits central nilpotency
of class two. Within this classification, 18 families of Lie groups with one-dimensional centers and 8 families with two-
dimensional centers were identified. This paper specifically examines these associated Lie algebras, aiming to determine
appropriate linear representations for the Lie groups which are simply connected, thus completing the classification process
effectively.

2. Preliminaries

A non-empty set L equipped with a special operation (x,y) = x - y is known as a loop in case there is an identity
element, where for each x in L defined the left, respectively right A, respectively p,, where 1,(y) = x -y also p,(y) =y - x
are injective and surjective translations of L. Moreover, a loop L will be proper if it does not satisfy the group condition.

The permutation group is the set generated by A, and p, for all x € L denoted by Mult(L) and known as the multiplication
group of L. Furthermore, the inner mapping group known as the set of L stabilizer of a special element is the identity element
and denoted by Inn(L).

Let S be a non-empty set satisfying the group conditions, K is a subgroup of the group S, and let A and B be left two
transversals to the set  in &. The sets A and B are K -connected if they satisfy the condition that a~*b~tab € K for every
a€ANDEB.

The largest normal subgroup of G contained in X is the core Cog () of X in G. If L is a loop, then the two sets A(L)
and R(L) are Inn(L)-connected transversals in the group Mult(L) where A(L), respectively R(L) is the set of all left,
respectively right transversals.

The following necessary and sufficient criteria are stated in the following assertion for a group G to be the multiplication
group of a loop L:

2.1 Proposition [10]:- A group G = Mult(L) if and only if G = (4, B) and there is a subgroup X with Cog (X) = 1 and K-
connected left two transversals A and B.

In loop theory, a normal subloop is a subloop N of a loop L that satisfies the following two conditions for all x,y € L,
xN = Nx and (xN)(yN) = (xy)N.

The kernel of a homomorphism « of a loop L into a loop L' is a normal subloop N of L. The center Z (L) of a loop L is
made up of every component z which satisfies the commutative and associative identity.

If we put Z, = e with Z; = Z(L) and Z;/Z;_y = Z(L/Z;_,), then a series of L normal subloops is obtained. When
Z, =L and Z,,_, is a proper subloop of L, L is centrally nilpotent of class n.

If L is a topological space and the binary operations (x,y) » x -y, (x,y) » x\y,(x,y) » y/x:L XL —> L are
continuous, then a loop L is said to be topological.

3. Matrix Representation

We discovered the essential conditions for those Lie algebras having dimension six, with solvable and decomposable, that can
arise as the Lie algebra g of the mult(L) of L in [1], sections 3, 4, and 5. The inner mapping group of L’s Lie sub algebras k
were also obtained. In this section, we present a matrix Lie group representation for those Lie algebras having dimension six
with solvable and decomposable. In (2005) Strugar, 1., Ghanam, R., and Thompson, G., using a different strategy, created
representations for all Lie algebras with dimensions of five or less in this publication (cf. [24]). We have combined these matrices
to be appropriate with these decomposable Lie algebras, i.e., these Lie algebras are the sum of two proper ideals. We create in
[1], §3, §4, §5, by using [25], [26], and the matrices that satisfy all Lie brackets.

3.1 The matrix representation with a discrete centre

In this case, the Lie algebras are not the mult(L) of a topological loop L of dimension 3 with connected property (cf. [1], §3).
Since some cases satisfy the condition in [1] Lemma 3 c), we have to exclude these cases, i.e. we have to give a suitable matrix
Lie group representation to complete the computations. The matrix representations of the Lie groups G,, Gz and G,, with simply
connected property, using [24] §4.

[e"3 xze*3 x; 0 0 0] [e"3 0 x, O 0 0]

0 e*s x, 0 0 0 0 e* x, 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0

H, = 0 0 0 e¥s xge¥e x, s = 0 0 0 e 0 x,
0 0 0 O e*e  xg 0 0 0 0 e¥% x5

0 0 0 0 0 1 0 0 0 0 0 1
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[e"S 0 x;, O 0 O]
0 e"™ x, 0 0 0
0 0 1 0 0 0
H, = 0 0 0 e¥ 0 x, ,where—1<h<1,
1
0 0 0 0 er*s x
0 0 0 0 0 1

we exclude these cases since the Lie subgroup set of ¢ having dimension three and abelian, where A and B are K-connected and
continuous left transversals to K in G, such that A U B generates G, and which does not contain any non-trivial normal subgroup
set of G (cf. [1], §3).

3.2 The matrix representation with a 1-dimensional centre

The 18 families of Lie groups, which are multiplication groups of topological loops L, which is 3-dimensional connected simply
connected present in this instance (cf. [1], §4). Using [24] §4, we derive a matrix Lie group in a sufficiently simple form so that
its Lie algebra is isomorphic to the Lie algebra g;, i = 1,...,18, through differentiation and evaluation of the identity, when the
matrix T is established based on six variables.

[bex3 0 0 0 x4 0] e*s —xze*s x, xge*s x; 0
0 e* —xze* x, x; 0 0 e*s 0 0 x, 0
o o es 0 x o0 o 0 1 0 0 0
L=ly o 0 1 o0 of2F027|, 0 0 e x 0 ;
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 x4 1 0 0 0 0 x 1
i 1
e¥s xge*s E(sz +x2)e*s —x3 x; 0 e¥s —x3; 0 x,e% x; 0
0 e*s Xse*s 0 x4, O 0 L (,)C Ox 0 0
0 0 e* xge*s x, 0
T3: 0 0 e*s 0 X3 0,T4= x
0 0 0 e*s x3 0
0 0 0 1 0 O
0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 v 1
Lo 0 0 0 xg 1l 6
e¥s x,e*s %(Zaxs +x3)e*s x, x; 0
0 e*s x,e*s X3 X, 0
Ts = 0 0 e*s 0 x3 O,aE]R,
0 0 0 1 0 O
0 0 0 0 1 0
0 0 0 0 x; 1
e¥s 0 0 x, 0 0 e™aits 0 0 x, x; 0
0 e* 0 0 x; O 0 e*s xge* x, x3 0
0 0 e%sthx gx. bx; 0 0 0 e* x3 0 0
T = 3 3 2 2 T, = 3 €ER
““lo o 0 1 o o tEFL T o o o 1 0 of*™
0 0 0 0 1 0 0 0 0 0 1 O
0 0 0 0 x 1 0 0 0 0 x 1
gdXs+bxs 0 0 bx; ax; O
0 e*tcos(xs) e*sin(xs) —x, x3 O
T, = 0 —e*ssin(xs) e*tcos(xs) x5 x, O @2+ b%£0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 xg 1
— 1 -
1 x, Exf x; O 0 e 0 0 x; O 0
01 x x 0 0 0 1 x4, x, 0 O
3 0 0 1 x5 0 0
Tg— 0 0 1 X3 0 0 1T10_
0 0 0 1 0 0
00 0 1 0 0 |
x 0 0 0 0 e*s xg
0 O 0 0 e* xg 0 0 0 0 0 1
0 0 0 0 0 1
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1 x, x; O 0 0 1 x, x4 O 0 0
01 x, 0 0 0 01 x 0 0 0
T — 0 0 1 0 0 0 T — 0 0 1 0 0 0
170 0 0 e* xee*s x,I”’' 2710 0 0 e* 0 «x,
lO 0 0 O e*e xSJ lO 0 0 0 e* xSJ
0 0 O 0 0 1 0 0 O 0 0 1
1 x, x;, O 0 0
[0 1 x 0 0 0]
o L | e
0 0 0 0 e x
0 0 O 0 0
1 x, x; 0 0 0
|0 1 x 0 0 0
0 0 1 0 0 0
T = 0 0 0 eP%cos(xg) eP*ssin(xg) x4 P20
lO 0 0 —eP¥sin(x,) eP*scos(xg) xSJ
0 0 O 0 1
e*2 x; x3 0 0 0 e*2 x; x3 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
T 0 0 1 0 0 0 10 0 1 0 0 0
L7100 0 0 e* xge¥ x, /' l0 0 0 e* 0 «x,
0O 0 0 O e*s  xg lO 0 0 0 e*s xSJ
0 0 O 0 0 1 0 0 O 0 0 1
e*2 x; x3 0 0 0
0 1 0 0 0 0
T, = 8 8 (1) 626 g )?4,—1Sh<1,h¢0
0 0 0 0 e x
0 0 0 0 0 1
[e’CZ X; X3 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
Tie = 0 0 0 ePrcos(xs) eP¥sin(xg) x4 P =0.
0 0 0 —eP¥sin(xg) eP*scos(xg) xs
0 0 0 0 0 1

3.3 The matrix representation with a 2-dimensional centre
In this instance, the set of 3-dimensiona Mult(L) topological loops L (cf. [1], §5) form eight families of Lie groups. Using [24]
§4, the appropriate matrix Lie group G;,i = 1, ...,8, in simple form is defined as follows.

1 -
e 0 0 x; 00 eXt  x,e*s Exfex‘* x;, 0 0
X, X,
8 304 X4fc44 2 8 8 0 e*s x,e*  x; 0 0
M, = et M az0M,=|0 o et x; 0 0
0 0 0 1 00
0 o0 0 1 00
0 0 0 x5 1 0
o o o 0 1 0 o0 0 xs 1 0
X6 Lo 0 0 x; 0 1.
e* 0 0 x; 0 0
0 e*™* 0 x, 0 O
0 0 eP* x; 0 0
M, = 3 ,—1<a<b<1lab#0
3“lo 0o o 1 0 0 ¢ @
0 0 0 x 10
0 0 0 x 01
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exa 0 0 x; 0 0
[ 0 eP*scos(x,) eP*asin(x,) x, 0 0]
M, = 0 —eP*sin(x,) ePcos(x,) x3 0 0 a#0,b>0,
0 0 0 1 0 0
0 0 0 x5 1 0
0 0 0 X 0 1
_ X .
es 0 0 0 x O e*s 0 0 10 x, 0
[ 0 e 0 0 x; 0‘ 0 1 xs Exg x; 0
M = g 8 (1] xls 1 0,0<|c|<|,]\/[6= 0 0 1 x5 =x, O
¥ 0 0 0 0 1 x5 0
0 0O 0 0 1 O 0 0 0 0 13 0
0 0 0 0 x 1 0 0 0 0 =x 1l
[l x 0 0 X 0] e*s xge*s 0 0 x; O
0 1 0 0 xg 0 0 e 0 0 x, 0
[0 0 ePscos(xs) eP*ssin(xs) x4, O _lo 0 1 x5 x3 0
M = 0 0 —eP*ssin(xs) eP¥scos(xs) x5 0'p¢0'M8_ 0 0 0 1 x4, O
lo 0 0 0 1 oJ 0 0 0 0 1 0
0 0 0 0 X, 1 0 0 0 0 x 1

3.3.1  Example: - In case 3.3. Let g, = R* @ g4 =< f1, f» >P< ey, €,,€3,€, > be a six-dimensional decomposable
solvable Lie algebra with 2-dimensional centre defined the Lie bracket in [1] as follows [eq,e4] = €1, [€2,€4] = €1 +
ey, les,es] =€, + ez and K, =< e, + $1, €, + ayf1, 5 + as$y >, a,, a; € R. We show that the Lie group G, allow
continuous left transversals § and T to the subgroup X, such that for all s € § and t € T one has s7't"1st € K, and
the set S U T generate G,.

Proof: - We will choose two transversals S and T to the group X, in G,as

§ = {g(h,(u, v, w), Ay (u, v, w), s, v, w),u,v,w),u,v,w € R},
T = {g(g‘l(x' /y’! Z): g’Z(x! /y"l Z)' g‘3 (x' y" Z),.’Xl, % Z): X, y" Z € ]R}v
Where 4;(u, 7, w):R® > R and g;(x,4,2): R® > R, i = 1,2,3, be continuous functions such that 4;(0,0,0) = ¢;(0,0,0) =
0, by using the M, in case 3.3. we get the product s™'t"1s t € XK, if and only if the equations

e (1—e™) [g1(x, 4, 2) + 1205 (%,,2) + 0392(%. 4. 2) — 2293(x,4,7) — 29, (%, 4, 2) + 322932, 4, 2)| -
e (1 —e™%) [/Ll (u, v, w) + ar b, (u, v, w) + azhs(u, v, w) — uh,(u, v, w) + %u2h3(u, v, ) —
a,utis(u, v, w)] + e " Flug,(x,¢,3) — %uzgg (x, 4, 2) + uxh;(u, v, w) —uxgs(x,4,3) — axhs(u, v, w) +

a,ugs(x,4,2) + %xzhg(u, v, w) —xh,(u,v,w) =0 (1).

Equation (1) holds precisely if the K,-connected transversals in G, are the set

3 3
S = {g (e“ —1—-u? +§a2/u2 +u(a; — a?), ayu — Euz,—u,u,v,fuf),u,v,w € ]R},

T = {g (ex —1-x3+ gaZxZ + x(a2 — a3),§x2 - azx,x,x,fy»,z),x,y,z € ]R},a2,a3 € R.
In this case, the set § U T generate the group G,. Hence, by Proposition 2.1. G, = Mult(L).
4. Conclusion
The explanation regarding finding linear representations for six-dimensional decomposable solvable Lie algebras which are
multiplication groups of 3-dimensional topological loops L with L satisfy two important properties connected simply connected,
is done. This work provides a novel framework for deriving explicit matrix representations of the decomposable solvable Lie
algebras. The next idea is to consider the 7-dimensional solvable Lie algebras as the Lie algebra of the multiplication group of a
3-dimensional connected topological loop. Those Lie algebras are not fully classified till now. However, in some special cases,
the 7-dimensional decomposable solvable Lie algebras are determined.
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