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1. Introduction

Researchers can now use sophisticated computer simulation codes (CSCs) to substitute physical experiments for
advancements in computer technology. Additionally, inputs to CSCs frequently have high dimensions. Therefore, it may not be
suitable to utilize a CSC for analysing the experiments, as it requires running numerous CSCs to optimize objective functions.
In these situations, CSCs may be computationally expensive. Instead of using the simulation code, we can utilize a statistical
model such as a Kriging model (KM) to roughly represent a relationship between a CSC's inputs and response values.

A CSC is typically deterministic or stochastic, which has a modest error. A KM was proposed as a metamodel for the
CSC by [1]. KMs have been utilized to analyse data from computer experiments in several scientific fields. For example, in
engineering, [2] and [3], in climate science, [4], in computer experiments, [5], [6] and [7], in multivariate CSC, [8], and [9].
Numerous input variables may be present in many of these scenarios, and one must eliminate some of these variables to
concentrate on the most crucial ones. Such a decrease may require additional analysis and can significantly lower the processing
demands [10]. Finding which input variables have a significant impact on the system under study can also be done by ranking
each one's relative relevance [11] . Variable selection could be beneficial in three important features: enhancing the predictors'
efficacy, offering more time- and cost-efficient predictors, and giving users a clearer grasp of the mechanisms that underlie data
generation. KM can be approximated using the same logic and methodology. However, very little study has been done on the
variable selection in KM [10]; [12], and the majority of earlier studies used a straightforward KM without variable or parameter
selection. In this study, we perform variable selection using forward selection and backward selection, and we apply the KMs to
a test function and a real example.
In keeping with [1], we take into consideration a KM for a CSC specified on an index set y € R¢
9 =3 Bifi(0) +2(), (1)
where f = (ﬁl, e ,B’p) is a vector of unknown regression coefficients and f(.) is a known function. In this case, it is assumed
that the random process has a Gaussian process (GP), Z(.)~GP(0,52V) where o2V is the covariance matrix, o2 is the overall
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variance, and V is the matrix of correlations [13]. We take the power exponential family as one of the many potential covariance
functions, and it is represented by [14].

Cov(xi — x]-) = UZGXP(— ZZ 9i|xik - xjk|a) 2)
where 8; = 0 and 0 < a < 2 for all k. The correlation function is

a
Cov(x; — x;) = exp(— X7 0;]xi — x| ) (3)

In this work, we set a = 2.

With data gathered at the observation locations X = (Xj, ..., X,,), we estimate the model equation (1) and its parameters
using the maximum likelihood estimation (MLE) approach [9]. As y(x) is assumed as a GP with mean Ff and covariance o2V,
the likelihood function of y(x) is [15]

~\—1 —~
L.B.0% B) = rrmiexp(— 752 (v~ FB) 'R(y — FB)), @
where the design matrix is F, R is the correlation matrix between the observation locations R(Xi - xj). The likelihood function
does not result in a closed-form solution, necessitating a numerical optimization. To create an accurate prediction model, we
require effective MLE searching software. The linear model is then updated using the MLEs of the parameters to predict y(x).
Using MLE, the estimated values, B and 8 of parameters 8 and 8, the empirical best linear unbiased prediction is provided by
P(x) = fx) B+ "R (y - FB) 5)
where y is the data gathered at design locations, r is the correlation between x* and X, and f(x*) is known linear regression
function.

When there is only one constant in the mean function, the KM is referred to as the ordinary KM; when there are several
known variables in the mean function, it is referred to as the universal KM [16]. When using KMs, it is typical to assume that
the mean function has a straightforward shape as h(x) = 1 or h(X) = c(1,x). Clearly, such a straightforward assumption will
typically be incorrect for the complex KM with uncorrelated errors. On the other side, choosing a mean function that is too
complicated (overfitting) might also reduce the KM's accuracy. This is what drives the adoption of KM comparison as a method
for deciding on the best mean function. Thus, choosing a suitable mean function is essential in creating a precise KM. We shall
concentrate on the variable selection of the mean function in this work. To determine the influence of the chosen variables, we
take into consideration several mean function options and then compare them using some measures.

This study aims to perform model selection and compare the choice with other models that are based on different mean
functions for building KMs via some measures. The structure of this study is as follows: In Section 2, we review some techniques
that are used for variable selection in building KMs for complex CSCs. Some validation measures for KMs are presented in
Section 4. In Section 5, KMs that are based on different variable selection methods are applied to illustrative examples of CSCs.
Finally, the conclusion is presented in Section 6.

2. Model Selection Methodology

A multiple regression model frequently contains one or more factors that may not be related to the response variable.
By including such pointless variables, the resulting model becomes overly complex. Unfortunately, it can be time-consuming to
manually go through and evaluate regression models. Fortunately, there are several methods for automatically selecting
variables, or choosing those that produce the best regression results.

2.1 Stepwise Selection

One regression technique that uses an automated process to choose the predictor variables is stepwise regression. A
variable chosen from a set of explanatory variables is considered for either addition or subtraction in each ongoing step,
depending on a predetermined criterion determined by a variety of tests. To identify the final set of variables for use with the
prediction model, a sequence of tests is employed. Stepwise Regression can be achieved by Forward Selection and Backward
Selection.

2.1.1 Forward Stepwise Selection (FSS)

FSS starts with a KM that has 0 predictors and gradually adds each prediction until the KM contains all of the predictors.
Specifically, the variable that improves the fit of the KM the most at each phase is added to the model [17]. The following are
the three steps in the FSS procedure:

1. Suppose M, is he KM with no predictors. For each observation, this model only predicts the sample mean.
2. Forr=0,..,p—1

e Allr — p KMs that add one extra predictor to the ones in M,. are taken into consideration.

e Select the top KM from this p — k KMs and designate it, M, ;.

3. Using AIC or BIC, choose the single best KM from among. My, ..., M,..

2.1.2 Backward Stepwise Selection (BSS)

An effective substitute for best subset selection is BSS. It starts with the full model with all p predictors and repeatedly
eliminates the least valuable predictor, one at a time [17]. The BSS procedure can be achieved by the following three steps:
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Let M, represents the comprehensive model, which includes all p predictors.

Forr=p, p—-1,..,1

For a total of r — 1 predictors, all r KMs that include all but one of the predictors in M, are considered.
Select the top KM from this k KMs and denote it M,._;.

Using AIC or BIC, choose the single best KM from among M, ..., M,..

The creation of a low-cost metamodel utilizing the aforementioned KM is one goal of computer experiments. A strong
prediction model should be created for this objective. Hence, we will build the following models with different choices of the
mean function and compare the results based on the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC)
to see the effects of the choice of the mean function. The considered KMs that are built based on different variable selection
methods are described as follows:

e Kriging Model 1: m(x) = 0.

e Kriging Model 2: m(X) = constant (only intercept)

e Kriging Model 3: m(x) = c(1,x)

Kriging Model 4: forward selection for a first-order linear model using AIC.
Kriging Model 5: backward selection for a first-order linear model using AIC.
Kriging Model 6: forward selection for a first-order linear model using BIC.
Kriging Model 7: backward selection for a first-order linear model using BIC.

we e~

3. Validating Kriging Models

The KMs are statistical models with certain assumptions. As a result, it is essential to employ measures to assess KM behavior
and determine whether or not the used assumptions were sound. In this study, we validate KMs using two measures. The root
relative squared error (RRSE) and the relative absolute error (RAE) which are based on the differences between the true values
of the CSC and the KM predictions. The RRSE is given by [18]

Y (i-y)?

RRSE = ST (6)
whereas the RAE is given by
RAE = Yicyi-vil 7

Y lvi-yil

where the mean of the CSC's true values is y [19]. The RRSE and the RAE reveal the disparity between predicted
values and the actual value of the CSC. As RRSE,RAE — 0, the predictions of KMs will be accurate.
4. Examples

In this section, three functions are considered as examples of a CSC to see how well the presented KMs performed
based on different types of mean functions. The first function is the Hartmann function, which has 6 dimensions; the second
function is the Dette and Pepelyshev function which has 8 dimensions, and finally, the third function is the Piston Simulation
function, which has 7 dimensions.

4.1 Hartmann Function

The Hartmann function is a 6-dimensional model that is presented by [20]. The output is given by the equation below,
where the input is in the range [0, 1],

f(x) =Xk, a;jexp (— Y Ay (xi — Pij)) (®)

We now compare the KMs models built based on different forms of the mean function based on RRSE and RAE. We
generated several sets of the design points by the maximin Latin hypercube design (MLHD), (n = 5p, 10p, 15p), where p is the
dimension of the target function. The MLHD is a popular design proposed by [21]. Thus, we have three sets (n = 30, 60,90),
of the design points. Then, the outputs y, of the Hartmann function were obtained at these sets of points. The variables range of
the Hartmann function was transformed to be in [0, 1]°.

The MLE method, equation 4, was used for estimating the KM parameters. Conditional on the estimated parameters,
KMs were built. We used the power exponential correlation function equation 3 with a;, = 2. Then, a set of m = 2p = 12
observations was generated by MLHD to validate the KMs. Table 1 shows the selected variables in the KMs for different variable
selection methods.

Table 1: Selected prediction KMs for different variable selection methods for the Hartmann function.

n | Model Mean Function Selected Variables
KM, Zero mean 0
KM, | Constant mean only intercept

30 KM, Linear Mean X1,%X2,X3,X4, X5, Xg
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KM, Forward based on AIC X1, X3, X4, X5, X
KMg Backward based on AIC X1,%X2,X4, X5, Xg
KMg | Forward based on BIC X5, X5
KM, | Backward based on BIC X2, X5
KM, Zero mean 0
KM, | Constant mean only intercept
60 KM, Linear Mean X1, X, X3, X4, X5, Xg
KM, | Forward based on AIC X1,X2, X5
KM; | Backward based on AIC X1,X2, X5
KM¢ | Forward based on BIC X1, X5
KM, | Backward based on BIC X1, %X
KM, Zero mean 0
90 KM, Constant mean only intercept
KM, Linear Mean X1,X2,X3,X4, X5, Xg
KM, | Forward based on AIC X1, X4, X5
KM Backward based on AIC X1, X4, X5
KM¢ | Forward based on BIC X1, X5
KM, | Backward based on BIC X1, Xs

We can see from Table 2 that the Selected Variables using Forward and Backward methods based on BIC are only
X1, xs. In contrast, the Selected Variables using Forward and Backward methods based on AIC are X, x,, X4, X5, X¢ When n =
30. Then, they have become x;, x4, x5 when n = 60 and 90. Table 2 presents the results of RRSE and RAE of KMs for the
Hartmann function built by different forms of the mean function.

Table 2: RRSE and RAE for KMs of the Hartmann function.

n Model RRSE RAE
KM, 2.2459 1.9787
KM, 3.0059 2.3662
30 KM, 2.6030 2.1362
KM, 1.7596 1.6160
KM, 1.7596 1.6160
KM 2.4036 2.5840
KM, 2.4036 2.5840
KM, 1.5181 1.0143
KM, 1.8959 1.3570
60 KM, 1.3408 1.0050
KM, 2.4201 2.2181
KMg 2.4201 2.2181
KM 1.9089 1.6011
KM, 1.9089 1.6011
KM, 1.3677 1.2276
90 KM, 2.9750 1.9948
KM, 1.3255 1.1812
KM, 1.1402 1.1369
KM 1.1402 1.1369
KM 2.1405 1.9223
KM, 2.1405 1.9223

We can see from Table 4 that M, and M5 are the best as their RRSE and RAE values are the smallest when n = 30. In contrast,
M, does not work well as its RRSE and RAE are high. For n = 60, the M3 has the smallest values of RRSE and RAE. However,
when we increase the number of design points to n = 90, the M, and M5 become better than M3 as their RRSE and RAE values
become smaller than those of the M3.
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4.2 Dette and Pepelyshev Function
The Dette and Pepelyshev function is an eight-dimensional model, and it is presented by [22]. The output is given by
the equation below, where the input is in the range [0, 1].

FO) =40, —2+8x, —8x3)2+ (3—4x)2 +16\/x3 + 1+ Bx; — 123X, iln(1+ Xi,x) (9

where X is the input vector at which to evaluate and f(x) is the function output evaluated at x.

We generated several sets of the design points by the MLHD, (n = 5p, 10p, 15p), where p is the number of variables in the
target function. Thus, we have three sets (n = 40, 80, 120) of the design points. Then, the outputs y, of the Dette and Pepelyshev
function were obtained at these sets of points. Then, the variable range of the Dette and Pepelyshev function was transformed to
bein [0, 1]8.

The MLE method was used to estimate KM parameters. Conditional on the estimated parameters, KMs were built based
on different sets of design points. We used the power exponential correlation function equation 3 with @, = 2. Then, a set of
m = 2p = 16 observations, generated by MLHD to validate the KMs. Table 3 shows the selected prediction KMs for different
variable selection methods.

Table 3: Selected prediction KMs for different variable selection methods for the Dette and Pepelyshev function.

n | Model Mean Function Selected Variables
KM; | Zero mean 0
KM, | Constant mean only intercept

30 KM, Linear Mean X1, X5, X3, X4, X5, X6, X7, Xg
KM, | Forward based on AIC X5, X3, X4, X5
KMg Backward based on AIC Xy, X3, X4, X5
KMy | Forward based on BIC X3
KM, | Backward based on BIC X3, X5, Xg
KM, Zero mean 0
KM, | Constant mean only intercept

60 KM, Linear Mean X1,%X2,X3,X4, X5, X6, X7, Xg
KM, | Forward based on AIC Xy, X3, X4, X5
KM Backward based on AIC X5, X3, X4, X5
KM Forward based on BIC Xy, X3, X4, X5
KM, | Backward based on BIC X5, X3, X4, X5
KM, Zero mean 0

90 KM, | Constant mean only intercept
KM, Linear Mean X1, X2, X3, X4, X5, X6, X7, Xg
KM, | Forward based on AIC X1, X3, X3, X4, X5, X6, Xg
KM, Backward based on AIC X1, X3, X3, X4, X5, Xg, Xg
KMg¢ Forward based on BIC X1,%X2,X3,X4, X5, Xg
KM, | Backward based on BIC X1,%X2,X3,X4, X5, Xg

We can see from Table 4 that the Selected Variables based on BIC are only x; using the Forward method and x5, x5, xg
Backward method when n = 30. In contrast, the Selected Variables using Forward and Backward methods based on AIC are
X5, X3, X4, Xs5. Then, for both the Forward and Backward methods, they have become x4, x5, X3, X4, X5, X Wwhen n = 90. Table 4
presents the results of RRSE and RAE of KMs for Dette and Pepelyshev built by different forms of the mean function.

Table 4: RRSE and RAE for KMs of the Dette and Pepelyshev function.

n Model RRSE RAE
KM, 0.7440 0.6216
KM, 0.5224 0.5391

30 KM, 0.4208 0.4009
KM, 0.3478 0.3756
KM, 0.3478 0.3756
KM 0.5434 0.6529
KM, 2.4036 1.4922
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KM, 0.6122 0.6400
KM, 0.5870 0.5815
60 | KM, 0.6180 0.5838
KM, 0.5040 0.5461
KM 0.5040 0.5461
KM, 0.5040 0.5461
KM, 0.5040 0.5461
KM, 0.6809 0.5417
9 | KM, 0.5637 0.4813
KMs 0.5006 0.4999
KM, 0.3203 0.3033
KM 0.3203 0.3033
KM, 0.3600 0.3194
KM, 0.3600 0.3194

We can see from Table 4 that M, does not work well as its RRSE and RAE are the highest when n = 40. In contrast,
M, and My are the best as their RRSE and RAE values are the smallest. For n = 80, the My, M5, Mg, and M, are the best, and
they have similar values of RRSE and RAE. However, when we increase the number of design points, the M, and Mg become
better than Mg and M5 as their RRSE and RAE values become smaller than those of the Mg and M.
4.3 Piston Simulation Function

The Piston Simulation function was created by [23] to mimic the action of a piston inside a cylinder. The response is
the cycle time, which the piston requires to achieve a single cycle in seconds.

M
C(X) =2n W (10)

where V = %(A2 + 4kP°T—:°Ta - A) andA = P,S + 19.62M — % The input variables are: piston weight (kg) M € [30,60],
spring coefficient % k € [1000,5000], piston surface area (m?) S € [0.005,0.020], atmospheric pressure (%) P, €
[90000,110000], initial gas volume (m3) V, € [0.002,0.010], ambient temperature (K) T, € [290,296] and filling gas
temperature (K) T, € [340,360].

We also generated several sets of the design points by the MLHD equation 6, (n = 5p, 10p, 15p), where p is the
dimension of the target function. Thus, we have three sets (n = 35,70,105) of the design points. Then, the outputs y, of the
Piston Simulation Function were obtained at these sets of points. The variables range of the Piston Simulation Function was
transformed to be in [0,1]7.

The MLE method equation was used to estimate the KM parameters. Conditional on the estimated parameters, KMs
were built based on different sets of design points. We used the power exponential correlation function equation 3 with a;, = 2.
Then, a set of m = 2p = 14 observations was generated by MLHD to validate the KMs. Table 5 shows the selected variables
in the KMs for different variable selection methods.

Table 5: Selected prediction KMs for different variable selection methods for the Piston Simulation function.

41

n | Model Mean Function Selected Variables
KM; | Zero mean 0
KM, | Constant mean only intercept
30 KM; | Linear Mean X1, X2, X3, X4, X5, X6, X7, Xg
KM, | Forward based on AIC X1, X2, X3, Xy
KM: | Backward based on AIC X1, X2, X3, X4
KM Forward based on BIC X1, X2, X3
KM, | Backward based on BIC X1, %2, X3
KM, Zero mean 0
KM, Constant mean only intercept
60 KM; | Linear Mean X1, X2, X3, X4, X5, Xg, X7, Xg
KM, | Forward based on AIC X1, X9, X3, X4, Xsg
KM Backward based on AIC X1, X2, X3, X4, Xs5
KMy | Forward based on BIC X1, X2, X3, X4, X5




EDUSJ, Vol, 34, No: 4, 2025 (36-44)

KM, Backward based on BIC X1, X9, X3, X4, Xsg
KM, Zero mean 0
90 KM, | Constant mean only intercept
KM, Linear Mean X1, X2, X3, X4, X5, Xg, X7, Xg
KM, | Forward based on AIC X1, X9, X3, X4
KM; | Backward based on AIC X1, X9, X3, X4
KM Forward based on BIC X1, X2, X3, X4
KM, Backward based on BIC X1, X2, X3, X4

We can see from Table 6 that the Selected Variables based on BIC are only x4, x,, x5 using Forward and Backward methods
when n = 30. On the other hand, the Selected Variables using Forward and Backward methods based on AIC are x4, X, X3, X4.
Then, for both Forward and Backward methods based on BIC and AIC, the Selected Variables are the same when n =
60 and 90. Table 6 presents the results of RRSE and RAE of KMs for the Piston Simulation function built by different forms of
the mean function.

Table 6: RRSE and RAE for KMs of the Piston Simulation function.

n Model RRSE RAE
KM, 0.3903 0.2895
KM, 0.3767 0.3005
30 KM, 0.3504 0.3240
KM, 0.2769 0.2817
KM, 0.2769 0.2817
KM 0.5371 0.4352
KM, 0.5371 0.4352
KM, 1.6812 1.5418
KM, 3.5211 3.1671
60 KM, 0.4336 0.4060
KM, 0.0738 0.0785
KM 0.0738 0.0785
KM, 0.0738 0.0785
KM, 0.0738 0.0785
KM, 0.0657 0.0583
90 KM, 0.0638 0.0507
KM, 0.0650 0.0523
KM, 0.1196 0.1100
KM 0.1196 0.1100
KM, 0.1196 0.1100
KM, 0.1196 0.1100

We can notice from Table 6 that Mg and M do not work well as their RRSE and RAE are the highest when n = 35. In contrast,
M, and Mg are the best as their RRSE and RAE values are the smallest. For n = 70 and n = 105, the My, M5, Mg and M have
the smallest values of RRSE and RAE and, they work similarly, as their RRSE and RAE values are the same.

Therefore, based on the RRSE and RAE values, the results of the selected KMs for the Hartmann function, Dette and Pepelyshev
Function, and Piston Simulation Function are similar. In general, the best models are M, and My which are Forward and
Backward selection based on AIC and BIC.

5. Conclusion

In this work, the Kriging models were reviewed for analyzing complex computer simulation codes (CSCs). The CSCs
can have many variables, so identifying variables that influence the responses is necessary. Thus, in this work, we performed
variable selections for several forms of the mean function of the KM. The comparison is achieved by several measures which
examine the KM performance.

Based on the results of the selected KMs that are applied to the examples, the performance of the Forward and Backward
based on AIC are the best among the other models. Increasing the number of design points is important. The sample size can
have a great effect on the performance of the KMs when the dimension of the CSCs is high. Moreover, the values of the RRSE
and RAE measures become better as well as similar for the different proposed KMs.
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