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        Outliers affect the accuracy of the estimated parameters of ARMA time series models which can 
be handled by the Hampel filter. In this article, wavelet shrinkage is proposed to handle outliers of 
ARMA models by using wavelet (Daubechies for order 4, Symlets for order 1, and Dmey) with a 
universal threshold method and applying a soft threshold.  To compare the efficiency of the proposed 
method and the traditional method (Hampel filter), the mean square error, Akaike and Bayes 
information criteria were calculated for simulated and real data (The wind speed series data).  The 
proposed method addresses the problem of outliers and provides estimated parameters for ARMA 
models with higher efficiency than the traditional method. 

 

Keywords: 
Time Series, 
ARMA Model,  
Outliers,  
Hampel Filter, 
 Wavelets. 
Correspondence: 
Heyam A. A. Hayawi 
Email:  
he.hayawi@uomosul.edu.iq  
 

DOI: 10.33899/csmj.2025.157319.1173, ©Authors, 2025, College of Computer Science and Mathematics, University of Mosul, Iraq. 
This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0). 
 
1. Introduction 
       Time series include all phenomena that change 
depending on the change of time. This change is either 
regular at points in time equidistant from each other, such as 
annual population growth or irregular change, such as 
changes in the volume of production, and any time series is 
characterized by the fact that its data are arranged relative to 
time and successive observations are usually not 
independent,[13][19] i.e. dependent on each other. This lack 
of independence will be exploited in reaching reliable 
predictions, A time series is defined mathematically as a 
semantic relationship between the value of the phenomenon 
under study and time, and the time series is usually of two 
types, either an intermittent or continuous time series, Time 

series analysis is the process of separating its components 
from each other and to determine the impact of each of these 
components on the values of the phenomenon under study 
[3][11]. Time series are characterized by the presence of 
some common models in them, most notably the self-
regression model and moving averages developed by both 
Box and Jenkins, [7] where they assumed that part of the 
series is self-regression, and the other part is moving 
averages and merging these two models with the model of 
self-regression and moving averages. One of the most 
important problems that time series suffer from is the 
instability caused sometimes by the presence of extreme 
values or so-called abnormal values, which have a significant 
and obvious impact on the process of analyzing the time 
series, these abnormal values are often caused by a defect in 
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the data collection process or the presence of some 
unexpected events that significantly affect the analysis of the 
time series and thus the predictive values resulting from the 
analysis process,[22] the best way to get rid of the problems 
that occur during the analysis and prediction of the presence 
of abnormal values is to get rid of these values or and filters 
The use of these methods does not affect the data or the 
process of analysis and prediction of the phenomenon under 
study[15][16]. In this article, wavelet shrinkage is proposed 
to handle outliers of ARMA (Autoregressive and Moving 
Average) models by using wavelet (Daubechies for order 4, 
Symlets for order 1, and Dmey) with a universal threshold 
method and applying a soft threshold. 

2. ARMA Model 

      Both Box and Jenkins presented a method in 1976 called 
self-regression models and mixed moving averages, and 
these models were designed to be used in forecasting and 
assuming that the time series is part of self-regression and the 
other part is moving averages to get from us the general 
model of the time series, which is symbolized by ARMA and 
can be calculated from the following equation [4][8][21]: 

𝑌𝑌𝑡𝑡 = ∅1𝑌𝑌𝑡𝑡−1 + ∅2𝑌𝑌𝑡𝑡−2 + ⋯+ ∅𝑝𝑝𝑌𝑌𝑡𝑡−𝑝𝑝 + 𝑎𝑎𝑡𝑡 − 𝜃𝜃1𝑎𝑎𝑡𝑡−1
− 𝜃𝜃2𝑎𝑎𝑡𝑡−2 −⋯
− 𝜃𝜃𝑞𝑞𝑎𝑎𝑡𝑡−𝑞𝑞                                                   (1) 

Since:𝑝𝑝, 𝑞𝑞: represent the rank of the model, ∅𝑗𝑗 ,𝜃𝜃𝑖𝑖: Model 
parameters, 𝑎𝑎𝑡𝑡: Represent random variables that are not 
related to each other, called white noise, and have an average 
of zero and variance 𝜎𝜎𝑎𝑎2 [20]. 

3. Outliers 

       Researchers sometimes face a set of statistical problems, 
some of which may be obvious and others unclear, so the 
researcher finds himself in need of new methods that enable 
him to organize the course of the experiment by making the 
resulting error as small as possible and at the same time get 
an unbiased estimate of the amount he is looking for the idea 
of studying Outliers began with simple ideas based on 
intuition and guessing [6][23]. 

Outliers are defined as those observations that seem illogical 
and show a significant deviation from the other components 
of the sample in which that observation was found [2][14]. It 
was stated by Barnett that the Outliers observation in a set of 
data is an observation that seems illogical when compared to 
the rest of the data set, the Outlier's values have been defined 
by many researchers, but all definitions are It boils down to 
one concept, which is that an Outliers viewing is a viewing 
that is inconsistent with the rest of the views [18]. 

The researchers pointed out that it is important to examine 
the data to get rid of the influence of Outliers before entering 
statistical analysis, as statistical analysis in all practical 
respects depends mainly on the selection of a set of data and 
the purification of these data from Outliers, which constitute 
a clear deviation from the rest of the observations [11].   

4. Hampel Filter 

      The humble filter is considered a statistical tool or means 
to detect and get rid of Outliers in the data set, and it is also 
a method through which the method of deviation is improved 
on the traditional standard because it has a high ability to deal 
with data that are not distributed normally, and This filter is 
easy to use in various fields such as time series, signal 
analysis and others [12]. The Hampel identifier is a robust 
statistical filter using median absolute deviation (MAD), for 
a given window size 𝑘𝑘 around t, compute: 

1. Local Median: 𝑚𝑚𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑡𝑡−𝑘𝑘, … , 𝑦𝑦𝑡𝑡 , … , 𝑦𝑦𝑡𝑡+𝑘𝑘) 
2. Median Absolute Deviation (MAD):  𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 =

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(|𝑦𝑦𝑡𝑡−𝑖𝑖 − 𝑚𝑚𝑡𝑡|)   ,    𝑖𝑖 = −𝑘𝑘, … ,𝑘𝑘 
3. Threshold for Outliers:   |𝑦𝑦𝑡𝑡 − 𝑚𝑚𝑡𝑡| > 3𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚, If true 

replace 𝑦𝑦𝑡𝑡 with 𝑚𝑚𝑡𝑡 . 

Since MAD is more robust than standard deviation, this 
removes spiky outliers without distorting smooth trends. 

5. Wavelets  

       Wavelet contraction is a method to remove noise and 
reduce noise in signals can be reduced using wavelet 
shrinkage, a technique that involves thresholding wavelet 
coefficients [24]. The wavelet deflation method was 
introduced for generalizing curve estimation problems. There 
are multiple compelling reasons to employ wavelet 
contraction in the estimation function.  

5.1. Daubechies Wavelet   
       In the year (1992), researcher Ingrid Daubechies (DB), 
who is famous for her work with wavelets, named this 
wavelet after her. It is generated from a group of wavelets to 
improve the properties of a frequency field [17]. One of the 
features of this wavelet is the smoothness we have given it 
by using the smallest possible number of parameters, it is by 
(DN).  

5.2. Symlets Wavelet 

       The researcher . Daubechies proposed the samelt wave, 
which is an orthogonal wave approaching symmetry, through 
which some modifications were made to the Dupuis family , 
as the symmetry is increased while the simplicity of the wave 
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remains [9][1]. This symmetry is useful because it reduces 
the noise in data reconstruction. Symlets have compact 
support and orthogonal. 

5.3. Dmey Wavelet 
      The Dmey wave is a modified version of the Daubechies 
wave, but with limited support and defined separately from 
the rest of the Daubechies family. It has similar 
characteristics to Daubechies waves in terms of compact 
support, but it has a different shape that makes it suitable for 
some applications, such as signal processing and image 
analysis. [5]. The number of vanishing moments directly 
affects its ability to capture polynomial trends within the 
data, thereby enhancing its suitability for various tasks such 
as noise reduction, compression and feature extraction. The 
effectiveness of DME waves is evidenced by case studies in 
signal reconstruction and noise reduction. 

6. Proposed Method 
      wavelet analysis used in handling outliers in time series 
models and estimating ARMA model parameters depends on 
discrete wavelet transform (Daubechies, Symlets, and Dmey) 
to obtain approximation and detail coefficients [10]: 

𝑦𝑦𝑡𝑡 = �𝐴𝐴𝑖𝑖

𝐿𝐿

𝑖𝑖=1

+ �𝐷𝐷𝑗𝑗

𝐿𝐿

𝑗𝑗=1

                                                                 (2) 

Ai represents the low-pass filter at level i (or the 
approximation coefficients).  
Dj represents the high-pass filter at level j (or the detail 
coefficients). 

The next step is to apply a thresholding operation to the detail 
coefficients to suppress the outliers. Outliers typically have 
small coefficients in the wavelet domain, so we shrink or 
remove coefficients below a certain threshold. The soft 
thresholding technique (Threshold rule) is applied to the 
detail coefficients: 

𝐷𝐷𝑗𝑗 → 𝑤𝑤𝑤𝑤ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ�𝐷𝐷𝑗𝑗′, 𝑠𝑠′, 𝜆𝜆�                                                          (3) 

𝑤𝑤𝑤𝑤ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ applies soft thresholding and λ is the threshold 
value, determined using thresholding universal based on 
Donoho’s method: 

𝜆𝜆 = 𝜎𝜎�2𝐿𝐿𝐿𝐿𝐿𝐿(𝑛𝑛)                                                                        (4) 

Where n is the length of the time series (the number of time 
points) and 𝜎𝜎 is the estimated standard deviation for the 
wavelet coefficients. Specifically, it is computed as the 
median of the absolute values of the wavelet coefficients at 
the last level, normalized by 0.6745 to make it consistent with 

an unbiased estimate of the normal distribution standard 
deviation.  

𝜎𝜎 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝐿𝐿]|)

0.6745
                                                   (5) 

After thresholding the detail coefficients, the time series data 
is reconstructed using the inverse discrete wavelet 
transformation. This reconstructs the time series data 
processed from outliers: 

𝑦𝑦𝑦𝑦𝑡𝑡 = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐿𝐿,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊)                         (6) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 contains the approximation and threshold detail 
coefficients, L is the level of decomposition, and Wavelet is 
the same wavelet used in the decomposition (Daubechies, 
Symlets, and Dmey). This inverse discrete wavelet 
transformation reconstructs the time series data by 
combining the approximations, which are kept intact and the 
modified details, which have been threshold to handle 
outliers. 

Using maximum likelihood estimation (MLE) to estimate the 
parameters models, based on the input data (𝑦𝑦𝑦𝑦𝑡𝑡). This might 
involve using methods like Yule-Walker for the AR 
parameters and a simple moving average for the MA 
parameters. 

The likelihood function L(𝜃𝜃) is typically given by: 

𝐿𝐿(𝜃𝜃) = �
1

√2𝜋𝜋𝜎𝜎�2
𝑛𝑛

𝑡𝑡=1
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝜖𝜖𝑡̂𝑡2

2𝜎𝜎�2
�                                   (7) 

𝜖𝜖𝑡̂𝑡 = 𝑦𝑦𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑤𝑤𝑡𝑡                                                                        (8) 

𝜖𝜖𝑡̂𝑡 is the residual (error term) at the time t and 𝜎𝜎�2 is the 
estimated variance of the residuals. The goal is to find the 
values of parameters θ that maximize the likelihood function, 
i.e., minimize the negative log-likelihood. This is generally 
achieved through iterative optimization techniques like 
Newton-Raphson. After optimization, the estimated values of 
the AR and MA parameters, the constant (mean) and the 
residual variance 𝜎𝜎�2. These estimates are used to define the 
final ARMA model. 

7. Simulation Study 
The time series is simulated by specifying the AR (1 and 2) 
and MA (1 and 2) coefficients and using the ARMA function 
in MATLAB with different sample generations (200, 300, 
and 400), Using the MATLAB program. Table 1 shows the 
assumed coefficient values for the simulation models. 
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Table 1. The Assumed Coefficient Values for the 
Simulation Models 

Model AR MA 
ARMA (1, 1) 0.7 0.5 
ARMA (2, 1) 0.7 -0.3 0.5 
ARMA (1, 2) 0.7 0.5 -0.4 
ARMA (2, 2) 0.7 -0.3 0.5 -0.4 

Outliers are typically defined as data points that deviate 
significantly from the rest of the dataset. In the time series, 
outliers can occur for various reasons such as data entry 
errors, sudden changes in the system being measured, or 
external disturbances. In this step, artificial outliers are 
injected at specific time points to simulate noise or 
contamination in the data. Outliers are added by identifying 
specific indicators in the time series and replacing their 
values with values that are significantly larger or smaller than 
the expected range. Applies techniques of Hampel filter (with 
a window size of 5 and threshold parameter of 3) and wavelet 
shrinkage to remove the outliers. To simulate the first 
experiment, the generated time series data with the estimated 
models without using a filter, Hampel filter and the proposed 
method (Daubechies4, Symlets1, and Dmey) were plotted as 
in Figures (1-3). Wavelet decomposition is used for 
denoising, using the Daubechies wavelet (DB4), Symlets1, 
and Demy wavelet at level 4. A universal threshold is 
calculated for soft thresholding of the detail coefficients, and 
the time series data for ARMA (2, 1) is reconstructed using 
inverse wavelet transform: 

 
Figure 1. ARMA (2, 1) Models for the first simulation 

experiment (DB4) 

 
Figure 2. ARMA (2, 1) Models for the first simulation 

experiment (Symlets1) 

 
Figure 3. ARMA (2, 1) Models for the first simulation 

experiment (Dmey) 

Figures (1-3) show that True ARMA Series (Black Line): 
This is the original, clean ARMA (2,1) time series that was 
simulated using the specified AR and MA coefficients. It 
represents the "true" underlying process without any noise or 
outliers. In the plot, it's shown as a black line. This serves as 
the baseline for comparing all other time series. Noisy series 
with outliers (Red Dashed Line): This line represents the 
noisy time series that was generated by injecting outliers at 
specific positions in the true ARMA time series. The outliers 
are large, with extreme values added to the series at indices 
50, 120, and 180, The outliers injected into the noisy series 
are highlighted as black dots on the plot. These dots 
correspond to the positions where large spikes were added in 
the noisy time series (indices 50, 120, and 180). Visually 
identify these outliers by looking for the large deviations 
from the rest of the series at these points. The red dashed line 
in the plot indicates this noisy series. The outliers can be seen 
as the spikes in the red line at the mentioned positions. 
Hampel filtered series (Blue Line): After applying the 
Hampel filter to the noisy series, this line shows the result of 
removing the outliers. The Hampel filter smooths the noisy 
time series by replacing the outliers with median values 
within a moving window. The blue line represents this 
filtered series. See that the sharp spikes from the outliers are 
reduced or removed, providing a cleaner series, closer to the 
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true ARMA process. Wavelet filtered Series (Green Line for 
DB4, Symlets,1 and Dmey): This line represents the wavelet 
denoised time series. The wavelet denoising method uses the 
Daubechies wavelet to decompose the series into different 
frequency components, then apply thresholding to remove 
noise in the high-frequency components. The green line 
shows the wavelet-filtered series, which should also smooth 
out the outliers while preserving the underlying structure of 
the time series. The Hampel and wavelet filtering methods 
aim to reduce the impact of the outliers. The Hampel filter 
typically replaces outliers with the median, leading to a 
smooth series where the outliers are no longer visible. The 
wavelet filter achieves a similar goal but through a different 
approach by manipulating the wavelet coefficients. The title 
of the plot includes the MSE for the three models: The MSE 
for the ARMA model is estimated from the noisy data (with 
outliers) equal to (34.506). The MSE for the ARMA model 
was estimated from the Hampel-filtered data equal to (16.27). 
The MSE for the ARMA model was estimated from wavelet-
filtered data (DB4, Symlets1, and Dmey) equal to (5.0482, 
6.3195, and 4.0263) respectively. These values help quantify 
how well the different filtering techniques (Hampel and 
wavelet) performed in removing the outliers and improving 
the model's prediction accuracy. These results suggest that 
wavelet denoising is a more robust method for handling noisy 
data and outliers in time series modelling, particularly when 
the goal is to estimate ARMA parameters accurately. 
Subsequently, ARMA (1, 1), ARMA (2, 1), ARMA (1, 2), 
and ARMA (2,2) models are fitted to the noisy, Hampel-
filtered, and wavelet-filtered data. The model performance is 
evaluated based on the AIC, BIC, and MSE average for 
repeated experiments (1000) times in Tables 2-5. 

Table 2. ARMA (1, 1) Model Performance Comparison 
Method n AIC BIC MSE 

Outliers 

200 

818.5659 831.7592 31.2903 

Hampel 611.9258 625.1191 17.6929 
DB4 Wavelet 551.2921 564.4854 9.6881 

Symlets 
Wavelet 571.7301 584.9234 8.2813 

Dmey 
Wavelet 377.5651 390.7583 7.5245 

Outliers 

300 

1159.900 1174.700 26.5747 
Hampel 903.9810 918.7961 17.7113 

DB4 Wavelet 747.9420 762.7571 8.9144 
Symlets 
Wavelet 769.8217 784.6368 7.4290 

Dmey 
Wavelet 600.4529 615.2680 7.3415 

Outliers 

400 

1489.000 1505.000 24.4836 

Hampel 1201.900 1217.800 17.8232 

DB4 Wavelet 920.6017 936.5676 8.5394 

Symlets 
Wavelet 951.7056 967.6714 7.0717 

Dmey 
Wavelet 777.5241 793.4899 7.3916 

Table 3. ARMA (2, 1) Model Performance Comparison 
Method n AIC BIC MSE 

Outliers 

200 

818.9055 835.3971 20.8607 

Hampel 629.1936 645.6852 9.7609 
DB4 Wavelet 498.7126 515.2042 4.0387 

Symlets 
Wavelet 491.2683 507.7599 3.7017 

Dmey 
Wavelet 274.0129 290.5044 3.2383 

Outliers 

300 

1163.500 1182.100 16.9520 
Hampel 934.5751 953.0941 9.7401 

DB4 Wavelet 676.9350 695.4539 3.7244 
Symlets 
Wavelet 639.0566 657.5755 3.3775 

Dmey 
Wavelet 470.3434 488.8623 3.2227 

Outliers 

400 

1496.300 1516.200 15.1671 

Hampel 1240.100 1260.000 9.7325 

DB4 Wavelet 831.1457 851.1031 3.5665 
Symlets 
Wavelet 764.2793 784.2366 3.2492 

Dmey 
Wavelet 613.8565 633.8138 3.2071 

Table 4. ARMA (1, 2) Model Performance Comparison 
Method n AIC BIC MSE 

Outliers 

200 

818.7992 835.2908 21.1054 

Hampel 620.1938 636.6854 9.9009 
DB4 Wavelet 461.8118 478.3034 4.6615 

Symlets 
Wavelet 504.8405 521.3321 4.4504 

Dmey 
Wavelet 187.6904 204.1820 6.1634 

Outliers 

300 

1164.800 1183.300 17.2154 
Hampel 924.6426 943.1615 10.0036 

DB4 Wavelet 608.9759 627.4948 4.2792 
Symlets 
Wavelet 659.3379 677.8568 4.0041 

Dmey 
Wavelet 345.8474 364.3663 4.8564 

Outliers 

400 

1500.500 1520.400 15.4805 

Hampel 1228.500 1248.500 10.0435 

DB4 Wavelet 729.2719 749.2293 4.1067 
Symlets 
Wavelet 792.9371 812.8944 3.8313 

Dmey 
Wavelet 446.8885 466.8458 4.2054 

Table 5. ARMA (2, 2) Model Performance Comparison 
Method n AIC BIC MSE 

Outliers 

200 

823.9167 843.7066 19.2616 

Hampel 648.8131 668.6030 8.4786 
DB4 Wavelet 402.0685 421.8584 3.0710 

Symlets 
Wavelet 424.1386 443.9285 3.0273 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCSM), Vol. 19, No. 1, 2025 (113-121)  

118 
 

Dmey 
Wavelet 123.4819 143.2718 3.0023 

Outliers 

300 

1174.400 1196.700 15.5211 
Hampel 970.5687 992.7914 8.5225 

DB4 Wavelet 530.1244 552.3471 2.9119 
Symlets 
Wavelet 530.7518 552.9745 2.8452 

Dmey 
Wavelet 261.8567 284.0793 2.7992 

Outliers 

400 

1515.000 1538.900 13.7899 

Hampel 1284.900 1308.800 8.4618 

DB4 Wavelet 634.0158 657.9646 2.8360 
Symlets 
Wavelet 611.2408 635.1896 2.7771 

Dmey 
Wavelet 325.1483 349.0970 2.7402 

Tables 2-5 show that the performance of ARMA models 
under different data filtering methods (Outliers, Hampel, 
DB4 Wavelet, Symlets1 Wavelet, and Dmey Wavelet) has 
been systematically evaluated across a range of 
configurations (ARMA (1, 1), ARMA (2, 1), ARMA (1, 2), 
and ARMA (2, 2)) and varying sample sizes (200, 300, 400). 
AIC, BIC, and MSE are criteria used in time series modelling 
to assess the goodness of fit, model complexity, and 
prediction error, respectively. 

1. Wavelet Analysis versus Outliers and Hampel method 
The results across all configurations consistently demonstrate 
the superiority of wavelet-based filtering methods, 
particularly Dmey Wavelet, over both Outliers and Hampel 
methods in terms of predictive performance (MSE), as well 
as model complexity (AIC and BIC). This finding is 
particularly notable in high-dimensional time series data, 
where traditional filtering techniques like Hampel are often 
less effective at removing outliers while preserving relevant 
time series data characteristics.  
 
2. Impact of Sample Size 
Increased sample size (n = 400) consistently leads to a 
reduction in MSE for all methods, which is typical in 
statistical modelling. As more data is available, the model 
can better capture the underlying time series dynamics, 
improving generalizability. This effect is particularly evident 
with the wavelet analysis, where the decrease in MSE is 
sharper, further highlighting their effectiveness in handling 
larger datasets. This trend is not as pronounced with the 
traditional methods, where performance stagnates at higher 
sample sizes, likely due to their less adaptive nature than 
wavelet analysis techniques. 

3. Model Configuration (ARMA (1, 1), ARMA (2, 1), 
ARMA (1, 2), ARMA (2, 2)) 
The performance of wavelet methods is notably consistent 
across different ARMA configurations, although slight 
differences emerge depending on the complexity of the 

model. ARMA (1, 1), this simplest configuration benefits 
from the filtering methods, especially Dmey Wavelet, which 
achieves the lowest MSE across all sample sizes. This 
suggests that even basic ARMA models can benefit from 
dealing with outliers provided by wavelet shrinkage. The 
ARMA (2, 1) model, which introduces an additional 
autoregressive term, further emphasizes the importance of 
wavelet filtering. The results indicate that wavelet methods 
(Dmey, Symlets, and DB4) excel in capturing the additional 
autoregressive structure compared to the traditional methods. 
With an additional moving average component, the ARMA 
(1, 2) model still shows strong results with wavelet methods. 
However, there is a slight dip in performance for Dmey 
Wavelet compared to simpler ARMA configurations, 
possibly due to the increased complexity of the model, which 
may require additional tuning or a more nuanced 
decomposition of the data. The most complex model in the 
study, ARMA (2, 2), benefits most from the wavelet 
methods, with Dmey Wavelet showing the best results. This 
is particularly striking given the relatively large MSE for 
traditional methods like Outliers and Hampel. As the 
complexity of the model increases, the need for precise 
outlier reduction becomes more pronounced, explaining the 
higher efficacy of wavelet methods in this case. 

4. Model Selection Criteria (AIC and BIC) 

AIC and BIC serve as crucial model selection tools in time 
series analysis. Both criteria balance goodness of fit with 
model complexity, penalizing overly complex models that do 
not provide sufficient improvement in fit. 

In this study, Dmey Wavelet again shows the lowest values 
for both AIC and BIC across most sample sizes, particularly 
in the more complex models (ARMA (2, 1) and ARMA (2, 
2)). This suggests that wavelet methods not only improve 
predictive accuracy (as seen in the MSE values) but also 
result in more parsimonious models, which is essential in 
avoiding overfitting. The superiority of Dmey Wavelet in 
AIC and BIC implies that it provides a better balance 
between fitness and complexity compared to the traditional 
methods. 

8. Real Data 

Climatic data were obtained from the Ministry of 
Agriculture, the agricultural meteorological center of 
Nineveh Governorate, and the Mosul station located at 
Longitude E 43.16 and latitude 36.33. These data were 
collected with the help of the Remote Sensing Center at the 
University of Mosul, which contributed significantly to the 
provision of data for the period between 2013-2022. The data 
were real and monitored by the meteorological station and 
represented average wind speed; the average wind speed is 
measured in m/s, meaning meter/second. 
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The wind speed time series data were tested for stationarity 
and were not stationary on the mean, so the second difference 
was taken. To balance overfitting and underfitting (By testing 
the significance of the estimated parameters of the different 
models) and to minimize AIC and BIC, the ARIMA (1, 2, 2) 
model(Autoregressive Integrated Moving Average) was 
chosen as the best fit for the data. 

Figures (4-6) show that True ARIMA Series (Black Line): 
This is the original, ARIMA (1, 2, 2) time series. It represents 
the "true" underlying process with outliers. In the plot, it's 
shown as a black line. This serves as the baseline for 
comparing all other time series. Visually identify these 
outliers by looking for the large deviations from the rest of 
the series at these points. Hampel filtered series (Blue Line): 
After applying the Hampel filter to the noisy series, this line 
shows the result of removing the outliers. The Hampel filter 
smooths the noisy time series by replacing the outliers with 
median values within a moving window. The blue line 
represents this filtered series. See that the sharp spikes from 
the outliers are reduced or removed, providing a cleaner 
series, closer to the true ARIMA process. Wavelet filtered 
Series (Green Line for DB4, Symlets,1 and Dmey): This line 
represents the wavelet denoised time series. The green line 
shows the wavelet-filtered series, which should also smooth 
out the outliers while preserving the underlying structure of 
the time series.  

 

Figure 4. ARMA (1, 2, 2) Models for Wind Speed Time 
Series Data (DB4) 

 
Figure 5. ARMA (1, 2) Models for Wind Speed Time 

Series Data (Symlets1) 

 

Figure 6. ARMA (1, 2) Models for Wind Speed Time 
Series Data (Dmey) 

The title of the plot includes the MSE for the three models: 
The MSE for the ARIMA model is estimated from the noisy 
data (with outliers) equal to (68.9515). The MSE for the 
ARIMA model was estimated from the Hampel-filtered data 
equal to (12.0946). The MSE for the ARIMA model was 
estimated from wavelet-filtered data (DB4, Symlets1, and 
Dmey) equal to (2.2232, 3.1368, and 3.2639) respectively. 
These results suggest that wavelet denoising is a more robust 
method for handling noisy data and outliers in time series 
modelling, particularly when the goal is to estimate ARIMA 
parameters accurately and DB4 Wavelet was the best. 

Table 6 presents the results of an estimation process for the 
parameters of two-time series models. The methods 
employed are Hampel (classical method) and DB4 Wavelet 
(best-proposed method), which are used to estimate 
coefficients in an ARIMA Model. The coefficients estimated 
include the constant, AR {1}, MA {1} and MA {2}. The 
statistical significance of these coefficients is assessed using 
the t-statistics and p-values, which offer insights into the 
model’s fitness and the relevance of individual terms. 

Hampel Method: The constant term has an estimated value 
of 0.1256, with a t-statistic of 1.2064 and a p-value of 0.228. 
This p-value exceeds the conventional significance threshold 
of 0.05, indicating that the constant term is not statistically 
significant at the (0.05) level. This suggests that, for the 
Hampel method, the constant term does not provide a 
significant contribution to the model’s predictive power. 
DB4 Wavelet Method: The constant term in the DB4 
Wavelet method is 0.6913, with a t-statistic of 5.5610 and a 
p-value of 0.000. The extremely low p-value indicates that 
the constant term is highly statistically significant, meaning 
it plays an essential role in the model’s formulation. 

Hampel Method: The AR {1} term has a value of 0.9386, 
with a t-statistic of 18.524 and a p-value of 0.000. The low p-
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value suggests that the AR {1} term is statistically 
significant. The coefficient indicates that the previous point 
has a strong positive relationship with the current value of the 
series, with a high degree of persistence. DB4 Wavelet 
Method: The AR {1} coefficient is 0.6683, with a t-statistic 
of 13.495 and a p-value of 0.000, also suggesting that the AR 
{1} term is highly significant.  

Hampel Method: The MA {1} term is estimated as -0.7562, 
with a t-statistic of -6.7006 and a p-value of 0.000. The 
negative coefficient, combined with the very low p-value, 
suggests that there is a significant negative correlation 
between the residuals at lag 1. This means that shocks or 
errors in the previous time step tend to have an inverse effect 
on the current value. DB4 Wavelet Method: The MA {1} 
coefficient is 0.8138, with a t-statistic of 16.647 and a p-value 
of 0.000, indicating a statistically significant positive 
correlation between residuals at lag 1. The positive sign 
implies that the residual error from the previous period has a 
reinforcing effect on the current value, as opposed to the 
negative relationship in the Hampel method. 

Hampel Method: The MA {2} term has an estimated value 
of -0.0238, with a t-statistic of -0.2764 and a p-value of 
0.782. The p-value being well above 0.05 indicates that the 
MA {2} term is not statistically significant. This suggests that 
the second lag of residuals does not meaningfully contribute 
to explaining the time series data when using the Hampel 
method. DB4 Wavelet Method: The MA {2} term is 0.5740, 
with a t-statistic of 14.100 and a p-value of 0.000. In contrast 
to the Hampel method, the DB4 Wavelet method finds the 
MA {2} term to be statistically significant. The positive 
coefficient indicates that there is a significant effect from the 
second lag of residual errors, implying that the model 
benefits from capturing additional error structure at this lag. 

Table 6. Testing the significance of the estimated 
parameters 

Coefficient Method Value Standard 
Error   

t-
statistics 

p-
value 

Constant 

Hampel 

0.1256 0.1041 1.2064 0.228 

AR {1} 0.9386 0.0507 18.524 0.000 

MA {1} -
0.7562 0.1129 -6.7006 0.000 

MA {2) -
0.0238 0.0860 -0.2764 0.782 

Constant 

DB4 
Wavelet 

0.6913 0.1243 5.5610 0.000 

AR {1} 0.6683 0.0495 13.495 0.000 

MA {1} 0.8138 0.0489 16.647 0.000 

MA {2) 0.5740 0.0407 14.100 0.000 

 

Figure 7. ACF of Residuals for Hampel and DB4 
Wavelet Models 

The ACF plot in Figure 7, all values close to zero, with most 
of the bars falling within confidence intervals. This would 
indicate that the model has successfully captured the 
underlying time series structure. 

Conclusion 
This analysis underscores the importance of advanced 

filtering techniques like wavelets in time series modelling. 
Across various ARMA model configurations, Dmey 
Wavelet consistently emerges as the most effective method 
to remove outliers, leading to lower MSE, AIC, and BIC 
values. The results suggest that wavelet methods, 
particularly Dmey Wavelet, should be strongly considered 
for future time series forecasting tasks, especially those 
involving outliers. For wind speed time series data, both 
methods (Hampel and proposed method) exhibit strong 
parameter significance, the DB4 Wavelet method appears 
to be the better-performing model in terms of both statistical 
significance and prediction accuracy, making it a more 
reliable choice for forecasting time series data.  
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