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ABSTRACT

The Biharmonic equation is one of partial differential equations
which arise from discussion of some applied sciences such as fluid
dynamics. In this paper, we have adopted a numerical method to solve that
equation, this method is developed basically from ADI (Alternating-
Direction- Implicit) finite difference method which was used in the solution
of Laplace equation.
Keywords: partial differential equation, finite difference method,
Alternating- Direction- Implicit, Laplace equation, Biharmonic equation.
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1-Introduction:

The ADI (Alternating- Direction-Implicit) method is one of the finite
difference technique used in the solution of partial differential equations. A
parabolic partial differential equation having two space coordinates, that is
let u=(x,y,t) and v=(i, j,n), where y= jAy. A simple example arising
from unsteady-state heat conduction in a flat plate is
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ou o0°u  d%u
- = 4 —
ot ox* oy’
the explicit method leads to the difference equation
Vi,j,n+1 _Vi
A—t_5xvljn +5yvljn
on the other hand, the implicit method leads to the difference equation
Vi,j,n+1 _Vi 2
A—t_5 |Jn+1+5 i,j,n+l

which, when written out in full to the simple case of square grid with
AX = Ay, has the form

A - AV +([1+4A)v, - AV - AV Vv

i-1,j,n+l i+1,j,n+1 = Vi j,n

At
AX)?
Essentially, the alternating implicit direction method is to employ
two difference equations are used in turn over successive time-steps each of

duration A%. The first equation is implicit only in x-direction and the

i,j-1,n+1 i,j,n+1 i,j+1,n+1

where A=

second is implicit only in the y-direction. Thus, if v;;is an intermediate
value of the end of the first time-step, we have

V:jA_tV _ 5)(2\/:‘J +55 i ..(1.2)
b2
followed by
Voo =V
i,j,n+l ij 52\/ +5 V. (12)

A% x Vi, y Vi,jn+l

written out in full and rearranged with Ax= Ay for simplicity, these
equations become

* 1 * *
(13) vy + 2(; +hv;; —v

i+1j |jln+2( )Ijn+v

i,j+1,n

L +2( +1)v, -V, Vig +2(Z_1)Vi*'j +V ..(1.4)

| j.n+ i,j,n+l i,j,n+l = i+1,j

2- Example .1 (solution of Laplace equation by using ADI )

Consider for simplicity the following Laplace equation VT =0
under the boundary conditions given by,
T =constant along the sides x=1and y=1
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a—T:O and ﬂ:0 along the sides x=0and y=0
OX oy

Now, by using ADI we have to solve the unsteady-state case instead
of Laplace equation, that means we have to solve the following equation,[1]

orT  o°T o°T

- = +

ot ox* oy’

Using the formula (1.1),(1.2), equation (2.1) can be written as two
difference equations,

(2.0

2h? 2h?
—Ti4; +(A +2)T5 T :Ti.j—1+(_AT =T +Tija -(2:2)
n+ 2h2 n+ n+ * 2h2
-T +(A + 2T =T =T +(Az' —2T + T ..(2.3)

Where Tis the absolute temperature, T"is the intermediate
temperature h=Ax=Ay, space incrementsAz, time increments each of

equations (2.2),(2.3) represents a tridiagonal system, which can easily be
solved by Gaussian elimination method, see [7, 9] for more details.

3- Example .2 (solution of Biharmonic equation by using ADI )
Consider the following Biharmonic equation

Vi =0 (3.1

with the boundary conditions, = aa—l// = %// =0, on the rigid boundaries.
X

Equation (3.1) can be written as, [5]
4 4 4
v a0V TV _j .(3.2)
OX ox°oy® oy
When we implement the ADI method into the solution of equation
(3.2), we have to solve the following equation,
4 4 4
a_'//:al/:+2 82W2+6l/4/ ..(3.3)
ot ox ox“oy® oy
Equation (3.3) under the finite-difference ADI method convert into
the following form

l//” l/jlj

B

* 2 4. n
l//i‘j +2r56°6 MR N ..(3.4)

87



Ahmed M. Jassim

n+1

Vis Vil _ iy ors2s7yn 4 sty .(35)
A
2

Where ris an arbitrary weight factors,,5, are the difference in

xand y direction, respectively. Equations (3.4),(3.5) can easily be written as

a linear system AY =B, where A is a five-diagonal coefficient matrix
[3,8]. The finite-difference equation in each time-step can be expressed as
the following linear algebraic equation of the form,

* n AT * * * * * ZATr
2(l//i,j _Wi,j):w[Wi—Z,j —Ayl 0y =i +Wi+2j]+w

n n
=20 T Wi al

[l//in—l,j—l -
- 2‘//irjj 7N ja Zl/lin—l,j + 4‘//ir,]j - 2‘//in+1,j + [//in—l,j+1

Arr 0 N
(A ) [l//| j-2 4!//| j-1 +6l//lj 4l//i,j+l +l//i,j+2] (36)
2ATY
2>y )= Ay, +bW A, o+, —mMmm [, —
(l// Wl,]) (A ) [WI 2,j l//l—l,j (//|,] '//H-l,J WH—Z,J] (AX)Z (Ay)z ['l[/l—l,j—l
- Zl/lir,]j—l + Wi [ 2‘//;11,1' + 4l//ir,1j - 2‘//in+1,j + l//in—l,j+1 - 2‘//ir,]j+1 + ‘//in+1,j+1] +
A n+ n+ n+ n+ n+
(A ) [l//I 112 _4l//i,jll +6l//| ' 4l//| 111 +l//| 112] (37)

The boundary conditions related to this equation will take the
following finite-difference form:

Vo,i =Wn.j =0.0

% =0.0, implies ', =y, ..(3.8)
. , ,

Vi —Vija
Ay
Simplifying the equations (3.6) and (3.7) we get:

4
—yi,; A, -6~

:0,0’ |mp||es ‘//i,N :‘//i,N—l

2 * * * n n n n
E)V/i,j AL Wi = 2 2 W 2

+4y! i~ 2y " it 7 i 2, jat Vig j+1] +1y; i~y : jat 6y i 4y T

4

n 2 n
+l//i,j+2]+A_z_l//ivJ' (39)

4
n+1 n+l

2h n+ n+ n+ % %
_‘//IJ 2 +4l//i,j—1 (6_7)!/4 ]l +4W| JJ];]. v, 112 l//i—Z,j _4‘7”i—1,j +(6

4

2h * *
+E)Wi,j —dyia
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"“//i*+2,j "'Zr[‘//in-l,j-l _Zl//ir,]j—l +‘//in+1,j—1 _2‘//in-1,j "‘4‘//:1 _Zl//irlrl‘j "“//in-l,j+1 _2Wirjj+1 +
Wil (3.10)
Where h=Ax=Ay and y,py" refer to stream function at the
beginning and at the end of half time-step AV, equation (3.9) is applied to

points i =1,2,..,n—1 inthe j" column, with the boundary conditions (3.8),
we then have the following five diagonal system for the j" column,

CoWo; T €W T QW2 =d,

biwo; oWy e, + 0 =d,

QYo T O e O =d, ( )
Ay Whisj T OV 2 F O W T e Wt OV i =dy,

AyWn o TN oW e N T I inea =d,

with

d, = 2r[l//in—l,j—l - Zl//irjj—l + Winﬂ,j—l - 2l//in—l,j + 4‘//ir,]j - 2‘//in+!,j
+ l//in—l,jJrl - 2‘//ir,]j+1 + '//in+1,j+1] + +r[Wir,]j—2 - 4'//irjj—1 + GWir,]j - 4‘//irjj+1 + ‘//ir,]j+2]
Similarly the equation (3.10) is applied to each point j=12,.,n-1

in the i" row, with the boundary conditions (3.8) which gives the following
five diagonal system for the i" rows:

n+l n+l n+l *
CoWino tE€Wio "’go‘//i,; =d,
n+l n+l n+l n+l —d*
byiy +CWiy Tewi, + 0w =d,

n+l n+l n+l n+l n+l * 312
CHTAMPIE R VR 7 v 72 R Ve P =d; ( )
n+l n+l n+l n+l n+l *
AnaVin-s T by aWin 2 FCoyaWina FenaWin t InaVina =dy,
n+l n+l n+l n+l n+l *
A Wino TONWiNy F OV Wi T OnWin.e =0y
with

* * * 2h2 * * * n n n
di=yi,;— i+ (6+E)V/i,j Ayl W T2 2 W
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-2y, i Hy ;| i AV it Wiy 1 2y ja T Wi j+1]

The systems (3.11),(3.12) can be expressed as a linear system of the
form A*X* =B", where A" is a five diagonal matrix of the coefficients
(a,b.,c.,e,0;). X" represents the vector of dependent variables, B* is the
vector of constants which are known, this system can be written as follows:

C, & 9, O : . 0 0 | x; B,
b, ¢, ¢ 9, O . 0 0 | x B,

= ..(3.13)

4- Five diagonal Algorithm:
The solution of the system (3.13) is exactly the same as linear

algebraic equation av,, +byv,, +cv, +ev,, +g,v,,, =d; i1=012.., N
which can be expressed as

Vv, , +bv, ,+cv, +ev,, +09,v,,, =d, ..(4.1)
a‘N—lVN—S + bN—lVN—Z + CN—lvN—l +eN—lVN + gN—1VN+1 = dN—l (42)
ayVy_, bV +CyVy eV T Iy Ve =0dy ..(4.3)

To solve the equations (4.1),(4.2) and (4.3) we consider the
following difference relation,

Vi =7i = PiVia —Vipp ..(4.5)
Now
Via =Via — BiaVi — Vi
Vi, = Vi = BiaVia — i,V
=Via = Bio(ria = BiaVi —&iaVina) — i,V
=Vio = BiaVia t (BaBia — i Vi + Byt Vi
eliminating v, , and v, , from (4.1) gives,
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& (Vi = BiaVia + (BiaBin — i)V + B yVig) +
+0,(ria = BiaVi — i Vig) GV ++ eV, + 00V, =d;
Which gives:
V. = di+ @B, —b)rii—ayi, L afio - bai,te V.

L g+@pL,-b)Ba-aa, c+@pf,-b)Bi-aa, "

B gi V.,
¢ +(@pf,-0)f.-aa.,

comparing equation (4.5) with equation (4.6), we will get:

..(4.6)

_ di+(@B_,—b)ri,i—ar.,
Vi=
G+@p,-b)Bi-aa.,
e, —ha te
I ¢ +(@ B, -b)B,-aa.,
a = 0;
¢ +(@pB,-b)B,—aa.,

5- Results and conclusions:

The results indicate that we can reach a steady-state solution by
using ADI method after choosing appropriate time increment (Az) for the
both equations (2.1) and (3.3), it was found that (Az =0.00125) for the
equation (2.1) and (A7 =0.00015) for the equation (3.3), respectively. It is
also clear from the figures (5.1)-(5.4) how to reach a steady-state after some
iterations for different nodal points as it is seen in the figures below:

|

Tarparatue at (74}
-

Sewroe Temperature= 100
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Figure (5.1)

This figure shows how to reach the steady-state for the temperature
taken at the nodal point (7.4).

10

Terperatue at (33)

. Sowce Temperature= 100
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This figure shows how to reach the steady-state for the temperature
taken at the nodal point (8.3).
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Figure (5.3)

This figure shows how to reach the steady-state for the stream
function taken at the nodal point (8.2).
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Figure (5.4)

This figure shows how to reach the steady-state for the stream
function taken at the nodal point (3.4).
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