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       In this research, a new conjugacy coefficient is derived for conjugate gradient method 
(C.G) and a new direction was obtained. In theory, this direction achieves sufficiently desent 
condition by using strong wolfe line search and global convergence is proved. When contrasted 
with the starnder HS (C.G) technique, the numerical performance of this approach is very 
remarkable. The Dolan-More performance profile was applied in order to carry out this 
determination. The amount of time that the central processing unit (CPU) spends, the number 
of iterations (NOI), and the number of function evaluations (NOF) all play a role in determining 
this profile. It was determined through the utilization of the Dolan-More profile that this was 
the case.  
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1. Introduction 
“The (C.G) algorithm is one of the efficient numerical 
algorithms that are characterized by simplicity and nice 
convergence property   
 
min
𝑥𝑥∈𝑅𝑅

𝑓𝑓(𝑥𝑥)                                                                                    (1)                                                     

Let x be a variable and RR:f n → . The CG method 
produces {𝑥𝑥𝑘𝑘} as follows: 
  " kkkk dxx α+=+1 "                          (2) 

Where 𝑥𝑥𝑘𝑘is the current point , 𝛼𝛼𝑘𝑘  > 0 is step size .  
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Where k is integer , gk is the gradient of the 𝑓𝑓(𝑥𝑥) and 𝛽𝛽𝑘𝑘 is 
coefficient of (𝐶𝐶.𝐺𝐺)algorithm [1, 2 ,3 ,4  , 5, 6 ] 
The line search of C.G algorithm depend the weak Wolfe 
conditions are commonly utilized: 

k
T

kkkkkk dxfxfdxf )()()( ∇/≤−+ αδα                   (4)
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 Additionally, robust Wolfe conditions necessitate the 
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inclusion of condition (4) and 

k
T
kk

T
kkk dgddxg   )( σα −≤+  "                    (6) 

 
2. The new conjugacy oefficient 

In this section, we will use the modified QN direction 
in [7]  which is defined in eq.(7) satisfy perry condition to 
generate a new scale (𝜆𝜆𝑘𝑘). Then, we equality stander (C.G) 
direction which is defined in eq.(3) and the modified QN 
direction to derive a new conjugacy coefficient (𝛽𝛽ᵏ

∗) as 
follows:   
   
𝑑𝑑𝑘𝑘+1 = −∇−1𝑓𝑓𝑘𝑘+1𝑔𝑔𝑘𝑘+1 + 𝜆𝜆𝑘𝑘𝑠𝑠𝑘𝑘                                              (7) 

 
Multiplying eq (7) by (y)  
𝑑𝑑𝑘𝑘+1т 𝑦𝑦𝑘𝑘 = −𝑦𝑦𝑘𝑘т∇−1𝑓𝑓𝑘𝑘+1𝑔𝑔𝑘𝑘+1 + 𝜆𝜆𝑘𝑘𝑦𝑦𝑘𝑘т𝑠𝑠𝑘𝑘                              (8)                                               
  
From QN condition (∇−1𝑓𝑓𝑘𝑘+1𝑦𝑦𝑘𝑘 = 𝑠𝑠𝑘𝑘) and perry condition 
(𝑑𝑑𝑘𝑘+1т 𝑦𝑦𝑘𝑘 = −𝑡𝑡𝑔𝑔𝑘𝑘+1т 𝑠𝑠𝑘𝑘) 
−t𝑔𝑔𝑘𝑘+1т 𝑠𝑠𝑘𝑘 = −𝑠𝑠𝑘𝑘т𝑔𝑔𝑘𝑘+1 + 𝜆𝜆𝑘𝑘𝑦𝑦𝑘𝑘т𝑠𝑠𝑘𝑘                                       (9) 
                                                            
 

𝜆𝜆𝑘𝑘=
(1−𝑡𝑡)𝑔𝑔𝑘𝑘+1

т 𝑠𝑠𝑘𝑘
𝑦𝑦𝑘𝑘
т 𝑠𝑠𝑘𝑘

                                                                                         (10)
                       

                                                                                                
After ̦ we submit eq. (10) in eq. (7) ̦ we get  

𝑑𝑑𝑘𝑘+1 = −∇−1𝑓𝑓𝑘𝑘+1𝑔𝑔𝑘𝑘+1 + �(1−𝑡𝑡)𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑠𝑠𝑘𝑘

𝑦𝑦𝑘𝑘
𝑇𝑇𝑠𝑠𝑘𝑘

� 𝑠𝑠𝑘𝑘                      (11)                                            

 And by equating eq. (11) and eq.(3)  ̦we obtained  

−∇−1𝑓𝑓𝑘𝑘+1𝑔𝑔𝑘𝑘+1 +�(1−𝑡𝑡)𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑠𝑠𝑘𝑘

𝑦𝑦𝑘𝑘
𝑇𝑇𝑠𝑠𝑘𝑘

� 𝑠𝑠𝑘𝑘 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘∗𝑠𝑠𝑘𝑘     (12) 

Multiply by both side of eq.(12)  𝑠𝑠𝑘𝑘т𝛻𝛻𝑓𝑓𝑘𝑘+1 and we get:  
−𝑠𝑠𝑘𝑘𝑇𝑇𝛻𝛻𝑓𝑓𝑘𝑘+1𝛻𝛻−1𝑓𝑓𝑘𝑘+1𝑔𝑔𝑘𝑘+1

+ �
(1 − 𝑡𝑡)𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑠𝑠𝑘𝑘

𝑦𝑦𝑘𝑘𝑇𝑇𝑠𝑠𝑘𝑘
� 𝑠𝑠𝑘𝑘𝑇𝑇∇𝑓𝑓𝑘𝑘+1𝑠𝑠𝑘𝑘=−𝑠𝑠𝑘𝑘𝑇𝑇∇𝑓𝑓𝑘𝑘+1𝑔𝑔𝑘𝑘+1

+ 𝛽𝛽∗𝑠𝑠𝑘𝑘𝑇𝑇∇𝑓𝑓𝑘𝑘+1𝑠𝑠𝑘𝑘                                                                         (13)  
-𝑠𝑠𝑘𝑘т𝑔𝑔𝑘𝑘+1 + �(1−𝑡𝑡)𝑔𝑔𝑘𝑘+1

т 𝑠𝑠𝑘𝑘
𝑦𝑦𝑘𝑘
т𝑠𝑠𝑘𝑘

� 𝑠𝑠𝑘𝑘𝑇𝑇∇𝑓𝑓𝑘𝑘+1𝑠𝑠𝑘𝑘 = −𝑠𝑠𝑘𝑘𝑇𝑇∇𝑓𝑓𝑘𝑘+1𝑔𝑔𝑘𝑘+1 +

𝛽𝛽∗𝑠𝑠𝑘𝑘т∇𝑓𝑓𝑘𝑘+1𝑠𝑠𝑘𝑘                                                                              (14) 

𝛽𝛽ᵏ
∗ =

−𝑠𝑠𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘+1+𝑠𝑠𝑘𝑘

𝑇𝑇∇𝑓𝑓𝑘𝑘+1𝑔𝑔𝑘𝑘+1+�
(1−𝑡𝑡)𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑠𝑠
𝑘𝑘  𝑠𝑠𝑘𝑘

𝑇𝑇 ∇𝑓𝑓𝑘𝑘+1𝑠𝑠𝑘𝑘  

𝑦𝑦𝑘𝑘
𝑇𝑇𝑆𝑆𝑘𝑘

�

𝑠𝑠𝑘𝑘
𝑇𝑇 ∇𝑓𝑓𝑘𝑘+1𝑠𝑠𝑘𝑘

                           (15) 

𝛽𝛽ᵏ
∗ = −𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑠𝑠𝑘𝑘  
𝑠𝑠𝑘𝑘
𝑇𝑇 ∇𝑓𝑓𝑘𝑘+1𝑠𝑠𝑘𝑘

+ 𝑠𝑠𝑘𝑘
𝑇𝑇∇𝑓𝑓𝑘𝑘+1𝑔𝑔𝑘𝑘+1
𝑠𝑠𝑘𝑘
𝑇𝑇 ∇𝑓𝑓𝑘𝑘+1𝑠𝑠𝑘𝑘

+ �(1−𝑡𝑡)𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑠𝑠𝑘𝑘  

𝑦𝑦𝑘𝑘
𝑇𝑇𝑆𝑆𝑘𝑘

�                 (16) 

                                            
From [8] since 

𝑠𝑠𝑘𝑘т∇𝑓𝑓𝑘𝑘+1𝑠𝑠𝑘𝑘 = 2 3 𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘 + 2 3(𝑓𝑓𝑘𝑘 − 𝑓𝑓𝑘𝑘+1)𝑦𝑦𝑘𝑘 ⁄⁄  
̦ we get :  
𝛽𝛽ᵏ
∗ = −𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑠𝑠𝑘𝑘  

2/3 𝑠𝑠𝑘𝑘
т𝑦𝑦𝑘𝑘+2/3 (𝑓𝑓𝑘𝑘−𝑓𝑓𝑘𝑘+1) + 𝑦𝑦𝑘𝑘

𝑇𝑇𝑔𝑔𝑘𝑘+1
2/3 𝑠𝑠𝑘𝑘

т𝑦𝑦𝑘𝑘+2/3 (𝑓𝑓𝑘𝑘−𝑓𝑓𝑘𝑘+1) + �(1−𝑡𝑡)𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑠𝑠𝑘𝑘  

𝑦𝑦𝑘𝑘
𝑇𝑇𝑠𝑠𝑘𝑘

�         
Then new direction is defined:  

𝑑𝑑𝑘𝑘+1
= −𝑔𝑔𝑘𝑘+1

+ �
−𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑠𝑠𝑘𝑘  

2
3 𝑠𝑠𝑘𝑘

т𝑦𝑦𝑘𝑘 + 2
3 (𝑓𝑓𝑘𝑘 − 𝑓𝑓𝑘𝑘+1)

+
𝑦𝑦𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘+1

2
3 𝑠𝑠𝑘𝑘

т𝑦𝑦𝑘𝑘 + 2
3 (𝑓𝑓𝑘𝑘 − 𝑓𝑓𝑘𝑘+1)

+ �
(1 − 𝑡𝑡)𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑠𝑠𝑘𝑘  

𝑦𝑦𝑘𝑘𝑇𝑇𝑠𝑠𝑘𝑘
�� 𝑠𝑠𝑘𝑘                                                                              (17) 

 
    The new algorithm :  

Step1: given x0 ∈  𝑅𝑅𝑛𝑛 , Set k= 0. 
Step2: let 𝑑𝑑0 = −𝑔𝑔0 
Step3: Determine the positive step length (𝛼𝛼𝑘𝑘) 
that satisfies equations (4) and (6), and then 
determine 𝑥𝑥𝑘𝑘+1 in eq.(2) 
Step4: if ‖𝑔𝑔𝑘𝑘‖ ≤ 10−5 , Cease operations; 
otherwise, calculate the new direction with 
equation eq (17). 

Step5: If k= 𝑛𝑛 or Powell restart �𝑔𝑔𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘+1�

‖𝑔𝑔𝑘𝑘+1‖2
≥

0.2 [9], Then, continue to step 2. Otherwise, set 
k to k+1 and proceed to step 3. 
” 

 Theorem [1]: 
Let the line search kα  in (2) satisfies the strong Wolfe 

condition, then the new search direction given by eq (17) is a 
sufficient descent direction. 
Proof: 

After we multiplying both sides of Eq. (17) by � 𝑔𝑔𝑘𝑘+1
‖𝑔𝑔𝑘𝑘+1‖2

�then 
we get: 
  
𝑑𝑑𝑘𝑘+1т 𝑔𝑔𝑘𝑘+1

2
1+kg

+ 1

= (
−𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑠𝑠𝑘𝑘  

2
3 𝑠𝑠𝑘𝑘

т𝑦𝑦𝑘𝑘 + 2
3 (𝑓𝑓𝑘𝑘 − 𝑓𝑓𝑘𝑘+1)

+
𝑦𝑦𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘+1

2
3 𝑠𝑠𝑘𝑘

т𝑦𝑦𝑘𝑘 + 2
3 (𝑓𝑓𝑘𝑘 − 𝑓𝑓𝑘𝑘+1)

+ �
(1 − 𝑡𝑡)𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑠𝑠𝑘𝑘  

𝑦𝑦𝑘𝑘𝑇𝑇𝑠𝑠𝑘𝑘
�)  

𝑠𝑠𝑘𝑘т𝑔𝑔𝑘𝑘+1
2

1+kg
                                                                      (18) 

 
By using eq.(6),we obtain  
 

≤ (
𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑠𝑠𝑘𝑘  

2
3 𝑠𝑠𝑘𝑘

т𝑦𝑦𝑘𝑘 + 2
3 (𝑓𝑓𝑘𝑘 − 𝑓𝑓𝑘𝑘+1)

+
𝑦𝑦𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘+1

2
3 𝑠𝑠𝑘𝑘

т𝑦𝑦𝑘𝑘 + 2
3 (𝑓𝑓𝑘𝑘 − 𝑓𝑓𝑘𝑘+1)

+ �
(1 − 𝑡𝑡) − 𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑠𝑠𝑘𝑘  

𝑦𝑦𝑘𝑘𝑇𝑇𝑠𝑠𝑘𝑘
�)  

−𝜎𝜎𝑠𝑠𝑘𝑘т𝑔𝑔𝑘𝑘
2

1+kg
                   

 

since 𝑦𝑦𝑘𝑘т𝑔𝑔𝑘𝑘+1 ≤ 1 +kk gy and from (4) ̦ we obtain  
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≤ (
−𝜎𝜎 2 (𝑔𝑔𝑘𝑘т𝑠𝑠𝑘𝑘)2

[2 3⁄  𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘 − 2 3 𝛿𝛿𝛿𝛿𝑘𝑘𝑔𝑔𝑘𝑘т𝑑𝑑𝑘𝑘⁄ ] 2
1+kg

+
−𝜎𝜎𝑠𝑠𝑘𝑘т𝑔𝑔𝑘𝑘 1 +kk gy

[2 3⁄  𝑑𝑑𝑘𝑘т𝑦𝑦𝑘𝑘 − 2 3 𝛿𝛿𝛿𝛿𝑘𝑘𝑔𝑔𝑘𝑘т𝑑𝑑𝑘𝑘⁄ ] 2
1+kg

+ �
(1 − 𝑡𝑡)𝜎𝜎 2 (𝑔𝑔𝑘𝑘т𝑑𝑑𝑘𝑘)2

𝑦𝑦𝑘𝑘𝑇𝑇𝑠𝑠𝑘𝑘
2

1+kg
�)    

Since 𝑠𝑠𝑘𝑘т𝑔𝑔𝑘𝑘 ≤
−𝑠𝑠𝑘𝑘

т𝑦𝑦𝑘𝑘
(𝜎𝜎+1) 

≤
−𝜎𝜎 2 � 𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘

(𝜎𝜎 + 1)�
2

�2 3⁄  𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘[1 − 2 3 𝛿𝛿𝛿𝛿𝑘𝑘
(𝜎𝜎 + 1)
𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘

� �
2

1+kg

+

𝜎𝜎𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘
(𝜎𝜎 + 1) 1 +kk gy

�2 3⁄  𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘 − 2 3 𝛿𝛿𝛿𝛿𝑘𝑘
(𝜎𝜎 + 1)
𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘

� �
2

1+kg

+

⎣
⎢
⎢
⎡(1 − 𝑡𝑡)𝜎𝜎 2 � 𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘

(𝜎𝜎 + 1)�
2

𝑦𝑦𝑘𝑘𝑇𝑇𝑠𝑠𝑘𝑘
2

1+kg ⎦
⎥
⎥
⎤
) 

 

≤

𝜎𝜎𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘
(𝜎𝜎 + 1) 1 +kk gy

�2 3⁄  𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘[1 − 𝛿𝛿𝛿𝛿𝑘𝑘 �
𝜎𝜎 + 1

(𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘) � �
2

1+kg

+

⎣
⎢
⎢
⎡(1 − 𝑡𝑡)𝜎𝜎 2 � 1

(𝜎𝜎 + 1)�
2
𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘

2
1+kg ⎦

⎥
⎥
⎤

= ȗ 

where ȗ is small constant 
 

𝑑𝑑𝑘𝑘+1т 𝑔𝑔𝑘𝑘+1
2

1)1( +−−≤ kgγ                                           
(19)  
The proof is complet. 
 
 

ASSUMPTION(A)  [10] 

(“(i(i)  The set S, defined as 𝑆𝑆 = {𝑥𝑥: 𝑓𝑓(𝑥𝑥) ≤ 𝑓𝑓(𝑥𝑥0)}, is 
bounded, indicating the       existence of a positive scalar 
b > 0 such that ‖x‖ ≤ b,∀x ∈ s. 

(ii)  The function f demonstrates continuous 
differentiability inside a neighborhood N of S, and its 
gradient satisfies the Lipschitz condition, as given by 
the equation: 

‖g(x) − g(y)‖L‖x − y‖,∀x, y N∈ N                          (20)     

On the basis of these assumptions concerning f, we are able 
to arrive at the conclusion that there is a positive constant 
represented by γ>0 that occurs in such a way that: 

 𝛾𝛾 ≤ ‖𝛻𝛻𝛻𝛻(𝑥𝑥)‖ ≤ 𝛾̅𝛾                                                (21)                                                                                

Below the assumptions (i) and (ii) on f, we are able to deduce 

that there exists γ >0 such as 

   γγ ≤∇≤ )(xf                              (22) "                                                             

                                             

For strictly convex function we have : 

(iii) 
0S,yx,    ,)))(()(( 2 >∈∀−≥−− µµ yxyxygxg

     
                                                                                

(23) 

Theorm[2] : Global convergence  
Given Assumption [A]and theorem [1] hold then 

lim
𝑘𝑘→∞

(inf‖𝑔𝑔𝑘𝑘‖=0) 
Proof 
    Since this is the case, taking into consideration the absolute 
value of 𝛽𝛽𝑘𝑘∗, we obtain: 

│𝛽𝛽∗│ = │
−𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑠𝑠𝑘𝑘  

2
3 𝑠𝑠𝑘𝑘

т𝑦𝑦𝑘𝑘 + 2
3 (𝑓𝑓𝑘𝑘 − 𝑓𝑓𝑘𝑘+1)

+
𝑦𝑦𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘+1

2
3 𝑠𝑠𝑘𝑘

т𝑦𝑦𝑘𝑘 + 2
3 (𝑓𝑓𝑘𝑘 − 𝑓𝑓𝑘𝑘+1)

+ �
(1 − 𝑡𝑡)𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑠𝑠𝑘𝑘  

𝑦𝑦𝑘𝑘𝑇𝑇𝑠𝑠𝑘𝑘
�│ 

 

│𝛽𝛽∗│ ≤ │
−𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑠𝑠𝑘𝑘  

− 2
3 [𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘 + 2

3 (𝑓𝑓𝑘𝑘+1 − 𝑓𝑓𝑘𝑘)]
│

+ │
𝑦𝑦𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘+1

2
3 𝑠𝑠𝑘𝑘

т𝑦𝑦𝑘𝑘 + 2
3 (𝑓𝑓𝑘𝑘+1 − 𝑓𝑓𝑘𝑘)

│

+ │ �
(1 − 𝑡𝑡)𝑔𝑔𝑘𝑘+1𝑇𝑇 𝑠𝑠𝑘𝑘  

𝑦𝑦𝑘𝑘𝑇𝑇𝑠𝑠𝑘𝑘
� │ 

From eq, (4),eq.5 and since 𝑦𝑦𝑘𝑘т𝑔𝑔𝑘𝑘+1 ≤ 1 +kk gy we have: 
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│𝛽𝛽∗│ ≤ │
𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑠𝑠𝑘𝑘  

[2 3⁄  𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘 − 2 3 𝛿𝛿𝛿𝛿𝑘𝑘𝑔𝑔𝑘𝑘т𝑑𝑑𝑘𝑘⁄ ]│ 

+ │
1 +kk gy

[2 3⁄  𝑠𝑠𝑘𝑘т𝑦𝑦𝑘𝑘 − 2 3 𝛿𝛿𝛿𝛿𝑘𝑘𝑔𝑔𝑘𝑘т𝑑𝑑𝑘𝑘⁄ ]│ 

+ │
(1 − 𝑡𝑡)𝜎𝜎𝑔𝑔𝑘𝑘𝑇𝑇𝑠𝑠𝑘𝑘  

𝑦𝑦𝑘𝑘𝑇𝑇𝑠𝑠𝑘𝑘
│ 

Since 𝑠𝑠𝑘𝑘 = −𝑔𝑔𝑘𝑘   [11] we obtain 
 

│𝛽𝛽∗│ ≤ │
𝜎𝜎‖𝑔𝑔𝑘𝑘‖2

�2 3⁄  kk sµ + 2 3 𝛿𝛿𝛿𝛿𝑘𝑘‖𝑔𝑔𝑘𝑘‖2⁄ �
│ 

+ │
1 +kk gy

�2 3⁄  kk sµ + 2 3 𝛿𝛿𝛿𝛿𝑘𝑘‖𝑔𝑔𝑘𝑘‖2⁄ �
│ 

+ │
(1 − 𝑡𝑡)𝜎𝜎‖𝑔𝑔𝑘𝑘‖2

kk sµ
│ = ϖ  

Dsgd kkk =+≤ ++  11 ϖ  

∑ 1
‖𝑑𝑑𝑘𝑘+1‖2

≥ 1
𝐷𝐷2
∑ 1𝑘𝑘≥1 = ∞𝑘𝑘≥1 . 

i.e. 𝐿𝐿𝐿𝐿𝐿𝐿
𝑘𝑘→∞

‖𝑔𝑔𝑘𝑘‖ = 0. 

4. Numerical result and comparisons 
 

“The numerical results of the new technique and the HS 
C.G method are reported in this section. These results are 
based on test problems chosen from [12], and they are 
presented in this section. Taking into consideration the fact 
that the halting criterion is‖𝑔𝑔𝑘𝑘‖ ≤ 10−5 , we are having this 
in mind. The employment of cubic lines is what allows for 
the unique method to be accomplished. It is necessary to 
make use of the Dolan-More tool [13] in order to guarantee 
that the performance of the new approach is satisfactory. 

Figures (1,2) Using the Dolan-More graph, this research 
presents an illustration of the performance of the novel 
method. This illustration is offered in this study. Particularly 
for problem dimensions that are somewhat close to (1000, 
10000), the focus is on the number of function evaluations 
(NOF), which will be discussed further below. In Figures (3, 
4), It is possible to accomplish the goals that have been set 
by placing an emphasis on the performance of the new 
technique, which is dependent on the  (NOI) with dimensions 
that are typically between 1000 and 10000. Because of this, 
we are able to accomplish the specified results. 

Figure (5,6) displays the graphical description of the new 
technique, which is based on the amount of time spent by the 
central processing unit (CPU) and has dimensions of 1000 
and 10000. These parameters, which are used to characterize 
the approach, are displayed presently. “ 

 

 
Figure 1. performance profiles of NOF with (n=1000) 

 

 
Figure 2. performance profiles of NOF with (n=10000) 
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Figure 3. performance profiles of NOI with (n=1000) 

 
 

 
Figure 4. performance profiles of NOI with (n=10000) 

 
 

 
Figure 5. performance profiles of CPU time with 

(n=1000) 

 
Figure 6. performance profiles of CPU time with 

(n=10000) 
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Conclusion 
On the other hand, this was only the case when those 

aspects were taken into consideration. Despite the fact that 
the one-of-a-kind method was successful in establishing 
both sufficient descent and global convergence in certain 
instances, this was only the case when those criteria were 
taken into consideration. This success of our algorithm is 
proved by the numerical results that are depicted in the 
graphics that were explained earlier in this paragraph. 
Making a direct contrast with the traditional method to high-
speed computing is the means by which this is 
accomplished. “ 
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