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 Kriging models are used in many scientific disciplines to investigate the behavior of 

physical systems. In the Kriging model (KM), the response of the computer simulation code 

(CSC) is considered to have a Gaussian process (GP). To discover variables influencing 

responses, choosing a selection of variables or creating a strongly reduced  regression model 

is a crucial process. Selecting some variables can prevent over-fitting or under-fitting in the 

predictions of data in KM. There have been just a few studies on the variable selection in 

KM. In this work, we suggest performing variable selection to construct a good model 

among the KM. The results of the proposed model selection are compared in terms of 

prediction accuracy with other models based on different forms of the mean function. The 

comparison is achieved by several measures that investigate the behavior of the KMs. Based 

on the results, the performance of the Forward selection and Backward selection based on 

AIC is the best. We apply KMs to several examples of computer simulation codes.  
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1. Introduction  

 Researchers can now use sophisticated computer simulation codes (CSCs) to substitute physical experiments for 

advancements in computer technology. Additionally, inputs to CSCs frequently have high dimensions. Therefore, it may not be 

suitable to utilize a CSC for analysing the experiments, as it requires running numerous CSCs to optimize objective functions. 

In these situations, CSCs may be computationally expensive. Instead of using the simulation code, we can utilize a statistical 

model such as a Kriging model (KM) to roughly represent a relationship between a CSC's inputs and response values. 

 A CSC is typically deterministic or stochastic, which has a modest error. A KM was proposed as a metamodel for the 

CSC by [1]. KMs have been utilized to analyse data from computer experiments in several scientific fields. For example, in 

engineering, [2] and [3], in climate science,  [4], in computer experiments, [5] , [6] and [7], in multivariate CSC, [8], and [9]. 

Numerous input variables may be present in many of these scenarios, and one must eliminate some of these variables to 

concentrate on the most crucial ones. Such a decrease may require additional analysis and can significantly lower the processing 

demands [10]. Finding which input variables have a significant impact on the system under study can also be done by ranking 

each one's relative relevance [11] . Variable selection could be beneficial in three important features: enhancing the predictors' 

efficacy, offering more time- and cost-efficient predictors, and giving users a clearer grasp of the mechanisms that underlie data 

generation. KM can be approximated using the same logic and methodology. However, very little study has been done on the 

variable selection in KM [10]; [12], and the majority of earlier studies used a straightforward KM without variable or parameter 

selection. In this study, we perform variable selection using forward selection and backward selection, and we apply the KMs to 

a test function and a real example. 

In keeping with [1], we take into consideration a KM for a CSC specified on an index set 𝜒 ⊆ 𝑅𝑑 

 𝑦̂ = ∑ 𝛽𝑖𝑓𝑖(𝐱) + 𝑧(𝐱)
𝑝
𝑖=1 ,                                                                                                     (1) 

where 𝜷 = (𝛽1, … , 𝛽𝑝) is a vector of unknown regression coefficients and 𝑓(. )  is a known function. In this case, it is assumed 

that the random process has a Gaussian process (GP),  𝑍(. )~𝐺𝑃(0, 𝜎2𝑉)  where 𝜎2𝑉 is the covariance matrix, 𝜎2 is the overall 
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variance, and 𝑉 is the matrix of correlations [13]. We take the power exponential family as one of the many potential covariance 

functions, and it is represented by  [14]. 

𝐶𝑜𝑣(𝐱𝑖 − 𝐱𝑗) = 𝜎2exp(− ∑ 𝜃𝑖|𝑥𝑖𝑘 − 𝑥𝑗𝑘|
𝛼𝑝

𝑘 )                                                                       (2) 

where 𝜃𝑖 ≥ 0 and 0 < 𝛼 ≤ 2 for all 𝑘. The correlation function is 

𝐶𝑜𝑣(𝐱𝑖 − 𝐱𝑗) = exp(− ∑ 𝜃𝑖|𝑥𝑖𝑘 − 𝑥𝑗𝑘|
𝛼𝑝

𝑘 )                                                                           (3) 

In this work, we set 𝛼 = 2. 

 With data gathered at the observation locations 𝐗 = (𝐱𝟏, … , 𝐱𝒏), we estimate the model equation (1) and its parameters 

using the maximum likelihood estimation (MLE) approach [9]. As 𝑦(𝑥) is assumed as a GP with mean 𝐅𝜷 and covariance 𝜎2𝑉, 

the likelihood function of 𝑦(𝐱) is [15] 

𝐿(𝒚, 𝜷, 𝜎2, 𝑹) =
1

𝜎̂2√|𝑹|(2𝜋)𝑛 exp (−
1

2𝜎̂2 (𝒚 − 𝐅𝜷̂)
−1

𝑹−𝟏(𝒚 − 𝐅𝜷̂)),                                   (4) 

where the design matrix is 𝐅, 𝑅 is the correlation matrix between the observation locations 𝑹(𝐱𝑖 − 𝐱𝑗). The likelihood function 

does not result in a closed-form solution, necessitating a numerical optimization. To create an accurate prediction model, we 

require effective MLE searching software. The linear model is then updated using the MLEs of the parameters to predict 𝒚(𝐱). 

Using MLE, the estimated values, 𝜷̂ and 𝜽̂ of parameters 𝜷 and 𝜽, the empirical best linear unbiased prediction is provided by 

𝑦̂(𝐱∗) = 𝐟(𝐱∗)𝑇𝜷̂ + 𝐫𝑇𝐑−𝟏(𝐲 − 𝑭𝜷̂)                                                                                      (5) 

where 𝒚 is the data gathered at design locations, 𝐫 is the correlation between 𝐱∗ and 𝐱, and 𝑓(𝐱∗) is known linear regression 

function. 

 When there is only one constant in the mean function, the KM is referred to as the ordinary KM; when there are several 

known variables in the mean function, it is referred to as the universal KM [16]. When using KMs, it is typical to assume that 

the mean function has a straightforward shape as ℎ(𝐱)  = 1 or ℎ(𝐱)  =  𝑐(1, 𝐱). Clearly, such a straightforward assumption will 

typically be incorrect for the complex KM with uncorrelated errors. On the other side, choosing a mean function that is too 

complicated (overfitting) might also reduce the KM's accuracy. This is what drives the adoption of KM comparison as a method 

for deciding on the best mean function. Thus, choosing a suitable mean function is essential in creating a precise KM. We shall 

concentrate on the variable selection of the mean function in this work. To determine the influence of the chosen variables, we 

take into consideration several mean function options and then compare them using some measures. 

 This study aims to perform model selection and compare the choice with other models that are based on different mean 

functions for building KMs via some measures. The structure of this study is as follows: In Section 2, we review some techniques 

that are used for variable selection in building KMs for complex CSCs. Some validation measures for KMs are presented in 

Section 4. In Section 5, KMs that are based on different variable selection methods are applied to illustrative examples of CSCs. 

Finally, the conclusion is presented in Section 6. 

2. Model Selection Methodology 

 A multiple regression model frequently contains one or more factors that may not be related to the response variable. 

By including such pointless variables, the resulting model becomes overly complex. Unfortunately, it can be time-consuming to 

manually go through and evaluate regression models. Fortunately, there are several methods for automatically selecting 

variables, or choosing those that produce the best regression results. 

2.1 Stepwise Selection 

 One regression technique that uses an automated process to choose the predictor variables is stepwise regression. A 

variable chosen from a set of explanatory variables is considered for either addition or subtraction in each ongoing step, 

depending on a predetermined criterion determined by a variety of tests. To identify the final set of variables for use with the 

prediction model, a sequence of tests is employed. Stepwise Regression can be achieved by Forward Selection and Backward 

Selection. 

2.1.1 Forward Stepwise Selection (FSS) 

 FSS starts with a KM that has 0 predictors and gradually adds each prediction until the KM contains all of the predictors. 

Specifically, the variable that improves the fit of the KM the most at each phase is added to the model [17]. The following are 

the three steps in the FSS procedure: 

1. Suppose 𝑀0 is he KM with no predictors. For each observation, this model only predicts the sample mean. 

2. For 𝑟 = 0, … , 𝑝 − 1 

• All 𝑟 − 𝑝 KMs that add one extra predictor to the ones in 𝑀𝑟 are taken into consideration. 

• Select the top KM from this 𝑝 − 𝑘 KMs and designate it, 𝑀𝑟+1. 

3. Using 𝐴𝐼𝐶 or 𝐵𝐼𝐶, choose the single best KM from among. 𝑀0, … , 𝑀𝑟. 

2.1.2 Backward Stepwise Selection (BSS) 

 An effective substitute for best subset selection is BSS. It starts with the full model with all 𝑝 predictors and repeatedly 

eliminates the least valuable predictor, one at a time [17]. The BSS procedure can be achieved by the following three steps: 
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1. Let 𝑀0 represents the comprehensive model, which includes all  𝑝 predictors. 

2. For 𝑟 = 𝑝, 𝑝 − 1, … ,1 

• For a total of 𝑟 − 1 predictors, all 𝑟 KMs that include all but one of the predictors in 𝑀𝑟 are considered. 

• Select the top KM from this   𝑘 KMs and denote it 𝑀𝑟−1. 

3. Using 𝐴𝐼𝐶 or 𝐵𝐼𝐶, choose the single best KM from among 𝑀0, … , 𝑀𝑟. 

 The creation of a low-cost metamodel utilizing the aforementioned KM is one goal of computer experiments. A strong 

prediction model should be created for this objective. Hence, we will build the following models with different choices of the 

mean function and compare the results based on the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) 

to see the effects of the choice of the mean function. The considered KMs that are built based on different variable selection 

methods are described as follows: 

• Kriging Model 1: 𝑚(𝐱) = 0. 

• Kriging Model 2: 𝑚(𝐱) = constant (only intercept) 

• Kriging Model 3: 𝑚(𝐱) = 𝑐(1, 𝐱) 

• Kriging Model 4: forward selection for a first-order linear model using AIC. 

• Kriging Model 5: backward selection for a first-order linear model using AIC. 

• Kriging Model 6: forward selection for a first-order linear model using BIC. 

• Kriging Model 7: backward selection for a first-order linear model using BIC. 

 

3. Validating Kriging Models  

The KMs are statistical models with certain assumptions.  As a result, it is essential to employ measures to assess KM behavior 

and determine whether or not the used assumptions were sound. In this study, we validate KMs using two measures. The root 

relative squared error (RRSE) and the relative absolute error (RAE) which are based on the differences between the true values 

of the CSC and the KM predictions. The RRSE is given by [18] 

𝑅𝑅𝑆𝐸 = √
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ |𝑦̅𝑖−𝑦𝑖|2𝑛
𝑖=1

                                                                                                              (6) 

whereas the RAE is given by 

𝑅𝐴𝐸 =
∑ |𝑦̂𝑖−𝑦𝑖|𝑛

𝑖=1

∑ |𝑦̅𝑖−𝑦𝑖|𝑛
𝑖=1

                                                                                                                       (7) 

 where the mean of the CSC's true values is 𝑦̅ [19]. The RRSE and the RAE reveal the disparity between predicted 

values and the actual value of the CSC. As 𝑅𝑅𝑆𝐸, 𝑅𝐴𝐸 ⟶ 0, the predictions of KMs will be accurate. 

4. Examples 

 In this section, three functions are considered as examples of a CSC to see how well the presented KMs performed 

based on different types of mean functions. The first function is the Hartmann function, which has 6 dimensions; the second 

function is the Dette and Pepelyshev function which has 8 dimensions, and finally, the third function is the Piston Simulation 

function, which has 7 dimensions. 

4.1 Hartmann Function 

 The Hartmann function is a 6-dimensional model that is presented by [20]. The output is given by the equation below, 

where the input is in the range [0 , 1], 

𝑓(𝐱) = ∑ α𝑖𝑗exp4
𝑖=1 (− ∑ 𝐴𝑖𝑗

4
𝑖=1 (𝑥𝑖 − 𝑃𝑖𝑗))                                                                                               (8) 

 We now compare the KMs models built based on different forms of the mean function based on RRSE and RAE. We 

generated several sets of the design points by the maximin Latin hypercube design (MLHD), (𝑛 = 5𝑝, 10𝑝, 15𝑝), where 𝑝 is the 

dimension of the target function. The MLHD is a popular design proposed by [21]. Thus, we have three sets (𝑛 = 30, 60, 90),  

of the design points. Then, the outputs 𝒚, of the Hartmann function were obtained at these sets of points. The variables range of 

the Hartmann function was transformed to be in [0, 1]6. 

 The MLE method, equation 4, was used for estimating the KM parameters. Conditional on the estimated parameters, 

KMs were built. We used the power exponential correlation function equation 3 with 𝛼𝑘 = 2. Then, a set of 𝑚 = 2𝑝 = 12 

observations was generated by MLHD to validate the KMs. Table 1 shows the selected variables in the KMs for different variable 

selection methods. 

Table 1: Selected prediction KMs for different variable selection methods for the Hartmann function. 

𝑛 Model Mean Function Selected Variables 

 

 

30 

KM1 Zero mean 0 

KM2 Constant mean only intercept 

KM3 Linear Mean 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 
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KM4 Forward based on AIC 𝑥1, 𝑥2, 𝑥4, 𝑥5, 𝑥6 

KM5 Backward based on AIC 𝑥1, 𝑥2, 𝑥4, 𝑥5, 𝑥6 

KM6 Forward based on BIC 𝑥2, 𝑥5 

KM7 Backward based on BIC 𝑥2, 𝑥5 

 

 

60 

KM1 Zero mean 0 

KM2 Constant mean only intercept 

KM3 Linear Mean 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 

KM4 Forward based on AIC 𝑥1, 𝑥2, 𝑥5 

KM5 Backward based on AIC 𝑥1, 𝑥2, 𝑥5 

KM6 Forward based on BIC 𝑥1, 𝑥2 

KM7 Backward based on BIC 𝑥1, 𝑥2 

 

90 
KM1 Zero mean 0 

KM2 Constant mean only intercept 

KM3 Linear Mean 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 

KM4 Forward based on AIC 𝑥1, 𝑥4, 𝑥5 

KM5 Backward based on AIC 𝑥1, 𝑥4, 𝑥5 

KM6 Forward based on BIC 𝑥1, 𝑥5 

KM7 Backward based on BIC 𝑥1, 𝑥5 

 

 We can see from Table 2 that the Selected Variables using Forward and Backward methods based on BIC are only 

𝑥1, 𝑥5. In contrast, the Selected Variables using Forward and Backward methods based on AIC are 𝑥1, 𝑥2, 𝑥4, 𝑥5, 𝑥6 when 𝑛 =
30. Then, they have become 𝑥1, 𝑥4, 𝑥5 when 𝑛 = 60 and 90. Table 2 presents the results of RRSE and RAE of KMs for the 

Hartmann function built by different forms of the mean function. 

 

Table 2: RRSE and RAE for KMs of the Hartmann function. 

𝑛 Model RRSE RAE 

 

 

30 

KM1 2.2459 1.9787 

KM2 3.0059 2.3662 

KM3 2.6030 2.1362 

KM4 1.7596 1.6160 

KM5 1.7596 1.6160 

KM6 2.4036 2.5840 

KM7 2.4036 2.5840 

 

 

60 

KM1 1.5181 1.0143 

KM2 1.8959 1.3570 

KM3 1.3408 1.0050 

KM4 2.4201 2.2181 

KM5 2.4201 2.2181 

KM6 1.9089 1.6011 

KM7 1.9089 1.6011 

 

90 
KM1 1.3677 1.2276 

KM2 2.9750 1.9948 

KM3 1.3255 1.1812 

KM4 1.1402 1.1369 

KM5 1.1402 1.1369 

KM6 2.1405 1.9223 

KM7 2.1405 1.9223 

  

We can see from Table 4 that 𝑀𝟒 and 𝑀𝟓 are the best as their RRSE and RAE values are the smallest when 𝑛 = 30. In contrast, 

𝑀𝟐 does not work well as its RRSE and RAE are high. For 𝑛 = 60, the 𝑀𝟑 has the smallest values of RRSE and RAE. However, 

when we increase the number of design points to 𝑛 = 90, the 𝑀𝟒 and 𝑀𝟓 become better than 𝑀𝟑 as their RRSE and RAE values 

become smaller than those of the 𝑀𝟑. 
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4.2 Dette and Pepelyshev Function 

 The Dette and Pepelyshev function is an eight-dimensional model, and it is presented by [22]. The output is given by 

the equation below, where the input is in the range [0 , 1].  

𝑓(𝐱) = 4(𝑥1 − 2 + 8𝑥2 − 8𝑥2
2)2 + (3 − 4𝑥2)2 + 16√𝑥3 + 1 + (3𝑥3 − 1)2 ∑ 𝑖 ln(1 + ∑ 𝑥𝑗

𝑖
𝑖=3 )8

𝑖=4         (9) 

 

where 𝐱 is the input vector at which to evaluate and 𝑓(𝐱) is the function output evaluated at 𝐱. 

We generated several sets of the design points by the MLHD, (𝑛 = 5𝑝, 10𝑝, 15𝑝), where 𝑝 is the number of variables in the 

target function. Thus, we have three sets (𝑛 = 40, 80, 120) of the design points. Then, the outputs 𝑦, of the Dette and Pepelyshev 

function were obtained at these sets of points. Then, the variable range of the Dette and Pepelyshev function was transformed to 

be in [0, 1]8. 
 The MLE method was used to estimate KM parameters. Conditional on the estimated parameters, KMs were built based 

on different sets of design points. We used the power exponential correlation function equation 3 with 𝛼𝑘 = 2. Then, a set of 

𝑚 = 2𝑝 = 16  observations, generated by MLHD to validate the KMs. Table 3 shows the selected prediction KMs for different 

variable selection methods. 

 

Table 3: Selected prediction KMs for different variable selection methods for the Dette and Pepelyshev function. 

𝑛 Model Mean Function Selected Variables 

 

 

30 

KM1 Zero mean 0 

KM2 Constant mean only intercept 

KM3 Linear Mean 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8 

KM4 Forward based on AIC 𝑥2, 𝑥3, 𝑥4, 𝑥5 

KM5 Backward based on AIC 𝑥2, 𝑥3, 𝑥4, 𝑥5 

KM6 Forward based on BIC 𝑥3 

KM7 Backward based on BIC 𝑥3, 𝑥5, 𝑥8 

 

 

60 

KM1 Zero mean 0 

KM2 Constant mean only intercept 

KM3 Linear Mean 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8 

KM4 Forward based on AIC 𝑥2, 𝑥3, 𝑥4, 𝑥5 

KM5 Backward based on AIC 𝑥2, 𝑥3, 𝑥4, 𝑥5 

KM6 Forward based on BIC 𝑥2, 𝑥3, 𝑥4, 𝑥5 

KM7 Backward based on BIC 𝑥2, 𝑥3, 𝑥4, 𝑥5 

 

90 
KM1 Zero mean 0 

KM2 Constant mean only intercept 

KM3 Linear Mean 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8 

KM4 Forward based on AIC 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥8 

KM5 Backward based on AIC 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥8 

KM6 Forward based on BIC 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 

KM7 Backward based on BIC 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 

 

 We can see from Table 4 that the Selected Variables based on BIC are only 𝑥3 using the Forward method and 𝑥3, 𝑥5, 𝑥8 

Backward method  when 𝑛 = 30. In contrast, the Selected Variables using Forward and Backward methods based on AIC are 

𝑥2, 𝑥3, 𝑥4, 𝑥5. Then, for both the Forward and Backward methods, they have become 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 when 𝑛 = 90. Table 4 

presents the results of RRSE and RAE of KMs for Dette and Pepelyshev built by different forms of the mean function. 

 

Table 4: RRSE and RAE for KMs of the Dette and Pepelyshev function. 

𝑛 Model RRSE RAE 

 

 

30 

KM1 0.7440 0.6216 

KM2 0.5224 0.5391 

KM3 0.4208 0.4009 

KM4 0.3478 0.3756 

KM5 0.3478 0.3756 

KM6 0.5434 0.6529 

KM7 2.4036 1.4922 
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60 

KM1 0.6122 0.6400 

KM2 0.5870 0.5815 

KM3 0.6180 0.5838 

KM4 0.5040 0.5461 

KM5 0.5040 0.5461 

KM6 0.5040 0.5461 

KM7 0.5040 0.5461 

 

90 
KM1 0.6809 0.5417 

KM2 0.5637 0.4813 

KM3 0.5006 0.4999 

KM4 0.3203 0.3033 

KM5 0.3203 0.3033 

KM6 0.3600 0.3194 

KM7 0.3600 0.3194 

 

 We can see from Table 4 that 𝑀𝟕 does not work well as its RRSE and RAE are the highest when 𝑛 = 40. In contrast, 

𝑀𝟒 and 𝑀𝟓 are the best as their RRSE and RAE values are the smallest. For 𝑛 = 80, the 𝑀𝟒, 𝑀𝟓, 𝑀𝟔, and 𝑀𝟕  are the best, and 

they have similar values of RRSE and RAE. However, when we increase the number of design points, the 𝑀𝟒 and 𝑀𝟓 become 

better than 𝑀𝟔 and 𝑀𝟕 as their RRSE and RAE values become smaller than those of the 𝑀𝟔 and 𝑀𝟕. 

4.3 Piston Simulation Function 

 The Piston Simulation function was created by [23] to mimic the action of a piston inside a cylinder. The response is 

the cycle time, which the piston requires to achieve a single cycle in seconds.  

𝐶(𝐱) = 2𝜋√
𝑀

𝑘+𝑆2𝑃0𝑉0
𝑇0

𝑇𝑎
𝑉2

                                                                                                           (10) 

where 𝑉 =
𝑆

2𝑘
(𝐴2 + 4𝑘

𝑃0𝑉0

𝑇0
𝑇𝑎 − 𝐴) and𝐴 = 𝑃0𝑆 + 19.62𝑀 −

𝑘𝑉0

𝑆
. The input variables are: piston weight (kg) 𝑀 ∈ [30, 60], 

spring coefficient 
𝑁

𝑚
 𝑘 ∈ [1000, 5000], piston surface area (𝑚2)  𝑆 ∈ [0.005, 0.020] , atmospheric pressure (

𝑁

𝑚2)  𝑃0 ∈

[90000, 110000], initial gas volume (𝑚3)  𝑉0 ∈ [0.002, 0.010], ambient temperature (𝐾) 𝑇𝑎 ∈ [290, 296] and filling gas 

temperature (𝐾) 𝑇0 ∈ [340, 360]. 
 We also generated several sets of the design points by the MLHD equation 6, (𝑛 = 5𝑝, 10𝑝, 15𝑝), where 𝑝 is the 

dimension of the target function. Thus, we have three sets (𝑛 = 35,70,105) of the design points. Then, the outputs 𝑦, of the 

Piston Simulation Function were obtained at these sets of points. The variables range of the Piston Simulation Function was 

transformed to be in [0, 1]7. 
 The MLE method equation was used to estimate the KM parameters. Conditional on the estimated parameters, KMs 

were built based on different sets of design points. We used the power exponential correlation function equation 3 with 𝛼𝑘 = 2. 

Then, a set of 𝑚 = 2𝑝 = 14   observations was generated by MLHD to validate the KMs. Table 5 shows the selected variables 

in the KMs for different variable selection methods. 

 

Table 5: Selected prediction KMs for different variable selection methods for the Piston Simulation function. 

𝑛 Model Mean Function Selected Variables 

 

 

30 

KM1 Zero mean 0 

KM2 Constant mean only intercept 

KM3 Linear Mean 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8 

KM4 Forward based on AIC 𝑥1, 𝑥2, 𝑥3, 𝑥4 

KM5 Backward based on AIC 𝑥1, 𝑥2, 𝑥3, 𝑥4 

KM6 Forward based on BIC 𝑥1, 𝑥2, 𝑥3 

KM7 Backward based on BIC 𝑥1, 𝑥2, 𝑥3 

 

 

60 

KM1 Zero mean 0 

KM2 Constant mean only intercept 

KM3 Linear Mean 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8 

KM4 Forward based on AIC 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 

KM5 Backward based on AIC 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 

KM6 Forward based on BIC 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 
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KM7 Backward based on BIC 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 

 

90 
KM1 Zero mean 0 

KM2 Constant mean only intercept 

KM3 Linear Mean 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8 

KM4 Forward based on AIC 𝑥1, 𝑥2, 𝑥3, 𝑥4 

KM5 Backward based on AIC 𝑥1, 𝑥2, 𝑥3, 𝑥4 

KM6 Forward based on BIC 𝑥1, 𝑥2, 𝑥3, 𝑥4 

KM7 Backward based on BIC 𝑥1, 𝑥2, 𝑥3, 𝑥4 

  

We can see from Table 6 that the Selected Variables based on BIC are only 𝑥1, 𝑥2, 𝑥3 using Forward and  Backward methods 

when 𝑛 = 30. On the other hand, the Selected Variables using Forward and Backward methods based on AIC are 𝑥1, 𝑥2, 𝑥3, 𝑥4. 

Then, for both Forward and Backward methods based on BIC and AIC, the Selected Variables are the same when 𝑛 =
60 and 90. Table 6 presents the results of RRSE and RAE of KMs for the Piston Simulation function built by different forms of 

the mean function. 

Table 6:  RRSE and RAE for KMs of the Piston Simulation function. 

𝑛 Model RRSE RAE 

 

 

30 

KM1 0.3903 0.2895 

KM2 0.3767 0.3005 

KM3 0.3504 0.3240 

KM4 0.2769 0.2817 

KM5 0.2769 0.2817 

KM6 0.5371 0.4352 

KM7 0.5371 0.4352 

 

 

60 

KM1 1.6812 1.5418 

KM2 3.5211 3.1671 

KM3 0.4336 0.4060 

KM4 0.0738 0.0785 

KM5 0.0738 0.0785 

KM6 0.0738 0.0785 

KM7 0.0738 0.0785 

 

90 
KM1 0.0657 0.0583 

KM2 0.0638 0.0507 

KM3 0.0650 0.0523 

KM4 0.1196 0.1100 

KM5 0.1196 0.1100 

KM6 0.1196 0.1100 

KM7 0.1196 0.1100 

  

We can notice from Table 6 that 𝑀𝟔 and 𝑀𝟕 do not work well as their RRSE and RAE are the highest when 𝑛 = 35. In contrast, 

𝑀𝟒 and 𝑀𝟓 are the best as their RRSE and RAE values are the smallest. For 𝑛 = 70 and 𝑛 = 105, the 𝑀𝟒, 𝑀𝟓, 𝑀𝟔 and 𝑀𝟕 have 

the smallest values of RRSE and RAE and, they work similarly, as their RRSE and RAE values are the same. 

Therefore, based on the RRSE and RAE values, the results of the selected KMs for the Hartmann function, Dette and Pepelyshev 

Function, and Piston Simulation Function are similar. In general, the best models are 𝑀𝟒  and 𝑀𝟓  which are Forward and 

Backward selection based on AIC and BIC. 

 

5. Conclusion 

 In this work, the Kriging models were reviewed for analyzing complex computer simulation codes (CSCs). The CSCs 

can have many variables, so identifying variables that influence the responses is necessary. Thus, in this work, we performed 

variable selections for several forms of the mean function of the KM. The comparison is achieved by several measures which 

examine the KM performance.  

 Based on the results of the selected KMs that are applied to the examples, the performance of the Forward and Backward 

based on AIC are the best among the other models. Increasing the number of design points is important. The sample size can 

have a great effect on the performance of the KMs when the dimension of the CSCs is high. Moreover, the values of the RRSE 

and RAE measures become better as well as similar for the different proposed KMs. 
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 اختيار انموذج دالة الوسط في نماذج كريكنك  
 

 ( 3)، لمى احمد خليل  (2) ، يونس حازم اسماعيل الطويل (1)نجلاء صديق يحيى 

 

 قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة الموصل، الموصل، العراق   ( 3و 2و1)
 

 المستخلص: 

، يفترض  (KM)كتسُتخدم نماذج كريكنك في العديد من التخصصات العلمية لدراسة سلوك الأنظمة الفيزيائية المكلفة من الناحية العملية. في انموذج كريكن 

. من اجل اكتشاف المتغيرات التي تؤثر على متغير الاستجابة، يُعد اختيار مجموعة من   (GP)له عملية كاوسية   (CSC)ان متغير الاستجابة لدالة المحاكاة الحاسوبية

و عدم الملاءمة في التنبؤات المتغيرات أو إنشاء نموذج انحدار مُخفَّض عملية بالغة الأهمية. حيث انه يمكن لاختيار بعض المتغيرات أن يمنع الإفراط في الملاءمة أ

في نماذج كريكنك كانموذج بديل عن دالة المحاكاة الحاسوبية.  في هذا العمل، تم إجراء    ة. يوجد دراسات قليلة جدا حول اختيار المتغيراتلبيانات المحاكاة الحاسوبي

. تم مقارنة نتائج اختيار النموذج المقترح من حيث دقة التنبؤ مع نماذج  KMاختيار للمتغيرات وفقا لطريقة الاختيار الامامي والاختيار العكسي لبناء انموذج جيد بين  

. حسب النتائج التي تم الحصول عليها، اداء KMsمن خلال بعض المقاييس التي تختبر أداء   KMأخرى تستند إلى أشكال مختلفة من دالة المتوسط. تمت المقارنة بين 

تم تطبيق نماذج كريكنك التي تم بنائها بالاعتماد على طريقة اختيار المتغيرات على العديد  كان الافضل.  AICطريقة الاختيار الامامي والعكسي بالاعتماد على معيار

 من دوال المحاكاة الحاسوبية.

 

https://doi.org/10.1111/rssc.12141
https://cir.nii.ac.jp/crid/1573105974275467776
https://doi.org/10.1198/TECH.2010.09157
https://books.google.co.uk/books?id=0zcfAQAAIAAJ

