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ABSTRACT
The rings of differential operators have been studied by many
mathematicians like Musson [5], Smith and Stafford [7]. Jones in [2] and [3]
introduced new ideas for such kind of rings and he found a new line.
In this work, we generalize many of the relations of Jones in the first
part, and we found a new proof for some relations of Jones.
Keywords: rings of differential operators.
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1. Introduction:
Let k be an algebraically closed field of characteristic zero. For a

commutative  k-algebra A, we defined D(A):=0Di(A) where

i=0
D°(A)=End,(A) and D'(A)=1{0eEnd,(A)[0,a]e D"*(A)Vaec Al
ThenD(A) is a sub ring of End,(A), called the ring of differential

operators on A. For an irreducible affine variety X, we define Di(x):=
D(O(x)) where O(x) is a ring of regular functions of X and call this ring
D(O(x)) of differential operators on X.

Let N be a free Z-module of rank r and M =Hom,(N,Zz) its Z-

module dual. Then we have a bilinear pairing (,): M x N — Zwhich
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extends t0 (,):MyxNy—>Q Wwhere Mgy =M®, QandN,=N®, Q.
Let f (M, ) be a subset of the form H, ={i e My, :f(1) > 0f, defined is a
half space of M o LetV be a finite dimensional vector space over Q.

A subset {veV:A(V)>0} where 1:V — Qis a non-zero linear

function called a half space of V. A cone o, in V is the intersection of a
finite number of half spaces. It can be written in the form:

S

A subset of o of the form {veV:A(v)=0} where 1:V —Qis a

linear functional positive on o is called a face of . The dimension of the

cone o is the dimension of the vector space c-c over Q.
\

Consider a cone o in NQ. Let é:{peMQ 1<D,G>§on}' Then o is

\Y
an r-dimensional cone in M, and o Mis finitely generated additive

- - . v
semi-group containing 0, (see [6, 1.1]). Let R=k[cnM]=® , X, be the

recnM
semi-group algebra.

Here X" is a formal monomial and the multiplication is given by
the semi-group addition. Choose once and for all a Z-basis of M, say
{m,my,........ m,}. Thenset x; =X™ and 8; =d/0Xx;.

Jones in [3] starts with a single relation. In this paper, we use that
relation to obtain a new general basis.

2. The semi-groups A and A

In this section, we repeat in the first part the definition of the
semi-group A, we give many of its features. Jones in [3] used these

features to define another semi-group, denoted by A .
Consider a finite set F1 of hyper-planes such that each is parallel but

not equal to some OH;. We also suppose that A = (ém MJ\( U FnN M)
FeR
is a semi-group. We call such a semi-group a hyper-plane deleted sub semi-

group of (cvaj. For any hyper-plane F in MQ, let e(F) be the polynomial
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of S(Mg,) which defines F. Note that for FeF,, e(F) are the polynomials of

degree 1, with rational coefficients.
Definition 2.1: A semi-group I is said to be normal if one of the following
equivalents conditions holds:

(1) For a,b,cel'if a+nb=nc forne N, then a=na; for some
a, el.

(2)ForaeZl'and 0=neN, if naeTl, thenaeT .

For an arbitrary finitely generated semi-group the normalization of
I, 1: is defined as: T = {a eZl''nael, forsome0=ne N}.

Musson in [4,1.3] introduced the following proposition:

Proposition 2.2: For a semi-group A , the following are equivalents:
(1) A isnormal;
(2) For any field k, KA is an integrally closed Noetherian domain;
(3) For some 0<t<s, Ais isomorphic to a semi-group of the

form (Z‘20 X Zs‘t)mv, where V is a subspace of Mg and dim

QA=r;
(4) Forsome t,n>0, A is isomorphic to a semi-group of the form

MAH; N...nH, where H; are half spaces in Mg and ZA=M.

In the following lemma, Jones in [3] defined another semi-group A :-

Lemma 2.3:
~ \

1) A=ocnM;
@) kA:k{c\;m M}:k]\'.

Proof:

v
(1) Forall ,.eanMand ae N, wehave aA € A because A is

\%) \%
a semi-group of 6 M M suchthat ®.,0 A=c and ZA=M,

~ \
then M=ZA=ZA and M=(cnM), therefore

\' ~
cNnM=A.

(2) The second result is true by the proposition (2.2) in the second
part m
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Now, For A an arbitrary semi-group such that ZA =M, let kA be
the associated semi-group algebra of A and D(kA) the ring of differential
operators. Then D(kA) < D(kM)

Clearly x,0,isin D(kKA). Now for pe ZA, X;0; * X" =p;x" ,
where L= (Ly,p e L))

Let W =Q[X,0;,......X,0,] ®, k then W D(kA). ~ Thus  the
elements of W define polynomial functions from zA < M, to k by the rule
X0 (n) =p; for pe ZA.

Thus for f e Wand pe ZA | f(X,0;,...., X, 0, )x" =f (u)x".

Definition 2.4: For A,B< M andA € M, define
QagM)={neAr+peB|

Also let

Qp (L) =Qp a(X). For Q = Mdefine Q to be the Zariski closure

in Mg, and let 1(Q) = {f e Wif (p) =0, Vp e Q}. Also 1(Q) = 1(0Y).
Lemma 2.5: [Musson]

Let Abe a semi-group of M with QA =M,. For ge(M,)" and
beQ set A, ={L e A:g(rL) =b}. Suppose that:

1) Ab * (1);

(2) dim, QAo =r—1. Then A, = . € My ig(A) = by

Now, we decompose 2 () into pieces,
Qk(%) = {ueKE?ﬁug H, N M}.
Observer that Q (1) = uQiK ).
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Proposition?2.6:
QL (W)= fueMyih (W) eh; (M) & 0<h,(u) <—h; (W)}, for i=1.2,....r

Hence Qi;\(K) is a finite union of hyper-planes parallel
to OH,;.

Proof: h; is linear, then the left side is included in the right-hand side.
Also, the right-hand side is Zariski closure in MQ. By the Lemma 2.5,we
suppose  that  h;(u)=beh;(M)withO<h;(u)<-h;(A). Let
Ay, ={heA:h,(u)=b} with A,=¢. H, is a face of o, then
dimy QA =r1-1. Therefore, by the Lemma 2.5,

Ay ={heMgh,(0) =b}jand pe QL ().

Proposition 2.7:
(1) WcD,(x);

2) D,(x)= @ X* 1(Qz (1))

(3) Q= () is a finite union of hyper-planes each parallel to some

oH,;
Proof: Clearly the first and the second properties are satisfied by [2]. For
the third property, we have Q(L)=uUQ'(L). By the proposition 2.6,

Q}\ (A) is a finite union of hyper-planes parallel to 0H;, then

Q) =uQ' (L) =uQ' (M),

and m is a finite union of hyper-planes parallel to oH;. For the fourth
property, it’s clear that Q;(\)c m AA.

Now we suppose that FQQ;\ (A) is a finite union of hyper-planes
parallel to some OH; . By [3, lemma 3.5] we have

A+FcHS = A+ (FAA)cHS
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:megg(x).
and Q_KmK: (uF)mK
:u(FmK)
c Q5 (M),
Then Q< (}) :mm]{.

3. The new relations:

In this section, we start with a single relation of Jones and we use
this relation to obtain a new general basis.

Proposition 3.1: For A e M = ZA = ZA , the following holds:
@ QW =9, ;) |y Flwhere Y = {Fe F :FcQ; ().
©) 3
Q; () =0; ()0 U(F-1) whereS = {Fe R i (F-A) N A = ).

Proof:
(1) Let @ be the set of hyper-plane, then
Q:-M)=vuF=0UFu U F.

Fed® FeY Fed\Y

Now, by the definition QAJ\(X):{MGA:k+u¢K}, then

Also Q, (1) =Qz; (M) N A

=Q:(\)NANA ;by(27.4)
m ; (ACA)
(U FUU)NA

Fed\Y FeY

=(u FnA)U( U FNnA)

Fed\Y Fed\Y

= U FNnA
Fep\Y

= u F
Fep\Y

Th -M)=Q, - :
us Q< (1) QA'A(k)kaEJYF
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(2) See [3, Proposition 3.11.2] m

Jones in [3] gave the following lemma, which is given here with a new
proof.

Lemma 3.2: For ) ¢ M,QA(x):QAK(x)U U(F-2) where
’ Fex'
Y={FeR:(F-A)NnA=d}

Proof: We have, Q (A) = Q3 4 (A) N A. By proposition (3.1):
Q, () :(Qx(k)u U (F—?»)j N A
Fex

~(; 0 Ao UF-)
=Q, ()Y F%‘(F -A)

From Proposition (2.7) and (3.1) and Lemma 3.2, we can write and
prove the following:
Theorem 3.3:

1 QAN M) =, ;(V);

@ QM)NA=Q,();

@) Q; WNA=Q; ,(V);

@ Q,:WN)NA=Q, ;(A);

6) Q)N (AVA)=;

© QW) N(A\A)=0;

M Q7 ,(WNA\A) =05, (W\Q, ().

Proof:
(1) Since Q, (1) =QM(/1)mA and QA'X(;L)=QK(1)mA

then by Proposition 3.1 and Lemma 3.2, we have
Q, ;M) =z, (M)

Q, ;MM =05, (W)
Then Q, (A) N Q3 (A) =(Q5 , () N A)NQ; (A)
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—05 ()N (9 (1) NA)
= QK,A(X) M QA,K(X)
—0 ().

TEOAA

@ QM) NA=Q; (W NANA
=Q7; (W NA=Q, (1),

3 Q; , (W) NA =(FEJF1(F—M m?\j UQK(k)jmK
=(UF-1nA)u@;0)nA)
=(LEJF1<F—x>mK>uQX(>»>
—g;EFl ().

TREAA

@ Q, (W) NA=(Q, (M) NQ; (W) NA, by (1)
=(Q, (W) N A) N Q5 (M)
=Q, (M) NQ;(A) , by(2)
= QA,K ).
(8) 2, (W) N (AVA) = (Q, (M) N A) = (2, (W) N A)
=0, (M-, (1) , by(2)

= ¢
6) Q, ;s (W) N (AVA)=(Q, s (A) NA) = (Q, (W) N A)
= 0. ., by(4)

() Q7 (W) N (AVA) =( Q5 , (W) NA) = (5 , (M) N A)
=05, (M) -Q, (1), by @3)
=Q5 , (M\Q, () .

We conclude the following theorem:
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Theorem 3.4:
@ QM (UF-)= U F-2).

), ()N (UF-2)=0z)n (U (F-1)

Proof:
1) Q, ()N (FUZ(F -M))=(Q, ;M) v FUZ,(F —A) N (FUZ(F -1)

=@, (U F-1)UCU F-2)A U (F-2)

=@, ;) N (UF-2)U(U (F-2)
=@M P AN(UF-R)U(U (F-2)
=@M (U F-2)UU (F-2)

= U (F-0). )

@ Q, ;)N (UF-1)=2, ;) N (UF-2)nA)
=Q ()N (FUF (F=2)), by(3.3.4)

= (@; MM (U (F-2)
=0 (U (F-2)
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