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1. Introduction

As the Internet of Things (IoT) keeps growing, the estimate on connected devices would see tens of billions within the
next few years. This high rate of growth has been accompanied by an upsurge of cyber-attacks against [oTs as well as connections
to them. These risks include a variety of attacks, starting with rather easy ones, such as denial-of-service (DoS), and more
advanced ones, including botnets, ransomware, and massive data breaches. Poor device authentication, encryption, and device
management are some of the major security flaws that affect most IoT systems and present various exploitation avenues to
cybercriminals. The vulnerabilities are especially disturbing, since [oT solutions are becoming more and more common in critical
infrastructure, including medical systems, industrial control systems, and so on, as any security breaches may lead to serious
data loss, financial damage, or physical injury [1].

IoT devices face their own unique set of security threats that are quite different from those found in traditional
computing. Perhaps one of the biggest challenges is the limited resources of IoT devices. Unlike traditional systems, IoT devices
are often configured with the bare essentials of processing power, memory, and storage capacity. These limitations make the
application of conventional security measures such as complex encryption techniques, intrusion detection, and robust
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authentication challenging. Therefore, IoT devices are vulnerable to various types of attacks such as data interception,
unauthorised access, and weak security defences exploitation [2].

Another critical issue is the heterogeneity and interoperability of IoT devices. IoT devices have a heterogencous
population of devices with different hardware, software, and communication protocols. This heterogeneity is the one that brings
a fragmented security environment wherein security solutions are tailored based on the specific capabilities and requirements of
each device. Moreover, devices from different manufacturers may not be compatible at all times, and this can create
vulnerabilities when devices need to communicate with one another. In contrast, traditional computing environments are usually
more homogenous, with it being easier to deploy uniform security measures [3].

The scalability and dynamic nature of IoT networks contribute to the security issues. IoT systems are prone to include
massive arrays of devices that communicate with one another and are constantly added, removed, or relocated. This dynamic
topology increases the network's attack surface, providing more opportunities for cybercriminals to attack vulnerabilities. In
contrast to conventional systems, where devices are usually stationary and well-maintained, IoT devices are usually installed in
remote or inaccessible locations. This means that possible intrusions may not be detected at all for a long time, and it is more
challenging to implement real-time monitoring or security protocol updates [4].

Physical and environmental vulnerabilities also make IoT devices vulnerable to attacks. Some of the IoT devices are
deployed in public or less-protected environments, such as homes, factories, or infrastructure locations, where they can be
compromised or stolen physically. Physical access to the devices can provide attackers with mechanisms to bypass security
controls, gain unauthorised access to a network, or even modify device settings. Additionally, IoT devices in certain settings,
like industrial settings, are exposed to environmental conditions like electromagnetic interference, which can compromise their
security mechanisms or even present additional vulnerabilities [5].

The lack of standardised security standards and regulations also adds to the security issues of IoT ecosystems. While
traditional computing systems have well-developed security standards and regulations, IoT devices lack standardised security
frameworks. Functionality and price may be more appealing to producers than security, and this results in devices with deficient
or inadequate security features. Non-universal security standards among IoT ecosystems result in devices from different vendors
likely having different protection levels, making it harder to enforce total security solutions and making them vulnerable to
exploitation further [6].

The majority of IoT devices suffer from ineffective device authentication and data encryption. Most devices are
regularly devoid of proper security protocols necessary for authenticating users or encrypting confidential data, which makes
them vulnerable to unapproved attacks and data leaks. User authentication and encryption are widely used in computing systems,
but in IoT systems, they are usually weak or non-existent, making devices vulnerable to man-in-the-middle attacks as well as
other types of cyber-attacks [7].

These unique challenges to IoT devices create a security environment much more complex and exposed than traditional

computing systems. The resource limitations, heterogeneous device base, no standardisation, and physical exposures require
unique security solutions adapted to the specific requirements of IoT networks. Traditional security solutions are inadequate to
address these challenges, making IoT networks highly susceptible to a wide range of cyberattacks [8].
The traditional cybersecurity tools do not get the job done in the IoT environment most of the time because of the peculiarities
of these environments. The high level of heterogeneity is the common characteristic of IoT ecosystems, with a very diverse
number of devices, communication protocols, and software platforms. Moreover, mobile IoT networks, which constantly add or
remove devices, have to support flexible and elastic security solutions. To make matters worse, the majority of IoT devices are
resource-limited and cannot have either traditional encryption or authentication measures to prevent hacking [9].

In order to eliminate such constraints, machine learning (ML) and artificial intelligence (AI) of intrusion detection
systems (IDS) have become of great concern. ML algorithms, especially the ones intended to detect anomalies, present a potential
solution to the problem of real-time tracking and detection of abnormal patterns of behaviour. In contrast to classical, signature-
based IDS solutions, the ML-based systems can identify a new or previously unknown threat, as they learn how to recognise
deviations in network traffic patterns [10].

The study also showed significant progress in using ML to improve IoT security in recent studies. Using labelled
datasets in the network, supervised learning methods including decision trees and support vector machines (SVMs) have been
applied, as well as deep learning methods including deep neural networks (DNNs). Conversely, unsupervised learning methods,
including clustering and anomaly detection, perform Ineffectively in revealing the hidden threats in unlabeled data. The
reinforcement learning (RL) also plays a role by dynamically updating or modifying the defence strategy by interacting
continuously with the environment [11].

But there are many issues to tackle so that ML-based security systems can prove successful in IoT networks.
Preprocessing and data collection continue to be one of the major obstacles because IoT networks produce large and
heterogeneous data. Representativeness and well-balancing of training datasets are the key to ensuring the correct and bias-free
performance of models. Also, the issue of scale of ML-based IDS solutions is an urgent issue. As the number of IoT devices and
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data increases, such systems need to be both extremely high-performance and lightweight so that they can operate on the limited-
resource devices. Edge computing comes as a possible solution because it allows processing the data locally, which alleviates
the central servers [12].

Low-latency threat detection and mitigation is another crucial provision, particularly on IoT applications in real-time
when instantaneous reaction is critical. The advancement of special databases with labelled traffic of real IoT setups helped move
the sphere forward. Other research interests include the hybrid and ensemble mode of learning to achieve improved accuracy
and robustness of detection, which indicates the changing face of ML in ensuring the future of [oT systems [13].

This paper suggests a machine learning-based Intrusion Detection System (IDS) that would apply to an IoT environment. It also
compares various machine learning algorithms, Random Forest, Decision Tree, Bagging and shows that ensemble techniques
are better than others in identifying intrusion with a high precision and low false positive rates. This paper demonstrates how
machine learning could be utilised in IoT networks to improve the threat detection capabilities in real-time by considering some
IoT-specific security challenges, such as resource constraints and network heterogeneity. The results offer practical guidance on
how to design better and scalable security approaches to the IoT ecosystem.

2. Related Work

Within the last few years, the research of machine learning (ML) and deep learning (DL) technologies to improve the
intrusion detection system (IDS) as a solution to protecting the [oT and network has experienced high levels of development.
The studies cover most of the existing approaches to such types as ensemble learning, deep neural networks, feature selection
approaches, as well as hybrid models, and test them on diverse data sets such as NSL-KDD, CIC-IDS2017, UNSW-NB15, and
[0TID20. The increasing range of studies proves that an ensemble approach to combining classifiers and an effective feature
selection is two approaches that can significantly increase the accuracy of detection, cutting the number of false positives and
allowing for the detection of both known and new cyber threats in time. The list of relevant contributions in this area is
summarised, which includes a description of the approaches used by researchers, the data they used, and the results with which
they quantitatively evaluated their results. It can give a general idea of the current tendencies and directions in the research of
IoT and network intrusion detection.

Researchers [14] presented the CFS-BA-Ensemble framework, which is a heuristic approach for dimensionality
reduction. They employed a type of learning known as ensemble learning, where they collect algorithms such as C4.5, Random
Forest (RF), and Forest to solve issues that are common with IDS systems, notably the problem of handling voluminous irrelevant
data. This framework proved to be efficient in comparison to previous research in terms of classification accuracy, F1-measure,
and attack detection rate. Three datasets were used to evaluate this study: NSL-KDD, CIC-IDS2017, and AWID. they achieved
an accuracy level of 99.81%, 99.52%, and 99.89%, respectively.

Also, [15] proposes an ensemble learning model to address the problem of intrusion detection using the NSL-KDD
dataset. The work employed integrates several ML approaches, which comprise DT, RF, KNN, DNN, and adaptive ensemble
algorithms. The suggested algorithm has shown its effectiveness in evaluating new attack types within a short time. As for the
quantitative aspect, the found accuracy for the DNN equals 81. 6%, the highest accuracy achieved by the MultiTree algorithm
was 84.2%, and the voting algorithm achieved 85.2%. It is also important to mention that the results of the application of the
ensemble voting technique are higher than those of the MultiTree. The study also outlines several areas for future work
enhancements. Based on the study, feature selection needs to be improved, while the detection needs to be made more robust
with small-scale data sets.

Authors [16] put forward a BAT-MC approach that combines bidirectional long-term memory (BLSTM) and an
attention mechanism to develop a deep learning (DL) model for network intrusion detection. The proposed mechanism extracts
fine-grained features from the sequential data composed of packet vectors, while the BLSTM model learns the characteristics of
the NSL-KDD data set for analysing each packet in the network traffic. However, before, the data was preprocessed through
several layers of convolution. Based on the given data set, the above model had a better performance than conventional
approaches with an accuracy of 84. 25%.

Researchers [17] put forward a voting strategy that is based on an ensemble of basic classifiers, such as decision trees,
Bayes classifiers, RNN-LSTM, and random forests, that acts with a misbehaviour analysis scheme. When this model was
compared with the multiple tree algorithm, it was seen that it performed well, and the accuracy rate of the model was up to 85%,
using NSL_KDD as a dataset. The studies showed results that demonstrated that the given method allowed for achieving better
detection results. There are future directions that need to be forged to include creating an archive of rules that will enable a
computerised detection of these intrusions. Through implementing this measure, it will be possible to improve the provided
system's performance and speed regarding real-time threat identification.

Meta-classification model is used by [18] to combine these meta-classifiers, which is made up of a stacking architecture
comprising raw and meta classifiers; the LR, the K-NN, the RF, and the SVM. To analyse the performance of the proposed
model, two different datasets are used: one is a packet-based dataset called UNSW NB-15 collected from a simulated framework,
and the second one is called UGR'16 16 is a flow-based dataset captured from the real environment of network traffic. The
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experimental findings support the fact that the proposed model yielded 97% accuracy on the real-time dataset UGR'16 and 94%
on the simulated dataset, UNSW NB-15, which indeed defines the proposed model as significantly superior in terms of prediction
accuracy.

Researchers [19] have found that Working methods such as machine learning and ensemble classifiers are effective in
intrusion detection systems when integrated with feature selection techniques to enhance performance. In the past, gain ratio
feature evaluator (GRFE), correlation ranking filter (CRF), and other associated optimal feature selection methods were used
with the NSL-KDD dataset in detecting attacks. These results indicated that the proposed method, GRFE, outperformed CRF
more efficiently in choosing features for the target. According to the proposed system, the experiment used two widely studied
datasets, namely NSL-KDD and UNSW-NBI15, for intrusion detection. With the assistance of two methods, Lazy IBK and
Random Committee, and taking advantage of sub-related features generated from GRFE, it is found that there is a significant
misclassification difference of 0. 969% and 1.19% in the NSL-KDD dataset, and 1.62% and 1.576% in the UNSW-NB15 dataset.
This contrast affirms the group methodology in outdoing the individual approach, hence supporting group methods in improving
IDS functionality.

The model suggested by [20] comprises three primary stages to put forward a completely new methodology in the field
of IoT intrusion detection, which includes the clustering and dimensionality reduction steps using 'k-means++ clustering', the
over-sampling step using 'SVM-SMOTE!, and the classification step using 'SLFN'. So, it has to be mentioned that this paper has
some advantages in its approaches, such as the methods of supervised and unsupervised intrusion detection, as well as using
multiple methods for data reduction and oversampling to achieve the data balance of training data sets. The findings indicated
that the proposed SLFN was valuable for the process of intrusion detection due to its high classification when combined with
the synthetic oversampling technique SVM-SMOTE and employing convenient parameters. The testing was done accurately, as
the model achieved an accuracy of 93.51%. In the meantime, the ratio was 0.9.

Researchers [21] used the dataset named [0TID20. As a proposal of several deep learning techniques, this work itself
is crucial for identifying intrusion in the IoT setting. There are three DL models employed for classification: convolutional neural
networks (CNN), long short-term memory (LSTM), and a combined CNN-LSTM model. In order to better enhance the system's
performance, the authors chose the PSO detection technique to choose the most relevant features applicable to the actual problem
and perform dimensionality reduction. Bridging the gap has yielded an accuracy rate of 96. 60% for CNN, 98. 20% for LSTM
and 98. 0% for the CNN-LSTM. Additionally, comparative research involving other current systems illustrates the effectiveness
of the proposed framework in augmenting IoT security enhancement, therefore, illustrating the viability of the proposed
framework in real-world intrusion detection practices.

In research [22], supply favourable outcomes showing the effectiveness of various deep learning models for identifying
fog-based attacks. The network consists of three levels: cloud, secure fog, and intelligent sensing mechanisms. The following
are the phases that make up the framework: (1) establishing the network, (2) classifying data on the network, (3) establishing the
network together with implementing deep learning models, (4) determining the attack, (5) modifying the cloud behaviour, and
(6) modifying the FN network. Where DL models are applied like DNMLP, LSTM, Bi-LSTM, GRU, CNN + LSTM, and HEM
(Hybrid Ensemble Method), one model is employed at every stage and sequentially. The LSTMDL model observed high accuracy
on multiple datasets: DDoS-SDN, NSLKDD, UNSW-NB15, and IoTID20 datasets, with accuracy rates of 99.70%, 99.12%,
94.11%, and 99.88% attained. This is an indication that the LSTMDL model is very efficient in solving binary classification
problems. Furthermore, analysing the results of the CBDT study to compare with the results of the proposed DNMLP and
proposed LSTMDL model for detecting Communication Behaviour (CB) and for predicting attacks effectively and accurately
shows that although DNMLP is faster to detect CB than other models, the LSTMDL model is more effective.

Researchers [23] developed a collaborative IDS called MidSiot. Its objective is to mitigate cybersecurity threats in the
connectivity of IoT. MidSiot's three-stage operation is: The following objectives of the study were defined: 1- to categorise
devices of smart cities 10T, 2- to recognise sorts of attacks, and 3- to distinguish between friendly and hostile traffic both at
global Internet gateways and local IoT gateways. MidSiot offers a very good detection rate in seven common IoT cyber threats
and leverages edge computational capabilities. In this paper, the average accuracy of three types of IDS datasets, [oTID20, CIC-
IDS-2017, and BOT-IoT, is 99%. 68% and in turn is above other IDS. This shows how effective MidSiot is as an applied
intervention strategy for protecting IoT networks against threats.

The study of [24] aims to use the machine learning approach to enhance the performance of detecting unwanted data
on the internet. In the process of improving the detection performance in multi-domain systems, the proposed approach focuses
on the use of two datasets: UNSW-NB15 and [0TID20, which incorporate both local and IoT network traffic. The model ensures
equal features by applying PCA to minimise the feature number to 30 after horizontally combining the datasets. Their approach
is an Extra Boosting Forest (EBF), which is a stacked ensemble of tree classifiers such as random forest, gradient boosting
classifier, and extra tree classifier. From the empirical findings, it can be deduced that EBF works; it scored the following
accuracy ratings on the multi-domain dataset: 0.985 and 0.984 for two and four classes, respectively, which is higher than
previous techniques.
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Researchers [25] introduce a hierarchical intrusion detection (IDS) model, which is based on a meta-heuristic
optimisation algorithm to enhance network security. The datasets (UNSW-NB15, CICID2017) were employed to assess the
proposed model. The suggested system achieved high detection rates with minimal false alarm rates. He presented a multi-
category classification solution that opens the way to building distinguished systems in the field of securing computing
environments.

The authors [26] provide a general approach for constructing an intrusion detection model based on ensemble learning.
The choice is as follows: DT, LR, and NB for the base levels, and stochastic gradient descent SGD as the meta-level. The real-
world datasets that are used to evaluate the performance of the machine learning and ensemble models include the CIC-IDS2017,
UNSW-NBI15, and KDD Cup 1999 datasets. The model also employs the chi-square disparity as its feature selection tool. The
analysis highlighted the fact that the ensemble classifier has an added effect on enhancing the IDS capabilities and minimising
the chances of false positives and negatives. Therefore, the model has a precision rate of 99.84%.

The research of [27] describes INFUSE, a learning system that utilises meta-learning specifically for network intrusion detection
and is built with the help of deep neural networks. Pros of the suggested architecture concern the issues connected with the
limited description of attack types in the prior systems and data modification. It uses feature aggregation on the one hand and
decision-level fusion on the other so that the detection rates of new attacks can be improved, besides improving the efficiency
of Machine learning models. Deep Meta-Learner for ensemble learning, to learn semantic links and construct a hybrid feature
space, is a part of the problem. The system works in three stages. For this project, five classifiers will be employed to train five
different decision spaces. Next, a coarse and sparse autoencoder that learns related semantic connections between attacks expands
the feature representation. The last decision is with the deep Meta-Learner, where it plays an aggregation function to correlate
the mixed feature space. On applying the evaluation for the case of the proposed approach on NSL-KDD, the gained accuracy
was equal to 91.6% percent of the effectiveness of INFUSE. The F-score of 0.91 and the recall of 0.94 values demonstrate a high
level of generalisation of the knowledge and the ability to notice the threats in the network.

Researchers [28] using a deep learning model, namely Pearson-Correlation Coefficient - Convolutional Neural Networks (PCC-
CNN), add a new strategy to intrusion detection in Internet of Things networks. It works for multiple classes of attack types
through multiclassification and for anomaly detection through binary classification. To address this problem, the model
convoluting significant features extracted using linear-based approaches with convolutional neural networks significantly
improves its accuracy in detecting network anomalies. The experiment is performed on three external datasets, including NSL-
KDD, CICIDS-2017, and IOTID20 datasets. Five PCC-based machine learning models, Logistic Regression, Linear
Discriminant Analysis, K-Nearest Neighbour, Classification & Regression Tree CART, and SVM, are trained and tested.
Evaluation of the classifiers on the three datasets yields the best similar accuracy of 98%, 99%, and 98% for both KNN and
CART.

Research by [29] aims to understand and analyze the performance of deep learning algorithms, as three deep learning
algorithms (DNN, LSTM, and CNN) were used in the context of intrusion detection, and using (CIC-IDS 2017) as a data set for
this study, it achieved an accuracy of 94.61%,97.67%, and 98.61%, in order.

Researchers [30] have put forward an improved IDS using stacked ensemble learning by employing a group of various
machine learning algorithms. However, to optimise the performance, it combines three basic models, RF, DT, and K-NN, and
the meta-model is a logistic regression model. It ultimately contributes to improving the design's efficiency. The dataset that has
been used for the above-proposed model is UNSW-NBI15. The proposed system has been tested, and it has passed this test with
a very high percentage of strike rate of 97. 95%. The use of the above approach in machine learning is thus equally significant,
as it creates new opportunities.

The authors [31] provide a new approach based on the integration of ensemble learning and subspace clustering
approaches aimed at the detection and identification of intrusions in Internet of Things networks. This is because three novel
solutions have been proposed in this study aimed at enhancing detection efficiency and model robustness as follows: Iterative
Feedback Loop IFL, Two-Level Decision Making TDM, and Clustering Results as Features CRF. In this paper, using four
subspace clustering algorithms, that is, CLIQUE, PROCLUS, SUBCLU, and LOF; three base classifiers: NB, LGBM, and XGB;
logistic regression as the meta-learner; and mutual information for the feature selection, the proposed framework achieves
substantial increases in the Fl-score, accuracy, precision, recall, and FP-rate. The dataset UNSW-NB15 used for evaluation
yields remarkable results: accuracy 97.05%, precision 96.33%, recall 96.55%, F1-score 96.45%, and a false positive rate of
0.029.

3. Methodology

This methodology in Figure 1 aims at creating an Intrusion Detection System (IDS) that can be used in Internet of
Things (IoT) networks through an implementation of machine learning techniques to identify the type of network intrusions. The
described procedure is followed to conduct preprocessing of the data, develop, test, and deploy machine learning models to
detect an intrusion.
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3.1 Dataset Description

The dataset consists of 7,062,606 records and 27 features that provide a detailed description of different characteristics
associated with the IoT network traffic and the types of attacks. The data consists of numerical and categorical properties, most
of which are floating-point values representing various statistics of network traffic in terms of mean, variance, weight, magnitude,
and covariance of different features (including MI, H, HH, and HpHp at different levels (e.g., L0.1)). Such numerical columns
as MI dir LO.1 weight, H 1.0.1 mean, HH L0.1 magnitude, and HpHp L0.1 covariance hold the features of the intensity and
location of the traffic signals, which are critical to the intrusion detection analysis.
The dataset also contains categorical columns such as Device Name, Attack, Attack sub typeType and label that represent the
type of device to be used in the network, the particular attack type, as well as the subtype attack and an attack binary label that
represents the presence or absence of the attack. This rich feature set of the dataset makes it quite appropriate when it comes to
the application of machine learning algorithms in intrusion detection systems because it will not only contain the raw data on
the threats but also have labelled points where supervised learning models can be trained. The sheer amount of data makes it
more useful in developing powerful models that can detect existing and emergent IoT security threats.
The data therein comprises a distribution of attacks that have been coded in the column referred to as Attack, which classifies
the data into the various types of attacks and a normal class. According to the given pie chart in Figure 1, most of the data is of
the type of Mirai attack and comprises about 51.9 per cent of the information. This is then followed by gafgyt, which comprises
approximately 40.2 per cent of the dataset. The other 7.9 per cent of the data is normal, non-attack cases, which is essential in
determining malicious and legitimate network traffic. The uneven distribution of the types of attacks indicates that the dataset is
biased towards certain attack cases, with Mirai and Gafgyt being the most frequent types of attacks.
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Figure 1. Working Methodology
Such a distribution can presumably influence the performance of machine learning models, because the techniques

might be required to focus on the imbalance of classes to prevent the model bias in the more frequently represented classes of
attacks.
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3.2 Dataset Preprocessing
3.2.1 BOT NET IOT DATASET

Data preprocessing is one of the most significant data preparation steps for machine learning algorithms. During our
study, we performed various preprocessing steps, including handling missing values, categorical variable encoding, detection
and removal of outliers, and feature selection.

Missing Data Management: The next crucial part of data preparation to be used in machine learning was concerned
with the problem of missing data. All the features were audited in a comprehensive manner to identify the missing values.
Columns that had high percentages of missing data were regarded as unreliable and thus not included in further analysis. In the
case of columns having a low percentage of missing values, imputation strategies were used in such a way that the datasets were
consistent. In particular, it was either the mean or the median that was used to impute numerical features based on data
distribution. Normal data was imputed by the mean, whereas the median was used on skewed data. This was to make sure that
the important information is not lost and the dataset can be adequately comprehensive as regards training and testing a machine
learning model.

Encoding Categorical Data: As the majority of models of machine learning use numeric data only, categorical variables
need to be encoded into numerical values. Label Encoding was used to encode categorical attributes like Device Name, Protocol
Type and Attack Category. The approach is to give a distinct integer to each category of a feature. So, assuming that the feature
in question, the Attack Category, has DoS, Ransomware and Botnet, then it will be encoded like that: 0, 1 and 2, correspondingly.
Label encoding would be particularly useful when the ordinal feature is a categorical feature or the number of distinct values is
not too big. This was necessary to allow the algorithms to operate on the categorical data in an interpretable mathematical format,
making it compatible with the models that supervised learning employs.

Detection and Removal of Outliers: The presence of outliers might dramatically alter the learning process of a vast
majority of machine learning models, and especially those that depend on the scale and distribution of the input data. In response
to it, the Z-score analysis was applied to identify and exclude outliers in the dataset. The Z-score indicates the number of standard
deviations of a point of data from the mean. Data outside the range of 3 and -3 Z-score was taken as an outlier and discarded.
This value was selected according to the empirical rule that in the statistical distribution, 99.7 per cent of the data is within three
standard deviations of the mean. This removal of these unusual entries helped to increase the generalisation capability of the
model and avoid breaking down the performance due to the presence of extreme values.

Feature Selection: In order to maximise the performance and efficiency of the model, feature selection was used. This
occurred through statistical examination of the relationship between each input feature and the target attribute; in this case, the
Attack class. A correlation matrix was created, and features that had a Pearson correlation coefficient of greater than 0.25 with
regard to the target were then picked. This value was selected in order to strike a balance between keeping useful information
and eliminating noise brought by irrelevant or loosely connected features. The model was trained on the basis of the selected
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features. The dimensionality reduction not only achieves more efficient computation but also decreases the probability of
overfitting and makes the model more interpretable because it concentrates on the most influential variables.
3.2.2 LITNET-2020 DATASET

The LITNET-2020 dataset targets the research contribution in the area of intrusion detection systems (IDS) in the
Internet of Things (IoT) networks. It encompasses network traffic information, such as regular and malicious network activities,
to allow training and testing of machine learning models in security threat identification. It has 7,062,606 rows and 27 columns
and includes different features of IoT network traffic and attacks on these systems. The attributes contained in the dataset are
both numerical and categorical. Numerical features indicate the different statistics of network traffic; these include the mean,
variance, weight, magnitude, and covariance of different attributes of traffic. These characteristics play a pivotal role in
identifying the unusual activity of network communications. Among the most important numerical characteristics are
MI dir 1.0.1_weight, H L0.1 mean, HH L0.1 magnitude, and HpHp L0.1 covariance that reflect the intensity of the network
traffic, its location, and its variation with the measures at different levels.

Some other attributes of the dataset are categorical, such as Device Name, Attack Type, Attack Subtype, and labels that
correspond to the type of device in the network, the type of attack being used, and a binary label that specifies whether an attack
is used or not. The data is highly skewed, with most of the traffic caused by only two kinds of attacks, namely Mirai and Gafgyt,
that make up more than 92 per cent of the data. The data containing non-attack traffic, i.e. normal traffic, comprises
approximately 7.9% of the data set, and is important in isolating malicious behaviour from normal network traffic. The given
dataset can perfectly train machine learning models since it covers labelled objects used in supervised learning that would help
detect known and emerging IoT security threats. The large extent and wide variety of the data allow it to be used to create IDS
models that can be used to develop scalable and efficient models suitable for use in real-life IoT security challenges.

3.3 Model Deployment

Once we pre-processed the data, we proceeded to the model-building process. The primary objective was to build a
machine learning model that would effectively classify whether traffic on a network is normal or an attack. A variety of models
were selected so that we would be able to identify the best algorithm for this process.

For each of the machine learning models, the hyperparameters in Table 1 play a crucial role in the model's performance. The
following table summarises the key training parameters used for each model:
Table 2. Machine Learning Models

Model Description Reference
Logistic . . . . .
Regression Binary classification algorithm for linear data. [6]
Decision Tree A non-linear classifier that splits data based on features. Prone to overfitting. [32]
Random Forest Ensemble method using multiple decision trees to reduce overfitting and improve [33]
accuracy.
XGBoost Efficient gradient boosting method for. clgsmﬁcatlon with regularisation and handling [34]
missing data.
LightGBM Optimised gradient boosting method for large datasets with efficient memory usage. [35]
AdaBoost Boosting algorithm that corrects errors of previous models. Sensitive to noise and [36].
outliers.
Gradient Boosting An ensemble method that minimises rg(s)lvt\i;;?l errors progressively. High predictive [37]
Bagging An ensemble to reduce variance and prevent overfitting by averaging multiple models. [38]
K-Nearest A non-parametric classifier that predicts based on nearest neighbours. Sensitive to
. . [39]
Neighbors irrelevant features.
Naive Bayes Probabilistic classifier assuming feature independence. Efficient for text classification. [40]

Table 3 shows the most important hyperparameters to train different machine learning models, which are analysed in
this paper. The settings of each of these models were either tuned during the initial tuning procedure or chosen according to the
general good practices that have been mentioned in the literature. The mentioned list of parameters directly affects the process
of learning, complexity, and generalisation that the model would be able to do. The comparison between the models will be fair
and consistent because the same configurations have been standardised on all of the experiments, which makes the task of
evaluating the performance of a model fair and reliable in cases such as classification or prediction.
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Table 3. Models Training Parameters

Model Parameter Value
. . max_iter 500
Logistic Regression Solver liblinear'

Criterion 'entropy’
Decision Tree max_depth 5
min_samples_split 2
Random Forest n_estimators 100
max_depth None
min_samples_split 2
max_features 'sqrt’
learning_rate 0.1
n_estimators 100
XGBoost max_depth 6
Gamma 0.5
learning_rate 0.05
. n_estimators 100
LightGBM max_depth 6
num_leaves 31
AdaBoost n est.imators 50
learning_rate 1
n_estimators 100
. . learning rate 0.1
Gradient Boosting max_depth 3
Subsample 0.9
n_estimators 100
Bagging max_samples 1
max_features 'sqrt'
C 1
SVM Kernel 'tbf
Gamma 'scale’
n_neighbors 5
KNN Algorithm 'auto’
Naive Bayes var_smoothing 1.00E-09

3.4 Model Evaluations

Assessing the performance of machine learning models in Table 4, particularly in a security context, such as an Intrusion
Detection System (IDS), would need various metrics to measure various properties of the model. The most common are such
metrics as accuracy, determining the overall correctness of the conclusions on the classification and may be deceptive in
unbalanced datasets in which classes are over-represented. Precision and recall give an indication of how the model encounters
the positive classes, which is important in intrusion detection, as the main concern is to ensure that attacks are detected correctly
rather than focusing on accuracy. Fl-score runs an average of both precision and recall, giving one value that can be used
whenever class imbalance exists. ROC AUC is used to measure how well a model separates between classes at all levels of
discrimination. Lastly, Log Loss is used to measure the certainty level of probabilistic predictions, and it is more penalising in
case of wrong predictions where the model is very confident about it. Collectively, they help to get a clear picture of the predictive
capability and the overall strength of a model to identify network intrusions.
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Table 4. Evaluation Metrics

Importance in IDS &

Metric Description Formula Classification
Measures overall correctness T Useful when classes are
S o p+TN
Accuracy of predictions (both positive Accuracy = balanced; shows general
and negative). TP+TN+FP+FN model accuracy.
. Propqrtlon of predicted .. TP Important when false positives
Precision positives that are truly recision = ———— are costly (e.g.. false alarms)
positive. TP +FP y(e.g, .
Percentage of actual positives TP Critical when missing
Recall correctly identified (True Recall = ——— positives (false negatives) is
Positive Rate). TP+ FN risky.
. .. . Il Useful when false positives
F1-Score Harmonic mean qurecmon F1 — Score = 2 X perciston X reca and false negatives are equally
and recall, balancing the two. Percison + recall important.
Measures the model’s ability . N
to distinguish classes across ! In.d.lcates.dlscrlmlnahop
ROC AUC AUC = | TPR(FPR)dFPR ability; 1 is perfect, 0.5 is
thresholds; area under the
0 random.
ROC curve.
Measures the confidence of 1 N
probabilistic predictions by Log Loss = — —Z [y log(py) Lower values indicate better
Log Loss .. N o e
penalising wrong, confident =1 probabilistic predictions.

predictions. + (1 —y)log(1 —p)]
4. Results and Discussion
4.1 BoT Net IoT Results

In the modern world of blistering technological changes, the Internet of Things (IoT) has opened up new avenues to the
communication and interaction between devices and instigated the creation and transmission of huge amounts. These types of
interconnectivity only increase as more and more is created, which is why there are increased risks of cybersecurity. The use of
IoT devices, which have low processing power and lack sufficient embedded security features, is a tempting opportunity for
malicious entities. The traditional security measures that were built with the static and homogeneous network scenarios in mind
are challenged to deal with the complexity and dynamism of the contemporary IoT ecosystems. Such conventional systems do
not offer the flexibility needed to succeed in identifying and addressing the ever-changing trends of cyber threats in IoT systems.

Machine Learning (ML)-based Intrusion Detection Systems (IDS) have evolved as a strong and smart alternative in

order to face these pitfalls. In comparison to signature-based IDS that utilises known patterns of attacks, the ML-based
approaches are capable of learning data and recognising abnormal behaviour and can detect unseen threats in real-time. The
systems can run on network traffic constantly and can adjust to emerging attack vectors, and this makes them very accessible to
the shifting environments in which IoT deployments are usually built.
This work is aimed at analysing the success of different machine-learning algorithms in identifying intrusions to IoT networks.
Models that will be used in the analysis will consist of both classical classifiers, such as Decision Trees and Logistic Regression,
as well as more complicated techniques, including Random Forests and Gradient Boosting. To give an objective impression of
the strengths and weaknesses of each of these models, their performance will be evaluated based on a list of common evaluation
criteria.

Logistic Regression, as a simpler model, gives stable performance in binary classification. When used in IoT intrusion
detection, it achieves 99.11% accuracy, meaning it classifies the majority of normal and anomalous traffic correctly. Its precision
of 99.21% reflects the ability to reduce false positives so that not many benign activities are misclassified as intrusions. The
recall of 89.44% shows that the model misses some potential threats, although it catches most of the intrusions. The F1-score of
94.07% informs us of an equitable trade-off between precision and recall. With a ROC-AUC of 99.82%, Logistic Regression is
effective at class separation. Yet, the log loss of 0.0458 shows that while predictions are accurate, there is room for improvement
in calibration.
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Decision Trees are a widely used machine learning model since they are simple to comprehend and interpret. The
Decision Tree model performs exceptionally well in this study with an accuracy of 99.99%, which demonstrates nearly perfect
classification. Its 99.96% accuracy means there are a few false positives, and the 99.88% recall means it is extremely good at
detecting almost all intrusions. The 99.92% F1-score confirms this model's well-rounded performance. The 99.94% ROC-AUC
score means a very good ability to distinguish between normal and malicious behaviour. Furthermore, the 0.0041 log loss is
extremely low, showing well-calibrated predictions. This makes the Decision Tree a strong candidate for real-time intrusion
detection in [oT networks.

Table 5. Models Evaluation on BoT Net IoT Dataset

Model Accuracy Precision Recall F1-Score ROC-AUC Log Loss
Logistic Regression 0.991073 0.992062 0.894360 0.940681 0.998194 0.045808
Decision Tree 0.999873 0.999552 0.998837 0.999195 0.999356 0.004116
Random Forest 0.999936 0.999642 0.999553 0.999597 0.999973 0.000503
XGBoost 0.999763 0.997812 0.999195 0.998503 0.999971 0.000833
AdaBoost 0.999345 0.993809 0.997943 0.995872 0.999918 0.357086
Gradient Boosting 0.999604 0.995987 0.999016 0.997499 0.999843 0.001966
Bagging 0.999880 0.999418 0.999061 0.999240 0.999824 0.001506
KNN 0.999650 0.997186 0.998390 0.997787 0.999846 0.002584

Naive Bayes 0.742829 0.233242 0.983362 0.377051 0.902696 2.441735

Random Forest combining decision trees is the most efficient one with an accuracy of 99.99%, precision and recall of

99.96% and ROC-AUC 99.99, thus able to identify intrusion with a few false positives. It has confidence in its predictions as its
log loss is very low (0.0005); thus, it is an appropriate model to use in IoT intrusion detection.
XGBoost, an advanced Gradient Boosting algorithm, attains an accuracy of 99.98 with 99.78 precision and 99.92 recall. It
provides good accuracy and a sufficient balance between accuracy and speed with a 99.99 % ROC-AUC and a bit larger log loss
(0.00083). AdaBoost gives 99.93% accuracy and 99.79% recall but a lower precision (99.38%), which indicates a higher number
of false positives. It has a high ROC-AUC (99.99%), but the log loss (0.3571) means lower confidence when it comes to
predictions.

Gradient Boosting also achieves a high accuracy of 99.96 %, precision of 99.60% percent and recall of 99.90% percent.
It has a ROC-AUC of 99.98% and low log loss (0.00197), which implies its correct and accurately calibrated predictions.
Bagging gives 99.99 accuracy to Random Forest with precision and recall of 99.94 and 99.91, respectively. It is balanced in
performance, and ROC-AUC (99.98%), as well as a low log loss (0.00151).

K-Nearest Neighbours (KNN) provides 99.97% accuracy, 99.72% precision and 99.84 % recall. It is 0.00258 less confident but
still useful as a method of intrusion detection. Naive Bayes has 74.28 % accuracy and extremely low precision of 23.32 % thus
leaving a high number of false positives. Although the recall is high (98.34), the low reliability of IoT IDS by 2.44 log loss and
90.27 % ROC-AUC is a poor indicator of the reliability of [oT IDS.

4.2 LITNET-2020 Results

The analysis of different machine learning algorithms on the LITNET-2020 dataset (Table 6) shows clear performance
trends between the different models. The algorithms were tested based on fundamental metrics like accuracy, precision, recall,
F1-score, ROC-AUC, and log loss in order to get a holistic view of how effective the models are in intrusion detection for IoT
networks.

Logistic Regression showed decent performance with an accuracy of 92.01%. However, its 81.01% recall indicates that
it had failed to detect a vast majority of the intrusions, which could turn out to be crucial in security-sensitive applications.
Although excellent in precision (92.66%), its relatively lower recall made it yield a medium F1-score of 86.36%. The ROC-
AUC of 0.975 reflects well-balanced overall classification performance, but the model will not be suitable for real-time high-
stakes use due to its inability to classify a large number of attacks.

Decision Tree was 98.66% accurate with a precision of 98.56% and a recall of 98.23%, reflecting well-balanced
performance in respect of both false positives and false negatives. Its 98.40% F1-score and great ROC-AUC score of 0.992 also
point to its usefulness in distinguishing normal from bad traffic. Decision Tree models are prone to overfitting, though, and while
this model performed adequately, it might not generalise well across some IoT environments with new or unknown attack
patterns.

Random Forest topped Decision Tree with a 99.23% accuracy and with an almost perfect precision score of 99.01%.
The recall of 98.87% in turn indicates that the model identified nearly all the attacks correctly with a very impressive F1-score
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of 98.94%. The extremely high ROC-AUC of 0.995 and also a low log loss (0.0156) indicate a well-calibrated model whose
prediction can be trusted in actual applications where detection accuracy and low false positives are critical. Random Forest is
the best choice for IoT intrusion detection since it's robust and offers improved generalisation.

Table 6. Models Evaluation on LITNET-2020 Dataset

Model Accuracy Precision Recall F1-Score ROC-AUC Log Loss
Logistic Regression 0.920101 0.926561 0.810122 0.863646 0.975042 0.134578
Decision Tree 0.986582 0.985604 0.98233 0.983959 0.992319 0.024866
Random Forest 0.992271 0.990133 0.988728 0.98943 0.995478 0.015603
XGBoost 0.991017 0.987401 0.989251 0.988324 0.994572 0.013982
AdaBoost 0.989605 0.974712 0.988272 0.981383 0.997145 0.428748
Gradient Boosting 0.990342 0.978232 0.991131 0.984633 0.994285 0.008991
Bagging 0.992738 0.991524 0.990217 0.99087 0.995328 0.010746
KNN 0.991529 0.982978 0.985231 0.984103 0.994084 0.012879

Naive Bayes 0.682393 0.161924 0.955889 0.277073 0.835024 2.657383

XGBoost performed slightly poorer than Random Forest but still had good performance with an accuracy of 99.10%,
precision of 98.74%, and recall of 98.93%. The F1-score of 98.83% signifies equal balancing of precision and recall. XGBoost's
strength lies in its mechanism of gradient boosting, which allows it to minimise errors by iteratively learning from them. While
having slightly higher log loss (0.01398) than Random Forest, it is still highly efficient in intrusion detection and can be
considered a reliable option for IoT network security.

AdaBoost's accuracy was 98.96%, precision was 97.47%, and recall was 98.83%. The model's F1-score of 98.14%
testifies to good overall performance, but the comparatively high log loss of 0.4287 suggests that it may be less certain in its
outputs, particularly in noisy or uncertain situations. Still, despite this weakness, AdaBoost's ROC-AUC value 0f 0.9971 testifies
to its high discrimination capability and suggests that it is a strong contender for IoT IDS usage, particularly where detection of
new or unknown attack types is crucial.

Gradient Boosting was outstanding with 99.03% accuracy, 97.82% precision, and 99.11% recall. 98.46% F1-score and
ROC-AUC of 0.9943 also validate that the model discriminates well between attack and normal traffic. Low log loss (0.00899)
also means that the model is calibrated and has high-confidence predictions. Gradient Boosting is a highly suitable candidate for
IoT IDS deployment where high accuracy and recall matter to minimise false negatives and false positives. Bagging was 99.27%
accurate with 99.15% precision and 99.02% recall. Its 99.09% F1-score and high ROC-AUC of 0.9953 place it on the same level
as Random Forest and Gradient Boosting. Its low log loss of 0.0107 shows that Bagging can decide with high confidence and
with the least chances of making a wrong decision. This ensemble method is another robust choice for real-time IoT intrusion
detection, particularly when high dependability and equal detection are required.

K-Nearest Neighbours (KNN) also performed a bit below the top models with 99.15% accuracy, 98.30% precision, and
98.52% recall. It had a decent F1-score of 98.41%, but it is more susceptible to noisy data from the moderate log loss of 0.0129.
KNN models are usually computationally expensive, and their performance is susceptible to decreasing as the data size grows,
so they are not as well-suited for large-scale IoT deployments as ensemble methods like Random Forest or Gradient Boosting.
Naive Bayes did very badly with an accuracy of merely 68.24% and a low precision of merely 16.19%. Though its 95.59% recall
was good, indicating its ability to catch most intrusions, its low precision came in the form of high false positives. Both the F1-
score at 27.71% and extremely high log loss (2.6574) reflect the inefficiency of the model in general in correctly classifying
normal traffic and attack traffic. Naive Bayes is therefore unsuitable for IoT IDS use cases where minimising false positives and
achieving high classification accuracy are paramount.

4.3 Results Discussions

Figure (3) compares a few machine learning models' performances on key evaluation metrics: accuracy, precision,
recall, Fl-score, ROC-AUC, and log loss on the BoT Net IoT Dataset and the LITNET-2020 Dataset. Overall, the ensemble
models, particularly Random Forest, Bagging, and XGBoost, perform consistently well on both datasets. These models are
highly accurate, with values close to 1, indicating that they are good at classifying normal as well as malicious traffic. Naive
Bayes is significantly below the others, particularly on the LITNET-2020 Dataset, for which its accuracy is extremely low.

For accuracy, the ensemble models again win the competition, and Naive Bayes does poorly, especially on the LITNET-
2020 Dataset, where it fails to distinguish between the normal and attack classes and yields high false positives. The recall metric,
which deals with finding all cases of attacks applicable to it, shows that all models except for Naive Bayes have high recall.
However, Naive Bayes has high recall but at the cost of precision since it has a tendency to label many common instances as
attacks, resulting in many false positives.
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As far as the F1-score, which is a balance of precision and recall, is concerned, the ensemble methods work well for
both datasets. Naive Bayes works with a much lower F1-score due to its poor precision. The ROC-AUC value, which reflects
the ability of the model to distinguish between classes, also shows that ensemble models, notably Random Forest and XGBoost,
show great performance with nearly 1 scores, indicating great discriminatory power. Naive Bayes shows a sharp drop in ROC-
AUC, especially in the LITNET-2020 Dataset, representing its inability to notably distinguish between normal traffic and attacks.

Finally, log loss, which measures the confidence of the predictions made by the model, is the lowest among the ensemble
models, meaning the predictions are high in confidence. In contrast, Naive Bayes has a much higher log loss, particularly in the
LITNET-2020 Dataset, showing that its prediction is low on reliability and confidence.
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Figure 3. Results Comparison for the Two Datasets
In short, the best-performing ensemble models are Random Forest, Bagging, and XGBoost for all of the metrics and
are more suitable for real-world IoT network intrusion detection. Naive Bayes, even with very high recall, does not have a good

balance between precision and recall and, therefore, is not a viable choice with its low precision, high log loss, and poor overall
performance in such a scenario.
5. Conclusions

This study evaluates the performance of several machine learning models for intrusion detection in Internet of Things
(IoT) environments, specifically focusing on two widely used datasets: the BoT Net [oT Dataset and the LITNET-2020 Dataset.
Our analysis provides valuable insights into the strengths and weaknesses of various models and highlights the critical
importance of choosing the right algorithms for effective security in loT networks.

The results consistently show that ensemble models, namely Random Forest, Bagging, and XGBoost, yield the best
performance on all the metrics considered, including accuracy, precision, recall, Fl1-score, ROC-AUC, and log loss. These
models are shown to be robust in both intrusion detection and in minimising false positives, making them highly suitable for
real-time intrusion detection in dynamic loT environments. Their ability to maintain good detection rates and reduce
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misclassifications underscores their usefulness for safeguarding IoT environments, which by design are resource-constrained
and vulnerable to every type of cyber-attack.

On the other hand, Naive Bayes, despite high recall, has low precision and a very high log loss, especially in the LITNET-2020
Dataset. This implies a high false positive rate and renders it less suitable for real-time IoT security. The inability to strike a
balance between recall and precision and low discriminatory power, as manifested by ROC-AUC, reveals the unsuitability of
Naive Bayes for advanced IoT configurations. In addition, the findings underscore the necessity of considering both precision
and recall, particularly in IoT intrusion detection, where false positives are costly. Those models that strike a good balance
between the measures, i.e., Random Forest and XGBoost, offer the most acceptable trade-offs and will more likely be dependable
for high-consequence, real-time monitoring settings.

This study demonstrates the promise of ensemble learning techniques to address the specific challenges posed by IoT
security. The results certify that Random Forest, Bagging, and XGBoost are extremely robust and scalable models and thus
superb candidates for the deployment of intrusion detection systems in IoT networks. Future work can explore the fusion of
these models with other emerging technologies, e.g., edge computing, for additional real-time performance and scalability
enhancement in large-scale IoT environments. In addition, the application of hybrid models that combine classical machine
learning and deep learning could provide even more advanced and adaptive solutions to the arising threats in [oT..
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