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ABSTRACT
In this paper, a high zero-sum weighting is applied to evaluate the nullity of a
dendrimer graph for some special graphs such as cycles, paths, complete graphs,
complete bipartite graphs and star graphs.
Finally, we introduce and prove a sharp lower and a sharp upper bound for the
nullity of the coalescence graph of two graphs.
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1. Introduction
The characteristic polynomial of the adjacency matrix A(G) is said to be the
characteristic polynomial of the graph G, denoted by ¢ (G; x). The eigenvalues of A(G)
are said to be the eiegenvalues of the graph G, the occurrence of zero as an eigenvalue
in the spectrum of the graph G is called the “nullity” of G denoted by n(G). Brown and
others [4] proved that a graph G is singular if, and only if, G possesses a non-trivial
zero-sum weighting, and asked, what causes a graph to be singular and what are the
effects of this on its properties. Rashid [11] proved that a high zero-sum weighting
My(G) of a graph G, that is (the maximum number of non zero independent variables
used in a high zero- sum weighting for a graph G, is equal to the nullity of G) It is
known that 0 < n(G) < p-2 if G is a non empty graph with p vertices. Cheng and Liu [5]
proved that if G has p vertices with no isolated vertices, then n(G) = p-2 if, and only if,
G is isomorphic to a complete bipartite graph Kmn, and n(G) =p - 3 if, and only if, G
is isomorphic to a complete 3 partite graph Kapc. Omidi [10] found some lower bounds
for the nullity of graphs and proved that among bipartite graphs with p vertices, q edges
and maximum degree A which do not have any cycle of length a multiple of 4 as a
subgraph, the greatest nullity isp - 2[q/ A |.
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In this paper, we continue the research along the same lines. We derive formulas to
determine the nullity of dendrimer graphs.

2 Definition and Preliminary Results

Definition 2.1: [5, p.16] and [8] A vertex weighting of a graph G is a function f: V(G)
—R where R is the set of real numbers, which assigns a real number (weight) to each
vertex. The weighting of G is said to be non-trivial if there is, at least, one vertex
veV(G) for which f(v) = 0.
Definition 2.2: [5, p.16] A non-trivial vertex weighting of a graph G is called a zero-
sum weighting provided that for each veV(G), 2f(w) = 0, where the summation is
taken over all we NG(v).

Clearly, the following weighting for G is a non-trivial zero-sum weighting where
x1, x2, X3, x4, and x5 are weights and provided that (x1, x2, X3, x4, x5) = (0, 0, 0, 0, 0)
as indicated in Figure 2.1.

Figure 2.1. A non-trivial zero-sum weighting for a graph G.

theorem 2. 3: [4] a graph g is singular if, and only if, there is a non-trivial zero-sum
weighting for g.m
Hence, the graph G depicted in Figure 2.1 is singular.Out of all zero-sum

weightings of a graph G, a high zero-sum weighting of G is one that uses maximum
number of non-zero independent variables.
proposition 2.4: [6, p.35] and [8] in any graph g, the maximum number mv(g) of non-
zero independent variables in a high zero-sum weighting equals the number of zeros as
an eigenvalues of the adjacency matrix of g, (i.e. mv(g) =n(g)).m

In Figure 2.1, the weighting for the graph G is a high zero-sum weighting that uses
5 independent variables, hence, n(G) = 5.

The complement of the disjoint union of m edges is called a cocktail graph and

is denoted by CP(m) = (mK2)c =K2,2,...,2 = Km(2).
Proposition 2. 5: [6, p.20] The spectrum of the cocktail graph CP(m) is:

_ th -
s, (CP(m)) [1 N m—J us n(CP(m) {m, it m>1.

Proposition 2.6: [2] The adjacency matrix of the wheel graph Wp, A(Wp), has
eigenvalues 1+ [, 1- [p and 2cos 271, r =0, 1, ..., p-2. Hence,n(Wp)= 2 if p=1(mod4)
p-1
and o otherwise.
Proposition 2.7: [4, p.72]i) The eigenvalues of the cycle Cp are of the form 2cos 27T,
p
r=0,1, ..., p-1. According to this, n(CP)= 2 if p=0(mod4) and 0 otherwise.

ii) The eigenvalues of the path Pp are of the form 2cos " ,r=1,2, ... p. And thus,
p+1

n(PP)=1if p is odd and 0 otherwise.
iii) The spectrum of the complete graph Kp, consists of p-1 and -1 with multiplicity p-1.
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iv) The spectrum of the complete bipartite graph Km,n , consists of Ymn, -Ymn and
zero m+n-2 times
Corollary 2.8: [4, p.234] If G is a bipartite graph with an end vertex, and if H is an
induced subgraph of G obtained by deleting this vertex together with the vertex adjacent
to it, then n(G) =n(H). m
Corollary 2.9: [4, p.235] Let G1 and G2 be two bipartite graphs in which n(G1) = 0.
If the graph G is obtained by joining an arbitrary vertex of G1 by an edge to an arbitrary
vertex of G2, then n(G) =n(G2).m
Coalescence Graphs

To identify nonadjacent vertices u and v of a graph G is to replace the two vertices
by a single vertex incident to all the edges which are incident in G to either u or v.
Denote the resulting graph by G/{u, v}. To contract an edge e of a graph G is to delete
the edge and then (if the edge is a link) identify its ends. The resulting graph is denoted
by G/e.
Definition 2.10: [7] Let (G, u) and (G, v) be two graphs rooted at vertices uand v,
respectively. We attach G; to G2 (or G2 to G1) by identifying the vertex u of G1 with the
vertex v of G,. Vertices u and v are called vertices of attachment. The vertex formed
by their identification is called the coalescence vertex. The resulting graph G1o Gz is
called the coalescence (vertex identification) of G; and Go.
Definition 2.11: [7] Let {(G1, V1), (G2, V2), ..., (Gt, vi)} be a family of not necessary
distinct connected graphs with roots v, va, ..., v, respectively. A connected graph G=
G10G2o...0Gyis called the multiple coalescence of G1, Ga,...,Gt provided that the
vertices vi, Vo, ..., vt are identified to reform the coalescence vertex v. The t-tupple

t
coalescence graph is denoted by g is the multiple coalescence of t isomorphic copies
t

of a graph G. In the same ways G, ogz is the multiple coalescence of Giand t copies of
Go.
Remark 2.12: [7] All coalescened graphs have v as a common cut vertex. Some graphs
and their operations will, herein, be illustrated in Figure 2.2.

Vq V3

I:f ﬁ
G G,
v
¥ ¥
G <G,y G bl
179 56 5,

>
g
G

Glz2

. I3
Figure 2.2.Multiple coalescence G, o G, o G,, t-tupple coalescence G, and coalescence of

both G, <G, .

Definition 2.13: [7] Let G be a graph consisting of n vertices and L = {H1, Ho, ..., Hn}
be a family of rooted graphs. Then, the graph formed by attaching Hk to the k-th  (1<k
<n) vertex of G is called the generalized rooted product and is denoted by G(L); G
itself is called the core of G(L). If each member of L is isomorphic to the rooted graph
H, then the graph G(L) is denoted by G(H). Recall G1, G2 and Gz from Figure 2.2. Then,
we have
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Gy (L)L = (G ,Gp>G3.G}
Figure 2.3. Generalized rooted product graphs

Definition 2.14: [7] The generalization of the rooted product graphs is called the F-
0 1
graphs, which are consecutively iterated rooted products defined as: F =K1, F=G =
s+1 S

2
H, F= GH),..., F= F (H),s>1.

k
Definition 2.15: [7] A family of dendrimers D (k>0) is just a rooted product graph
which is defined as follows:

0 1 2
D =Kj3, D =G =H, D is the rooted product of G and H, in which some attachments
of H are not made (i.e., H attached to the vertices of G which are not attached before).

k+1 k
In general, D (k >1) is constructed from D, and the number of copies of H attached to

k k+1 k
D obeys some fixed generation law. Hence, D is D with G attached to each vertex of

k k-1 k k-1
D which isnotin D ,thatistoeach ueV(D)-V(D).), k>1.

A %I%FS% Igfﬁ-‘

2 2

F =D F =D"

k
Figure 2.4. F-graphs and Dendrimer graphs D, where G=H = C;.
3 Nullity of Dendrimer Graphs

In this section, we determine the nullity of dendrimer graphs D*, k >0, where
D' =G of some known graphs suchas C, P,, K, and K . Ineach case, we

consider that the nullity of the dendrimer graph D° is defined to be, 7(D°) =7(K,) =1.
The dendrimer Cg for the cycle Cy, is a connected graph with order

k
p(Cy)=p+p(p-1)+p(p-1)°+...+ p(p—1)“" =D P(p-1)"". And size
i=1
qC;)=q+pg+p(p-Dg+..+p(p-)*?q
k .
=p+p’+p*(p-D+.+p*(p-D 2=p+p*D (p-1°
t=2

Moreover, the diameter of Cg is (2k —1).diam(C,) . Also for k >1, the degrees of each
vertex of C; is either 2 or 4.
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Proposition 3.1: For a dendrimer graph C¥, k >1, we have:
i)If p=4n, n=12,..,then (C; )=2.

And forall k, k >2, n(Cf)=n(CS") +4n(4n—-1)2.
ii)If p=4n+2,n=12,..,then 5(C;,,)=0, forall k, k>1.
i) If p=4n-1, n=12,..., then n(C;,,)=0, n(C; ,)=1.

And forall k, k >3, (Cf ,)=0.
iv) If p=4n+1, n=12,..., then »(C{ ,)=0.forall k, k >1.
Proof: i) For k =1 itis clear that 7(C,,) =2, n=1,2,..., by Proposition 2.7 (i). For
k=2, C,,(C,,), isarooted product of C,, and C,,. So we need to prove that
n(CZ)=2+4n. Let X i, 1, J=12,..,4n be a weighting for the vertex Vi in
CZ ,n=12,..,as indicated in Figure 3.1

X
4n,4n-1 xm 3 x4n—1__4n 4n-1,4n-1

Figure 3.1. A weighting of C; ., n=1,2....
From the condition that Z f(w)=0, forallvinCZ , n=12,..., we have,{for the

4n 1
weNg (V)

cycles identified with the vertices v, , }.

For j=1,3,..,4n-3.

X ;+%,=0 = X=X e

X i tX5 542 =0 = X i == X3 j42 G.1)
Xn,j T Xan,jo2 = 0 = Xan,j = Xan, j+2

And, for j=2,4,..,4n-2.

X j+%.,=0 = X=X g2

X, i +X%,,=0 = Xp i =7 X5 42 (3.2)
Xgn.j T Xan ji2 =0 = Xan, i = Xan, j+2

Also, from the condition that z f(w) =0, for all v in the central cycle C,,, we have,

weNg (v)

Fori=13,..,4n-3.

X1+ %.2,1=0 = X1 ==Xz, -+(3:3)
And, for i=2,4,...,4n-2.

Xi,1+Xi+2,1:O = X1= X1 -4
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Therefore, for each i in the Equations (3.1), (3.2) and (3.4) we have used exactly
two non-zero independent variables, one of which in the weight of x;,, where i is odd

and the other in the weight of x;,, where i is even. And from Equation (3.2) we have

used 4n non-zero independent variables.
Thus, the maximum number of non-zero independent variables used in a high zero-

sum weighting of C; ,n=1,2,..., isequal to 2+4n.

On the other hand, we have 7n(C,,)=2, n=12,.., by Lemma 2.7 (i). But
C: =C,,(C,,), so each identification of a copy of C,, with a vertex of C,, adds
(increases) one to the nullity of a dendrimer graph. Since C,, has 4n vertices; thus, 4n
copies of a cycle C,, are identifiedto C,,.

Therefore, 1(C,,(C,,))=n(C,,)+4n=2+4n.

For k >3, we use the iteration C; (C,.). This graph is a rooted product of C7, and
C,,- Since C; is a dendrimer graph having 4n cycles and each cycle has 4n-1
vertices to be identified with new vertices, hence we attach a copy of C,, to 4n(4n-1)
vertices. Also, each copy of C,, adds (increases) one to the nullity of a dendrimer
graph. Therefore, n(CZ (C,,))=n(CZ)+4n(4n—-1) =2+4n+4n(4n-1).

Similarly, we have, 7(C:*(C,.)) =7(Csh)+4n(4n-1) 2 where k3.

ii) For each k, k >1, there exists no non-trivial zero-sum weighting for C; .,
n=12,... Thus, by Theorem 2.3, C; ., is non-singular.

iii) For k =1, there exists no non-trivial zero-sum weighting for C,, ,, n=1,2,.... Thus,
by Theorem 2.3, C,, , is non-singular. For k=2, C, ,(C,, ), is a rooted product of
C,,, and C, . Toprove that (C,,,(C,,,))=1.Let x, ;, i,j=12,..,4n-1 bea
weighting for

Figure 3.2. A weighting of C;_,, n=12,...

vertex v, ; in C; ,, n=1,2,..., as indicated in Figure 3.2.
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Then, from the condition that Z f(w)=0,forallvin C ,,n=12,.., we
weNg (v)

have:

Fori=12,..,4n-1,and j=13,...,4n-3.

X i+ X j =0 = Xii= = Xij -..(3.5)

And, Fori=12,..,4n-1,and j=2,4,..,4n-2.

X i+ X ji =0 = Xij= X jw2 ...(3.6)

Hence, from Equations (3.5) and (3.6), we get:

Xj1 = X4 = X5 =X g = X9 = e = Xy ang = Xians =~ X2 ..(3.7)

And X2 =X 3= X6 =X7 == Xgno = XKiang =~ X1 ...(3.8)

Also, from the condition that Z f(w)=0,forallvin C2 ,, n=12,.., we have:
weNg (v)

Xjogt Xpana t X1+ X4001 = 0

Since X, , =X, 40y =— Xy, , therefore, x,, =X, ,, =%, ...(3.9)

Hence, from Equations (3.7), (3.8) and (3.9), we get

Fori=12,..,4n-1.

Xi1=X4=Xi5=Xig =X g == Xiana = Xjan3 = X1 ...(3.10)

And, Fori=12,..,4n-1.

Xia =Xi3=Xi g =X 7 == Xiano =X an1 = X1 ..(3.11)

Therefore, each vertex of CZ ,, n=1,2,... has aweight x,, or —x,;.

This means that there exists a non-trivial zero-sum weighting for CZ, used exactly one

non-zero independent variable in a high zero-sum weighting of CZ, , . Hence,

U(Cfm) :l'
Finally, the proof of 7(CJ ) =0, for k >3, is similar to that for k=2.

IV) The proof is similar to that of part (ii).m
Corollary 3.2: For a dendrimer graph C}

4n 1
k-2 )
n(Cy)=2+4n[> (4n-1)'] .
i=0
Proof: From Proposition 3.1 (i), we have:
7(C)Y=n(CEH) +4n(4n-1)<2  for k >2
. n(CL)=n(C?) +4n(4n—1)° + 4n(4n -1
=n(C)+4n(4n-1)"* +4n(4n—-1)*> +4n(4n-1)*?

k>2, n=12,.., we have

=n(CL)+4n(4n-1)"+... +4n(4n-1)"* > +4n(4n-1)*?
=2+4n+4n(4n-1)+... +4n(4n-1)*3 + 4n(4n-1)*?
=2+4n[1+(4n—D)+... +(4n-D)* 2 +(4n-1)*?]
k-2 )
=2+4n[> (4n-1)'].
i=0

k-2

7(Cs) :2+4n[Z(4n ~1)'],for k>2.m
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Let P, be a path with usually labeled vertices v,,Vv,,...,v, . If p is odd, this graph
has a non-trivial zero-sum weighting, say x,0,-x,0,..., which provides that an odd path
is singular. Moreover, the dendrimer Ppk has order

P(PX)=p+ p(p—1)+p(p-1)° +..+ p(p—~D** and size q(P;) = p(P,)-1.
While, the diameter of D* depends on the choice of the rooted vertex. Also, the
maximum degree will be either 3 or 4 for k > 2 , while the minimum degree is 1 .
In general, diam(P;‘) <(2k-1)(p-1), equality holds if k=1 or the rooted vertex is
an end vertex of the path.
Proposition 3.3: For a dendrimer graph P*, k >1 we have:
i)If p=2n, n=12,..,then n(Py)=0 forall k, k>1.
i If p=2n+1, n=12,..., and the rooted vertex has a non-zero weight , then
n(Py.)=1forallk, k>1.

i) If p=2n+1, n=12,..., and the rooted vertex has a zero weight , then
U(PZFHl) :l’ n(F)22n+1) = 2n+l ’ and
n(Pf.) =@n+D)(2n)?+7(Ps2), forall k, k>3.

2n

Proof: i) The proof is similar to that of Proposition 3.1 (ii).
if) For k=1, it is clear that n(PR,,,,)=1 by Proposition 2.7 (ii). For k=2,

P?.,=P,..(P,.,), is arooted product of P, , and P, ,. To prove that (P} ) =1, let

n

X j» 1, J=12,..,2n+1 be a weighting for the vertex v, in PZ,, n=12,.., as

indicated in Figure 3.3.

Il 1
:

X

(]

.1 Insll

%]

[+
*—

=

[

=

&

T
~—

xlE

Yion @ X201 @ Xonet2ne1 @
. - - 2 .
Figure 3.3. A weighting of P, , where the rooted vertex has a non-zero weight.

Then, from the condition that Z f(w)=0, forall vin P>, n=12,.., we have:

weNg (V)
Foralli, i=12,..,2n+1.
X 5n=0. ... (3.12)
Because x, ,, are the neighbors of the end vertices.

Also, for all i, j, for which i, j=1,2,...,2n+1
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X=X o and X ,=—X,; ...(3.13)

Thus, from Equations (2.13) and (2.14), we get:

Fori=12,.,2n+land j=2,4,..2n.

X ;=0. ...(3.14)

Hence, from the condition that Z f(w)=0,forall ve P}, and  Equations (3.13)

weNg (v)

and (3.14), we get: x,+x%,, =0 = x,, =0 .While, from Equation (3.13) and for all |
and j, for which i=2,4, ...,2n j=1,2,..,2n+1, we have: x, ; = 0.Therefore, each vertex
of P, has the weight 0 or X, ,,,, OF —X, ,..,.Thus, any high zero-sum weighting of
P2, will use only one non-zero variable, say x, ,,,,.Therefore, 77(PZ.,) =1 where the

n

rooted vertex has non-zero weight, and for k > 3, similar steps for the proof hold as in
the case where k = 2.Thus, any high zero-sum weighting of P, ., k >3, will use only

one non-zero variable. Hence, n(Py.,) =1.

iii) For k =1, itis clear that 7(P,,,,) =1 by Proposition 2.7 (ii). For k = 2,

P?.,=P,..(P,.,), isarooted product of P, , and P, . To prove that n(PZ,,)=2n+1

nel =
, Where the rooted vertex has zero weight, let the rooted vertex is neighbor of end
vertex in P,,,,and let x, ., i, j=12,..,2n+1 be a weighting for P}, n=12,..., as
indicated in Figure 3.4.
X1 X352 Xone12

ij?

[&¥]

[
.____

=

[

B

pt

[

~—

‘ X1
x1__31 Xy,

Xions1 @ Xoma @ Xonel 21 @

Figure 3.4. A weighting of P;n_l where the rooted vertex has a zero weight.

Then, from the condition that Zf(w):o, forallvin PZ,, n=12,.., we
weNg (V)
have:
Forall i, j, forwhich i=12,..,2n+1and j=2,4,..,2n.
X, ;=0 ...(3.15)
And, forall i and j, for which i=1,2,..,2n+1and j=13,..,2n+1.
X, ;==X ...(3.16)

i, j+2
Therefore, for each i we use one variable. Thus, the maximum number of non-zero
independent variables used in a high zero-sum weighting of P/, , is equal to 2n+1,

Hence, n(PZ,,) =2n+1.
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On the other hand, P, =P, ,(P,.,),sinceP,, ., has 2n+1 vertices to be

attachment and each vertex adds (increases) one to the nullity, thus:
n(P2.)) =(2n+1)*1=2n+1.

n

n+1

For k =3, use the iteration P; , =P ,(P,,.,). Since, P}, is a dendrimer graph

having 2n+1 paths and each path has 2n vertices to be attachment, thus we attach
P, t0 (2n+1)(2n) vertices. But, each copy of P, ., adds (increases) one to the nullity

of a dendrimer graph, and together the variable used in a high zero-sum weighting of
P,,.,- Therefore,
77(Pz3;1+1) =(2n+1)(2n) +7n(P,,.,)
=(2n+1)(2n) +1.
Similarly, we have: n(Py),,) =(2n+21)(2n)*? +n(Ps3), foreach k, k >3.m

Corollary 3.4: For a dendrimer graph Py .,k >2, n=12,..., and the rooted vertex has
zero weight, we have:

i) If kis odd, k >3, then: n(Py ) =1+(2n +1) ZZ: (2n)? " .
i=1

i) If k is even, k >2, then:  »(P,.,)=(2n +1) ZZ: (2n)? .
i-0

Proof: i) From Proposition 3.3 (iii), we have:
n(P,..) =1, n(P.,))=2n+1,and

n

(P ) =(@n+D)(2n)“* +7(Ps2), foreach k, k >3

7(Py.y) = (@n+1)(2n)? +(2n+1)(2n) " +7(Pyr3
;(Zn +1)(2n)? + (2n+1)(2n)** +...+(2n+1)(2n)" +(P,,.,)
=(2n+)(2nN)*? +2n+D(2n)** +...+ (2n+D(2n)" +1
=@2n+D[2N)*? +(2n)** +...+(2n)']+1

=(2n +1)i(2n)2“1+1.

(P ) =1+(2n+1) Y (2n)4 , if kis odd, k > 3.
i=1
ii) From Proposition 3.3 (iii), we have:
n(P,..) =1, n(P2.,)=2n+1, and

(P ) =(@2n+1)(2n)*? +n(PL2), foreach k, k >3
(P ) =(2n+1)(2n)*? +(2n+D(2n)“* +7(PL A

n 2n+1

;(2n +1)(2n)? +(2n+2)(2n)"* +...+(2n+D(2n)* +7(PL.)
=(2n+D)(2N)*? + (2n+)(2N) " +...+(2n+1)(2n)* +(2n +1)
=@n+D[(2nN)"? +(2n)** +...+(2n)* +1]

=(2n+D[(2n)° +(2n)* +...+ (2n)** + (2n)*?]
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=(2n+1) > (2n)* .
i=0
n(PL)=@2n+1) Y (2n)*  ifkiseven, k>2.m
i=0
The nullities of dendrimers of complete graphs are determined in the next
proposition.
Proposition 3.5: For a dendrimer graph Kg , k>1 we have:
i) If p=3,then 7n(KX)=0 forallk, 2=k >1. And n(K2)=1.
i) If p>4,then  7(K;)=0 forall k, k>1.

Proof: The proof is immediate by Proposition 3.1.m
Every Complete bipartite graph K, , m,n,>2has exactly 3 distinct eigenvalues,

while the dendrimer K*  k>2, loses this property.

m,n?

k
m,n’?

Proposition 3.6: For a dendrimer graph K¢ , k>1, m,n> 2, we have:
n(K,,)=m+n-2,and

n(Ky ) = (K +(m+n)(m+n-1)7 (m+n-3), forall k, k>2.

Proof: For k =1, itis clear that (K ,)=m+n—-2 by Prop. 2.7(iv). For k =2,
KZ.=K,.(K,,), isarooted product of K and K .To prove that
n(KZ,)=(m+n-2)+(m-+n)(m+n-3), which is the number of independent variables
used in a high zero-sum weighting for K;n. For k >3, we use the iteration
K:.=KZ,(K,,) since K2 isadendrimer graph having (m+n) complete bipartite
graphs K_ .,
K, o (m+n)(m+n-1) vertices, but each copy of K adds (increases) (m+n-3)

to the nullity of the dendrimer graph.
Thus, (KX ) =KD +(m+n)(m+n-1)<?m+n-3), forall k, k>2.m
Corollary 3.7: For a dendrimer graph K¢ ,k>2, m,n,>2, :
(m+n-)*-1

m+n-2
Proof: From Proposition 2.15, we have: 7(K_ . )=m+n-2,and

n(Ks ) =n(Ks ) +(Mm+n)(m+n-1)?(m+n-3), forall k, k > 2.
o on(KE ) =n(KEB) + men)m+n-KS3mn-3)

and each graph has (m+ n—1) vertices to be attached; hence, we attach

Ky )=(M+n=2)+(m+n)(m+n-3)

+(m+n)(m+n—l)k_2(m+n—3)

= (K& n) + (m+n)(m+n-1m+n-3)
+..+(M+n)(m+n —1)k_3(m+ n-23)

+(m+n)(m+n—1)k_2(m+n—3)
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=(m+n-2)+(M+n)(m+n-3)
+(M+n)(M+n-D'(m+n-3)
Fo.+(M+nNM+n-D*3(m+n-23)
+(M+n)(M+n-D*?*(m+n-23)
=M+n=2)+(M+n)(M+n-=3)[L+(M+n-1)" +..+(M+n-D3+(m+n-1)?]

k-1
=(M+n-2)+(M+n)(m+n-3) (m+n-1) _1,f0r allk, k>2.m
m+n-2

Star graphs are special cases of complete bipartite graphs, namely S,  , is K, with

a partite set consisting of a single vertex called the central vertex.
Proposition 3.8: For a dendrimer graph Sl ., k=1, n>3, we have:

i) If the rooted vertex of S, is the central vertex, then

7(Sy0a) =N=2, (S, ,) =n(n—2), and

n(Sf,1) =n(h-1)*?(n—2)+7,(S57%), forall k, k>3.
i) If the rooted vertex of S, is a non-central vertex, then

n(S,,.)=n-2.and n(S{,,) =n(n-1)?*(n-3)+n(S{,4), forallk, k>2.
Proof: i) For k =1, itis clear that 7(S, ,_,) =n—2 by Proposition 2.7 (iv). For k =2,

S¢n1=S51,4(S.n4), isarooted product of S, , and S, ,. To prove that

n(S! 1) =N(N=2); let x; ;, i, j=12,..,n be aweighting for Sln ., as indicated in
Figure 3.5.

X X X
| :\ AN / ‘ \ -
NN

/ / \‘ \ \_

xn._l / .///. . \\. \‘62_ 1

xn__z [ o

Figure 3.5. A weighting of S/, , where the rooted vertex of S, is the central vertex.
Then, from the condition that Z f(w)=0, forall vin S1 .1, We have:

weNg (V)
Xpp =X ==X, =0 ..(3.17)
And,
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Xy + Xt t Xy =0
Xo1 +Xp 0+t Xy =0

Xo1 +Xpp+e+ X, =0

Then,
Xina = =X = X = = X
X ==X, =X, —...— X
2,n-1 2.1 2,2 2,n-2
" " ...(3.18)
Xn,n—l == Xn,l - Xn,2 T Xn,n—2

Then, from Equation (3.18), the number of independent variables used in a high zero-

sum weighting of S/, , is equal to n(n-2).

Hence, 7(S7,,) =n(n-2).

For k =3, use the iteration S}, =S? ,(S,,4),since S7 , isadendrimer graph having
n star graphs S,  , and each graph has n—1 vertices to be attachment, thus we attach
S, .1 1o n(n—1) vertices. But also, each copy of S,  , adds (increases) (n-3) to the

nullity of a dendrimer graph, together the variable used in a high zero-sum weighting of
S1,n—1 )
Therefore,
1(Sina) =n(N=-2)(n-2)+7(S, )
=n(n-)(n-2)+(n-2).
Similarly, we have:
n(Sy,1) =n(n-D)"?(n-2) +7(S}2), foreach k, k>3.
if) The proof is similar to that of Proposition 3.6.m

Corollary 3.9: For a dendrimer graph an_l ,k>2, n>3, we have:

i) If kis odd, k >3, and the rooted vertex of agraph S, , is its central vertex, then,

nSf1)=M-2)+n(n-2) i (n—1)>%.

if) If k is even, k > 2, and the rooted vertex of agraph H =S, , isits central vertex,

then: 7(S), ) =n(n-2)Y (n-1)?.
iii) For all k, k > 2, if the rcl)o?[ed vertex of agraph H =S, is a non central vertex,
then,
7S, )=(-2)+n(n _3)%21_1, forallk, k>2
Proof: i) From Proposition 3.8 (i), we have:
n(S.,4)=n-2, n(S},,)=n(n-2), and
n(Sy,.) =n(n-D)*?(n-2)+n,(S},;%), forallk, k>3.
7(S5pa) =n(N=1)7* (1-2) +n(n-1)"* (n-2) +7(S,5,
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=n(n-1)*(n-2) +n(n-)**(n-2) +...+n(n-2)(n—2) +7(S, . ,)
=n(n-D**(n=2) +n(n-D**(n=2) +..+n(n-1)(n—=2) +(n—-2)
=n(n=-2) [(N-D**+(n-D*"*+..+(n-D]+(n-2)

=n(n-2) Zz: (n-)""+(n-2).

n(S{,1)=(M-2)+n(n-2) Zzl (n-1)** ,ifkisodd, k>3.
i) From Proposition 3.8 (i), we halv_e:
77(812,n71) =n(n-2), and
n(Sth1) =n(=1)"?(n-2) +1(S},%) , for each k, k >2
7(Sfo1) =n(n=1"*(n=2) +n(n-1)* (n-2) +7(S,7%
_ n(n-D)?(n-2) +n(n-)**(n-2) +...+n(n-1)*(n—2)+7(S’, )
=n(n-D**(n-2) +n(n-D** (n=2) +...+n(n=D*(n-2) +n(n—2)
=n(n-=2) [(n-D)*?+(n=D** +...+(n-1)* +1]

=n(n-2) ZZ: (n-1)* .

NSk )=n(-2) Y (n-1)? ,ifkiseven, k>2.
i=0

iii) From Proposition 3.8 (ii), we have:
7(S,n)=Nn-2, and 7(S{, ;) =n(n-1)*?(n-3)+7(D"™"), for all k, k >2.
7(S4) =n(N=1)* (n=3) +n(n-17 (n-3) +7(S;;”

1n-1

; n(n—-1)*?(n-3) +n(n—-1)** (n-3) +...+n(n-D(n—-3)+n(S/, )

=n(n-D*?*(n-3) +n(n-1)*3*(n-3) +...+n(n-D(n-3)+n(n-3)+(n-2)
=n(n=3) [(N-D*°+(n-D** +..+(n-1)+1]+(n-2)
A iy
n-2
n(Slfn1):(n—2)+n(n—3)%2_l,forall K k>2.m

4. Upper Bounds for the Nullity of Coalescence Graphs

In this section, we shall introduce and prove a lower and an upper bound for the
nullity of the coalescence graph G, -G, .

Proposition 4.1:  For any singular graphs G1 andG..
1(G) +1(G,) 1< (G, °G,) < n(G)) +1(G,) +1
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Proof: Let G1 and G2 be two singular graphs of orders p1 and p», respectively, thus
first we label the vertices of G1 by u,,u,,...u, , with a high zero- sum weighting

X; X555 X, @Nd the vertices of G2 by v;,v,,...,v
YirYoren Y, -

Assume that u, and v, are rooted vertices of G1 and G2 respectively. Then
equality holds at the left if either or both rooted vertices are non- zero weighted because

there exists a high zero- sum weighting for GG, which is the enlargement of high
zero- sum weightings for G1 and G2 reducing or vanishing one non- zero weight at the
G, =G, =P

», » With a high zero- sum weighting

identification vertex. See Figure 4.1 where

X 0 —-x
u, u, u,
G,

G, °G, G, °G,

Figure 4.1. G, o G, where either or both rooted vertices have non-zero weight.
Moreover, strictly holds at the left side if both rooted vertices have zero weights in
their high zero- sum weightings, because there exists a zero- sum weighting which is the

union of both high zero-sum weightings of G1 and G..

Equality holds at the right side if both rooted vertices are cut vertices with zero
weights in their high zero- sum weightings, and each component obtained with a
deleting of a rooted cut vertex is singular, because there exists a high zero- sum
weighting for G, o G, that uses an extra independent variable further than the variables

used in high zero- sum weightings of Gi and G». See Figure 4.2.
Moreover, strictly holds at the right side if one rooted vertices does not satisfy the
condition of equality as indicated above. m

G oG,
Figure 4.2. G, - G, where both rooted vertices are cut vertices with zero weight and each
component obtained by the deleting of rooted vertex is singular.

Note: Let w be the identification vertex w=(u=v) of G=G, oG,. Then, by

interlacing Theorem [2, p314], [17(G)—n(G-w)|<1 i.e

7(G)—n(G,—u)-n(G,-V)|<1 V ueGi,veG,. Hence,
nG,-u)+nG,-v)-1<n(G,G,) <nG,-u)+nG,-v)+1.
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