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ABSTRACT 

In this paper, a high zero-sum weighting is applied to evaluate the nullity of a 

dendrimer graph   for some special graphs such as cycles, paths, complete graphs, 

complete bipartite graphs and  star graphs. 
 Finally, we introduce and prove a sharp lower and a sharp upper bound for the 

nullity of the coalescence graph of two graphs. 
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 الملخص  

تطبيق  تقنية  التوزين  العالي  لإحتساب  درجة  الشذوذ  للبيان), تم في هذا البحث
k

D dendrimer إذ )
قيود حادة   بيان خاص, كالدارة, الدرب, البيان التام, البيان الثنائي التجزئة التام أوالنجمة.أخيراً , وضعنا وأثبتنا Dأن 

21للبيان  دنيا وعليا  GG   . 
 .بيانلل أطياف البيان، درجة الشذوذالكلمات المفتاحية: 

1. Introduction 

The characteristic polynomial of the adjacency matrix A(G) is said to be the 

characteristic polynomial of the graph G, denoted by 𝜑(𝐺; 𝑥). The eigenvalues of A(G) 

are said to be the eiegenvalues of the graph G, the occurrence of zero as an eigenvalue 

in the spectrum of the graph G is called the “nullity” of G denoted by η(G). Brown and 

others [4] proved that a graph G is singular if, and only if, G possesses a non-trivial 

zero-sum weighting, and asked, what causes a graph to be singular and what are the 

effects of this on its properties.  Rashid [11] proved that a high zero-sum weighting 

Mv(G) of a graph G,  that is (the maximum number of non zero  independent variables 

used in a high zero- sum weighting for a graph G, is equal to the nullity of G) It is 

known that 0 ≤ η(G) ≤ p-2 if G is a non empty graph with p vertices. Cheng and Liu [5] 

proved that if G has p vertices with no isolated vertices, then η(G) = p-2 if, and only if, 

G is isomorphic to a complete bipartite graph  Km,n, and η(G) = p - 3  if, and only if, G 

is isomorphic to a complete 3 partite graph Ka,b,c. Omidi [10] found some lower bounds 

for the nullity of graphs and proved that among bipartite graphs with p vertices, q edges 

and maximum degree ∆ which do not have any cycle of length a multiple of 4 as a 

subgraph, the greatest nullity is p - 2  /q .  
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In this paper, we continue the research along the same lines. We derive formulas to 

determine the nullity of dendrimer graphs. 

2 Definition and Preliminary Results 

Definition 2.1: [5, p.16] and [8] A vertex weighting of a graph G is a function f: V(G) 

→R where R is the set of real numbers, which assigns a real number (weight) to each 

vertex. The weighting of G is said to be non-trivial if there is, at least, one vertex  

vV(G) for which f(v)  0. 

Definition 2.2: [5, p.16]  A non-trivial vertex weighting of a graph G is called a zero-

sum weighting provided that for each vV(G), f(w) = 0, where the summation   is 

taken over all wNG(v).  

Clearly, the following weighting for G is a non-trivial zero-sum  weighting where 

x1, x2, x3, x4, and x5 are weights and provided that (x1, x2, x3, x4, x5)  (0, 0, 0, 0, 0)  

as indicated in Figure 2.1. 

 
theorem 2. 3: [4]  a graph g is singular if, and only if, there is a non-trivial zero-sum 

weighting for g.■  

Hence, the graph G depicted in Figure 2.1 is singular.Out of all zero-sum 

weightings of a graph G, a high zero-sum weighting of G is one that uses maximum 

number of non-zero independent variables. 

proposition 2.4: [6, p.35] and [8]  in any graph g, the maximum number mv(g) of non-

zero independent variables in a high zero-sum weighting equals the number of zeros as 

an eigenvalues of the adjacency matrix of g,   (i.e. mv(g) = η(g)).■ 

       In Figure 2.1, the weighting for the graph G is a high zero-sum weighting that uses 

5 independent variables, hence, η(G) = 5. 

             The complement of the disjoint union of m edges is called a cocktail graph and 

is denoted by CP(m) = (mK2)c = K2,2,…,2  =  Km(2). 

Proposition 2. 5: [6, p.20]   The spectrum of the cocktail graph CP(m) is:      
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Proposition 2.6: [2]  The adjacency matrix of the wheel graph Wp, A(Wp), has 

eigenvalues 1+ p , 1- p  and 2cos
1

r 2

−p

 , r = 0, 1, …, p-2. Hence,(Wp)= 2 if p=1(mod4) 

and o otherwise.  

Proposition 2.7: [4, p.72]i) The eigenvalues of the cycle Cp are of the form 2cos
p

r 2 ,       

r = 0, 1, …, p-1. According to this, (CP)= 2 if p=0(mod4) and 0 otherwise. 

   ii) The eigenvalues of the path Pp are of the form 2cos
1p

r 

+

 , r =1,2, … p.    And thus, 

(PP)=1 if p is odd and 0 otherwise. 

 iii) The spectrum of the complete graph Kp, consists of p-1 and -1 with multiplicity p-1. 



Nullity and Bounds to the Nullity of Dendrimer Graphs 

 

 73 

 iv) The spectrum of the complete bipartite graph Km,n , consists of mn, -mn and 

zero m+n-2 times 

Corollary 2.8: [4, p.234]   If G is a bipartite graph with an end vertex, and if H is an 

induced subgraph of G obtained by deleting this vertex together with the vertex adjacent 

to it, then  η(G) = η(H). ■ 

Corollary 2.9: [4, p.235]    Let G1 and G2 be two bipartite graphs in which η(G1) = 0. 

If the graph G is obtained by joining an arbitrary vertex of G1 by an edge to an arbitrary 

vertex of G2, then η(G) = η(G2).■ 

Coalescence Graphs 

       To identify nonadjacent vertices u and v of a graph G is to replace the two vertices 

by a single vertex incident to all the edges which are incident in G to either u or v. 

Denote the resulting graph by G{u, v}. To contract an edge e of a graph G is to delete 

the edge and then (if the edge is a link) identify its ends. The resulting graph is denoted 

by Ge. 

Definition 2.10: [7]  Let (G1, u) and (G2, v) be two graphs rooted at vertices u and v, 

respectively. We attach G1 to G2 (or G2 to G1) by identifying the vertex u of G1 with the 

vertex v of G2. Vertices u and v are called vertices of attachment. The vertex formed 

by their identification is called the coalescence vertex. The resulting graph G1 G2 is 

called the coalescence (vertex identification) of G1 and G2. 

Definition 2.11: [7] Let {(G1, v1), (G2, v2), …, (Gt, vt)} be a family of not necessary 

distinct connected graphs with roots v1, v2, …, vt, respectively. A connected graph  G= 

G1 G2… Gt is called the multiple coalescence of G1, G2,…,Gt provided that the 

vertices v1, v2, …, vt are identified to reform the coalescence vertex v. The t-tupple 

coalescence graph is denoted by 
t

G  is the multiple coalescence of t isomorphic copies 

of a graph G. In the same ways 21

t

G G  is the multiple coalescence of G1 and t copies of 

G2. 

Remark 2.12: [7] All coalescened graphs have v as a common cut vertex. Some graphs 

and their operations will, herein, be illustrated in Figure 2.2. 

 
Definition 2.13: [7] Let G be a graph consisting of n vertices and L = {H1, H2, …, Hn} 

be a family of rooted graphs. Then, the graph formed by attaching Hk to the k-th    (1 k

 n) vertex of G is called the generalized rooted product and is denoted by G(L); G 

itself is called the core of G(L). If each member of L is isomorphic to the rooted graph 

H, then the graph G(L) is denoted by G(H). Recall G1, G2 and G3 from Figure 2.2. Then, 

we have 
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Definition 2.14: [7] The generalization of the rooted product graphs is called the F-

graphs, which are consecutively iterated rooted products defined as:
0

F  = K1, 
1

F = G = 

H, 
2

=F  G(H), …, 
1+s

F = 
s

F (H), s 1. 

Definition 2.15: [7] A family of dendrimers 
k

D  (k 0) is just a rooted product graph 

which is defined as follows:   

 
0

D = K1, 
1

D  = G = H, 
2

D  is the rooted product of G and H, in which some attachments 

of H are not made (i.e., H attached to the vertices of G which are not attached before). 

In general, 
1+k

D ( k 1) is constructed from 
k

D , and the number of copies of H attached to 
k

D  obeys some fixed generation law. Hence, 
1+k

D  is 
k

D  with G attached to each vertex of 
k

D  which  is not in  
1k

D
−

, that is to each 
1

( ) ( )
k k

u V D V D
−

 − .), k 1. 

 

3 Nullity of Dendrimer Graphs 

              In this section, we determine the nullity of dendrimer graphs 
kD , 0k , where 

GD =1  of some known graphs such as pC , pP , pK  and nmK , .   In each case, we 

consider that the nullity of the dendrimer graph 0D  is defined to be, 1)()( 1

0 == KD  . 

The dendrimer k

pC  for the cycle Cp is a connected graph with order  

2 1( ) ( 1) ( 1) ... ( 1)k k

pp C p p p p p p p −= + − + − + + −  1

1

( 1)
k

i

i

P p −

=

= − . And size 

2

2 2 2 2 2 2

2

( ) ( 1) ... ( 1)

( 1) ... ( 1) ( 1)

k k

p

k
k t

t

q C q pq p p q p p q

p p p p p p p p p

−

− −

=

= + + − + + −

= + + − + + − = + −
. 

Moreover, the diameter of k

pC  is (2 1). ( )pk diam C− . Also for 1k , the degrees of each 

vertex of k

pC   is either 2 or 4. 
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Proposition 3.1:  For a dendrimer graph k

pC , 1k  , we have: 

i) If np 4= , ...,2,1=n , then 1

4( ) 2nC = . 

       And for all k, 2k , 21

44 )14(4)()( −− −+= kk

n

k

n nnCC  . 

ii) If 24 += np , ...,2,1=n , then 
4 2( ) 0k

nC + = , for all k, 1k . 

iii) If 14 −= np , ...,2,1=n , then 1

4 1( ) 0nC − = , 2

4 1( ) 1nC − = . 

       And for all k, 3k  , 
4 1( ) 0k

nC − = . 

iv) If 14 += np , ...,2,1=n , then 
4 1( ) 0k

nC + = . for all k, 1k . 

Proof: i) For 1=k  it is clear that 4( ) 2nC = , ...,2,1=n , by Proposition 2.7 (i). For 

2=k , 4 4( )n nC C , is a rooted product of 4nC  and 4nC . So we need to prove that  
2

4( ) 2 4nC n = + . Let njix ji 4...,,2,1,,, =  be a weighting for the vertex jiv ,  in 

...,2,1,2

4 =nC n
, as indicated in Figure 3.1 

 
From the condition that , for all v in ...,2,1,2

4 =nC n , we have,{for the 

cycles identified with the vertices 1,iv }.  

For 34,...,3,1 −= nj . 













−==+

−==+

−==+

++

++

++

2,4,42,4,4

2,2,22,2,2

2,1,12,1,1

0

0

0

jnjnjnjn

jjjj

jjjj

xxxx

xxxx

xxxx


                              …(3.1) 

 And, for 24,...,4,2 −= nj . 













−==+

−==+

−==+

++

++

++

2,4,42,4,4

2,2,22,2,2

2,1,12,1,1

0

0

0

jnjnjnjn

jjjj

jjjj

xxxx

xxxx

xxxx


                               …(3.2) 

Also, from the condition that , for all v in the central cycle nC4 ,  we have,  

For 34,...,3,1 −= ni . 

01,21, =+ +ii xx    1,21, +−= ii xx                                                  …(3.3) 

And, for 24,...,4,2 −= ni . 

01,21, =+ +ii xx    1,21, +−= ii xx                                                 …(3.4) 




=
)(

0)(
vNw G

wf




=
)(

0)(
vNw G

wf
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       Therefore, for each i in the Equations (3.1), (3.2) and (3.4) we have used exactly 

two non-zero independent variables, one of which in the weight of 1,ix , where i is odd 

and the other in the weight of 1,ix , where i is even. And from Equation (3.2) we have 

used n4  non-zero independent variables. 

       Thus, the maximum number of non-zero independent variables used in a high zero-

sum weighting of 2

4 , 1,2,...nC n = , is equal to n42 + . 

       On the other hand, we have 4( ) 2nC = , ...,2,1=n , by Lemma 2.7 (i). But 

)( 44

2

4 nnn CCC = , so each identification of a copy of 4nC  with a vertex of 4nC  adds 

(increases) one to the nullity of a dendrimer graph. Since 4nC  has n4  vertices; thus, n4  

copies of a cycle nC4  are identified to 4nC .  

Therefore, 4 4 4( ( )) ( ) 4 2 4 .n n nC C C n n = + = +  

       For 3k , we use the iteration 2

4 4( )n nC C . This graph is a rooted product of 2

4nC  and 

4nC . Since 2

4nC  is a dendrimer graph having n4  cycles and each cycle has 14 −n  

vertices to be identified with new vertices, hence we attach a copy of 4nC  to )14(4 −nn  

vertices. Also, each copy of 4nC  adds (increases) one to the nullity of a dendrimer 

graph. Therefore,  2 2

4 4 4( ( )) ( ) 4 (4 1)n n nC C C n n = + − )14(442 −++= nnn . 

       Similarly, we have,  1

4 4( ( ))k

n nC C − 1 2

4( ) 4 (4 1)k k

nC n n − −= + −
 where k≥3.

 

ii) For each 1, kk , there exists no non-trivial zero-sum weighting for 
4 2

k

nC +
, 

...,2,1=n . Thus, by Theorem 2.3, k

nC 24 +
 is non-singular. 

iii) For 1=k , there exists no non-trivial zero-sum weighting for 4 1nC − , ...,2,1=n . Thus, 

by Theorem 2.3, 14 −nC  is non-singular. For 2=k , 4 1 4 1( )n nC C− − , is a rooted product of 

4 1nC −  and 4 1nC − . To prove that 4 1 4 1( ( )) 1n nC C − − = . Let jix , , 14...,,2,1, −= nji  be a 

weighting for 

 
 

vertex jiv ,  in 2

14 −nC , ...,2,1=n , as indicated in Figure 3.2. 
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Then, from the condition that , for all v in ...,2,1,2

14 =− nC n
,             we 

have: 

For 14,...,2,1 −= ni , and 34...,,3,1 −= nj . 

02,, =+ +jiji xx        2,, +−= jiji xx                                                       …(3.5) 

And, For 14,...,2,1 −= ni , and 24,...,4,2 −= nj .  

02,, =+ +jiji xx         2,, +−= jiji xx                                                      …(3.6)                                                                           

Hence, from Equations (3.5) and (3.6), we get: 

2,134,144,19,18,15,14,11,1 ... xxxxxxxx nn −======== −−                        …(3.7) 

 And 1,114,124,17,16,13,12,1 ... xxxxxxx nn −======= −−                         …(3.8) 

Also, from the condition that , for all v in ...,2,1,2

14 =− nC n
, we have: 

01,141,214,12,1 =+++ −− nn xxxx   

Since 1,114,12,1 xxx n −== −  , therefore,  1,11,141,2 xxx n == −                       …(3.9) 

Hence, from Equations (3.7), (3.8) and (3.9), we get 

For 14,...,2,1 −= ni . 

1,134,44,9,8,5,4,1, ... xxxxxxxx niniiiiii ======== −−                  …(3.10) 

And, For 14,...,2,1 −= ni . 

1,114,24,7,6,3,2, ... xxxxxxx niniiiii −======= −−                        …(3.11) 

Therefore, each vertex of 2

14 −nC , ...,2,1=n  has a weight 1,1x  or 1,1x− . 

This means that there exists a non-trivial zero-sum weighting for 2

14 −nC  used exactly one 

non-zero independent variable in a high zero-sum weighting of 2

14 −nC . Hence, 

1)( 2

14 =−nC . 

       Finally, the proof of 
4 1( ) 0k

nC − = , for 3k , is similar to that for k=2. 

iv) The proof is similar to that of part (ii).■ 

Corollary 3.2: For a dendrimer graph 
4 , 2k

nC k  , 1, 2,...,n= we have 

          
2

4

0

( ) 2 4 [ (4 1) ]
k

k i

n

i

C n n
−

=

= + − . 

Proof:  From Proposition 3.1 (i), we have: 

    1 2

4 4( ) ( ) 4 (4 1)k k k

n nC C n n  − −= + −  , for 2k  
2 3 2

4 4( ) ( ) 4 (4 1) 4 (4 1)k k k k

n nC C n n n n  − − − = + − + −  

               3 4 3 2

4( ) 4 (4 1) 4 (4 1) 4 (4 1)k k k k

nC n n n n n n − − − −= + − + − + −    

                 
               2 1 3 2

4( ) 4 (4 1) 4 (4 1) 4 (4 1)k k

nC n n n n n n − −= + − + + − + −  

               23 )14(4)14(4)14(442 −− −+−++−++= kk nnnnnnn   

               ])14()14()14(1[42 23 −− −+−++−++= kk nnnn   

               
−

=

−+=
2

0

.])14([42
k

i

inn  

2

4

0

( ) 2 4 [ (4 1) ]
k

k i

n

i

C n n
−

=

 = + − , for 2k .■ 




=
)(

0)(
vNw G

wf




=
)(

0)(
vNw G

wf
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Let pP  be a path with usually labeled vertices pvvv ...,,, 21 . If p is odd, this graph 

has a non-trivial zero-sum weighting, say ...,0,,0, xx − , which provides that an odd path 

is singular. Moreover, the dendrimer k

pP  has order 

2 1( ) ( 1) ( 1) ... ( 1)k k

pp P p p p p p p p −= + − + − + + −  and size 1)()( −= k

p

k

p PpPq . 

While, the diameter of kD  depends on the choice of the rooted vertex. Also, the 

maximum degree will be either 3 or 4 for 2k  , while the minimum degree is 1 .  

In general, ( ) (2 1)( 1)k

pdiam P k p − − , equality holds if k=1 or the rooted vertex is 

an end vertex of the path. 

Proposition 3.3:  For a dendrimer graph k

pP , 1k   we have: 

i) If np 2= , ...,2,1=n , then 
2( ) 0k

nP =  for all k, 1k . 

ii) If 12 += np , ...,2,1=n , and the rooted vertex has a non-zero weight , then 

       
2 1( ) 1k

nP + =  for all k, 1k . 

iii) If 12 += np , ...,2,1=n , and the rooted vertex has a zero weight , then 

       2 1( ) 1nP + = , 2

2 1( ) 2 1nP n + = +  , and 

       2 2

2 1 2 1( ) (2 1)(2 ) ( )k k k

n nP n n P − −

+ += + + , for all k, 3k . 

Proof: i) The proof is similar to that of  Proposition 3.1 (ii). 

ii) For 1=k , it is clear that 2 1( ) 1nP + =  by Proposition 2.7 (ii). For 2=k , 
2

2 1 2 1 2 1( )n n nP P P+ + += , is a rooted product of 2 1nP +  and 2 1nP + . To prove that 2

2 1( ) 1nP + = , let 

jix , , 12...,,2,1, += nji  be a weighting for the vertex jiv ,  in 2

12 +nP , ...,2,1=n , as 

indicated in Figure 3.3. 

 
 

Then, from the condition that 


=
)(

0)(
vNw G

wf , for all 2

2 1 , 1,2,...nv in P n+ = , we have: 

For all i, 12...,,2,1 += ni . 

02, =nix .                                                                                            … (3.12) 

Because ,2i nx  are the neighbors of the end vertices. 

Also, for all i, j, for which , 1, 2,..., 2 1i j n= +      
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, , 2i j i jx x += −    and    
, 2,i j i jx x += −                                                        …(3.13) 

Thus, from Equations (2.13) and (2.14), we get: 

For 1, 2,..., 2 1i n= +  and nj 2...,,4,2= . 

0, =jix .                                                                                              …(3.14) 

Hence, from the condition that 


=
)(

0)(
vNw G

wf , for all 2

2 1nv P +  and      Equations (3.13) 

and (3.14), we get: 
1,2 2,1 2,10 0x x x+ =  = .While, from Equation (3.13) and for all I 

and j, for which 2,4, ..., 2i n=  1,2,..., 2 1j n= + , we have: 0, =jix .Therefore, each vertex 

of 2

12 +nP  has the weight 0 or 12,1 +nx  or  12,1 +− nx .Thus, any high zero-sum weighting of 

2

12 +nP  will use only one non-zero variable, say 12,1 +nx .Therefore, 2

2 1( ) 1nP + =  where the 

rooted vertex has non-zero weight, and for 3k , similar steps for the proof hold as in 

the case where 2=k .Thus, any high zero-sum weighting of 
2 1

k

nP +
, 3k , will use only 

one    non-zero variable. Hence, 
2 1( ) 1k

nP + = . 

iii) For 1=k , it is clear that 2 1( ) 1nP + =  by Proposition 2.7 (ii). For 2=k , 
2

2 1 2 1 2 1( )n n nP P P+ + += , is a rooted product of 2 1nP +  and 2 1nP + . To prove that 2

2 1( ) 2 1nP n + = +

, where the rooted vertex has zero weight,   let the rooted vertex is neighbor of end 

vertex in 2 1nP + , and let jix , , 12...,,2,1, += nji  be a weighting for 2

12 +nP , ...,2,1=n , as 

indicated in Figure 3.4. 

 
       Then, from the condition that 



=
)(

0)(
vNw G

wf , for all v in ...,2,1,2

12 =+ nP n ,             we 

have: 

For all i, j, for which 12...,,2,1 += ni  and nj 2...,,4,2= . 

0, =jix                                                                                               …(3.15) 

And, for all i and j, for which 12...,,2,1 += ni  and 12...,,3,1 += nj . 

2,, +−= jiji xx                                                                                        …(3.16) 

Therefore, for each i we use one variable. Thus, the maximum number of non-zero 

independent variables used in a high zero-sum weighting of 2

2 1nP +
 is equal to .12 +n  

Hence, 2

2 1( ) 2 1nP n + = + . 
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       On the other hand, 2

2 1 2 1 2 1( )n n nP P P+ + += , since 2 1nP +  has 12 +n  vertices to be 

attachment and each vertex adds (increases) one to the nullity, thus: 

       121*)12()( 2

12 +=+=+ nnP n . 

       For 3=k , use the iteration 3 2

2 1 2 1 2 1( )n n nP P P+ + += . Since, 2

2 1nP +
 is a dendrimer graph 

having 12 +n   paths and each path has n2  vertices to be attachment, thus we attach 

2 1nP +  to )2)(12( nn +  vertices. But, each copy of 2 1nP +  adds (increases) one to the nullity 

of a dendrimer graph, and together the variable used in a high zero-sum weighting of  

2 1nP + . Therefore, 

       3

2 1 2 1( ) (2 1)(2 ) ( )n nP n n P + += + +  

                   1)2)(12( ++= nn . 

       Similarly, we have:
 

2 2

2 1 2 1( ) (2 1)(2 ) ( )k k k

n nP n n P − −

+ += + + , for each k, 3k .■ 

Corollary 3.4: For a dendrimer graph 
2 1 , 2k

nP k+  , 1, 2,...,n=  and the rooted vertex has 

zero weight, we have: 

i) If k is odd, 3k , then: 

1
2

2 1

2 1

1

( ) 1 (2 1) (2 )

k

k i

n

i

P n n

−

−

+

=

= + +  . 

ii) If k is even, 2k , then:    

2
2

2

2 1

0

( ) (2 1) (2 )

k

k i

n

i

P n n

−

+

=

= +  . 

Proof: i) From Proposition 3.3 (iii), we have: 

            2 1( ) 1nP + = , 2

2 1( ) 2 1nP n + = +  , and 

           2 2

2 1 2 1( ) (2 1)(2 ) ( )k k k

n nP n n P − −

+ += + + , for each k, 3k  

   2 4 4

2 1 2 1( ) (2 1)(2 ) (2 1)(2 ) ( )k k k k

n nP n n n n P − − −

+ + = + + + +  

                          

                    
    

2 4 1

2 1(2 1)(2 ) (2 1)(2 ) (2 1)(2 ) ( )k k

nn n n n n n P− −

+= + + + + + + +  

                        1)2)(12()2)(12()2)(12( 142 +++++++= −− nnnnnn kk   

                        1])2()2()2([)12( 142 +++++= −− nnnn kk   

                        

1
2

2 1

1

(2 1) (2 ) 1

k

i

i

n n

−

−

=

= + + .  

   

1
2

2 1

2 1

1

( ) 1 (2 1) (2 )

k

k i

n

i

P n n

−

−

+

=

 = + +  , if k is odd, 3k . 

ii) From Proposition 3.3 (iii), we have: 

           2 1( ) 1nP + = , 2

2 1( ) 2 1nP n + = + , and 

          2 2

2 1 2 1( ) (2 1)(2 ) ( )k k k

n nP n n P − −

+ += + + , for each k, 3k  

   2 4 4

2 1 2 1( ) (2 1)(2 ) (2 1)(2 ) ( )k k k k

n nP n n n n P − − −

+ + = + + + +  

                           

                        2 4 2 2

2 1(2 1)(2 ) (2 1)(2 ) (2 1)(2 ) ( )k k

nn n n n n n P− −

+= + + + + + + +  

                        )12()2)(12()2)(12()2)(12( 242 ++++++++= −− nnnnnnn kk   

                        ]1)2()2()2([)12( 242 +++++= −− nnnn kk   

                        ])2()2()2()2[()12( 2420 −− +++++= kk nnnnn   



Nullity and Bounds to the Nullity of Dendrimer Graphs 

 

 81 

                        

2
2

2

0

(2 1) (2 )

k

i

i

n n

−

=

= +  .  

   

2
2

2

2 1

0

( ) (2 1) (2 )

k

k i

n

i

P n n

−

+

=

 = +  , if k is even, 2k .■ 

    The nullities of dendrimers of complete graphs are determined in the next 

proposition. 

Proposition 3.5:  For a dendrimer graph k

pK , 1k   we have: 

i) If 3=p , then   
3( ) 0kK =  for all k, 12  k . And 1)( 2

3 =K . 

ii) If 4p  , then      ( ) 0k

pK =  for all k, 1k . 

Proof:  The proof is immediate by Proposition 3.1.■ 

      Every  Complete bipartite graph 
,m nK   , 2,, nm has exactly 3 distinct eigenvalues, 

while the dendrimer 
, , 2k

m nK k  , loses this property.  

Proposition 3.6: For a dendrimer graph 
,

k

m nK , 1k  , 2, nm , we have:

,( ) 2m nK m n = + − , and  

1 2

, ,( ) ( ) ( )( 1) ( 3)k k k

m n m nK K m n m n m n  − −= + + + − + − , for all k, 2k . 

Proof: For 1=k , it is clear that 
,( ) 2m nK m n = + −  by Prop. 2.7(iv). For 2=k , 

2

, , ,( )m n m n m nK K K= , is a rooted product of 
,m nK  and 

,m nK . To prove that 

2

,( ) ( 2) ( )( 3)m nK m n m n m n = + − + + + − , which is the number of independent variables 

used in a high zero-sum weighting for 2

,m nK .  For 3k , we use the iteration 

3 2

, , ,( )m n m n m nK K K= , since 2

,m nK  is a dendrimer graph having )( nm +  complete bipartite 

graphs nmK , , and each graph has )1( −+ nm  vertices to be attached; hence, we attach 

,m nK  to )1)(( −++ nmnm  vertices, but each copy of 
,m nK  adds (increases) )3( −+ nm  

to the nullity of the dendrimer graph.  

Thus,
 

1 2

, ,( ) ( ) ( )( 1) ( 3)k k k

m n m nK K m n m n m n  − −= + + + − + − , for all k, 2k .■ 

Corollary 3.7: For a dendrimer graph 
, , 2k

m nK k  , 2,, nm ,  : 
1

,

( 1) 1
( ) ( 2) ( )( 3)

2

k
k

m n

m n
K m n m n m n

m n


−+ − −
= + − + + + −

+ −
. 

Proof:  From Proposition 2.15, we have:  
,( ) 2m nK m n = + − , and           

 
   

1 2

, ,( ) ( ) ( )( 1) ( 3)k k k

m n m nK K m n m n m n  − −= + + + − + − , for all k, 2k .                      

)3(2)1)((

)3(3)1)(()2
,(),(

−+−−+++

−+−−+++−=

nmknmnm

nmknmnmk
nmKk

nmK   

                  

)3(2)1)((

)3(3)1)((...

)3(1)1)(()2
,(

−+−−+++

−+−−++++

−+−+++=

nmknmnm

nmknmnm

nmnmnmnmK
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)3()1)((

)3()1)((...

)3()1)((

)3)(()2(

2

3

1

−+−+++

−+−++++

−+−+++

−+++−+=

−

−

nmnmnm

nmnmnm

nmnmnm

nmnmnm

k

k
 

1 3 2( 2) ( )( 3)[1 ( 1) ... ( 1) ( 1) ]k km n m n m n m n m n m n− −= + − + + + − + + − + + + − + + −

     

    

1( 1) 1
( 2) ( )( 3)

2

km n
m n m n m n

m n

−+ − −
= + − + + + −

+ −
, for all k, 2k .■ 

Star graphs are special cases of complete bipartite graphs, namely 
1,1 −nS  is 

1,1 −nK  with 

a partite set consisting of a single vertex called the central vertex. 

Proposition 3.8:   For a dendrimer graph 
1, 1

k

nS −
, 1k  , 3n  , we have: 

i) If the rooted vertex of 
1, 1nS −

 is the central vertex, then 

        
1, 1( ) 2nS n − = − , 2

1, 1( ) ( 2)nS n n − = − , and 

        2 2

1, 1 1, 1( ) ( 1) ( 2) ( )k k k

n nS n n n S − −

− −= − − + , for all k, 3k . 

ii) If the rooted vertex of 
1, 1nS −

 is a non-central vertex, then 

       
1, 1( ) 2nS n − = − ,and 2 1

1, 1 1, 1( ) ( 1) ( 3) ( )k k k

n nS n n n S − −

− −= − − + , for all k, 2k . 

Proof: i) For 1=k , it is clear that 
1, 1( ) 2nS n − = −  by Proposition 2.7 (iv). For 2=k , 

2

1, 1 1, 1 1, 1( )n n nS S S− − −= , is a rooted product of 
1, 1nS −

 and 
1, 1nS −

. To prove that 

2

1, 1( ) ( 2)nS n n − = − ; let jix , , nji ...,,2,1, =  be a weighting  for 
2

1,1 −nS , as indicated in 

Figure 3.5. 

 
        Then, from the condition that 



=
)(

0)(
vNw G

wf , for all v in 
2

1,1 −nS , we have: 

0... ,,2,1 ==== nnnn xxx                                                          ...(3.17) 

And, 
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0...

0...

0...

1,2,1,

1,22,21,2

1,12,11,1

=+++

=+++

=+++

−

−

−

nnnn

n

n

xxx

xxx

xxx


                                                       

Then, 

2,2,1,1,

2,22,21,21,2

2,12,11,11,1

...

...

...

−−

−−

−−

−−−−=

−−−−=

−−−−=

nnnnnn

nn

nn

xxxx

xxxx

xxxx


                                            …(3.18) 

Then, from Equation (3.18), the number of independent variables used in a high zero-

sum weighting of 
2

1,1 −nS  is equal to )2( −nn . 

Hence, 
2

1, 1( ) ( 2)nS n n − = − . 

For 3=k , use the iteration 
3 2

1, 1 1, 1 1, 1( )n n nS S S− − −= , since 
2

1, 1nS −  is a dendrimer graph having 

n  star graphs 1,1 −nS  and each graph has 1−n  vertices to be attachment, thus we attach 

1, 1nS −
 to )1( −nn  vertices. But also, each copy of 

1, 1nS −
 adds (increases) )3( −n  to the 

nullity of a dendrimer graph, together the variable used in a high zero-sum weighting of  

1, 1nS −
. 

Therefore, 
3

1, 1 1, 1( ) ( 1)( 2) ( )n nS n n n S − −= − − +  

             )2()2)(1( −+−−= nnnn . 

Similarly, we have: 
2 2

1, 1 1, 1( ) ( 1) ( 2) ( )k k k

n nS n n n S − −

− −= − − + , for each k, 3k . 

ii) The proof is similar to that of Proposition 3.6.■ 

Corollary 3.9:  For a dendrimer  graph 
1, 1 , 2k

nS k−  , 3n , we have: 

i) If k is odd, 3k , and the rooted vertex of a graph 
1, 1nS −

 is its central vertex, then,        
1

2

2 1

1, 1

1

( ) ( 2) ( 2) ( 1)

k

k i

n

i

S n n n n

−

−

−

=

= − + − − . 

ii) If k is even, 2k , and the rooted vertex of a graph 1,1 −= nSH  is its central vertex, 

then:    

2
2

2

1, 1

0

( ) ( 2) ( 1)

k

k i

n

i

S n n n

−

−

=

= − − . 

iii) For all k, 2k , if the rooted vertex of a graph 1,1 −= nSH  is a non central vertex, 

then, 

       
1

1, 1

( 1) 1
( ) ( 2) ( 3)

2

k
k

n

n
S n n n

n


−

−

− −
= − + −

−
, for all k, 2k .  

Proof: i) From Proposition 3.8 (i), we have: 

 
       1, 1( ) 2nS n − = − , 

2

1, 1( ) ( 2)nS n n − = − , and 

        
2 2

1, 1 1, 1( ) ( 1) ( 2) ( )k k k

n nS n n n S − −

− −= − − + , for all k, 3k .

2 4 4

1, 1 1, 1( ) ( 1) ( 2) ( 1) ( 2) ( )k k k k

n nS n n n n n n S − − −

− − = − − + − − +  

                        
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2 4

1, 1( 1) ( 2) ( 1) ( 2) ... ( 1)( 2) ( )k k

nn n n n n n n n n S− −

−= − − + − − + + − − +  

                     )2()2)(1(...)2()1()2()1( 42 −+−−++−−+−−= −− nnnnnnnnnn kk  

                     )2(])1(...)1()1[()2( 42 −+−++−+−−= −− nnnnnn kk  

                     

1
2

2 1

1

( 2) ( 1) ( 2)

k

i

i

n n n n

−

−

=

= − − + − . 

1
2

2 1

1, 1

1

( ) ( 2) ( 2) ( 1)

k

k i

n

i

S n n n n

−

−

−

=

 = − + − − , if k is odd, 3k . 

ii) From Proposition 3.8 (i), we have: 

           
2

1, 1( ) ( 2)nS n n − = − , and 

          
2 2

1, 1 1, 1( ) ( 1) ( 2) ( )k k k

n nS n n n S − −

− −= − − + , for each k, 2k   

    
2 4 4

1, 1 1, 1( ) ( 1) ( 2) ( 1) ( 2) ( )k k k k

n nS n n n n n n S − − −

− − = − − + − − +  

                            

                         
2 4 2 2

1, 1( 1) ( 2) ( 1) ( 2) ... ( 1) ( 2) ( )k k

nn n n n n n n n n S− −

−= − − + − − + + − − +  

                         )2()2()1(...)2()1()2()1( 242 −+−−++−−+−−= −− nnnnnnnnnnn kk  

                         ]1)1(...)1()1[()2( 242 +−++−+−−= −− nnnnn kk  

                         

2
2

2

0

( 2) ( 1)

k

i

i

n n n

−

=

= − − . 

   

2
2

2

1, 1

0

( ) ( 2) ( 1)

k

k i

n

i

S n n n

−

−

=

 = − − , if k is even, 2k  . 

iii) From Proposition 3.8 (ii), we have: 

        1, 1( ) 2nS n − = − , and 
2 1

1, 1( ) ( 1) ( 3) ( )k k k

nS n n n D − −

− = − − + , for all k, 2k . 

 
2 3 2

1, 1 1, 1( ) ( 1) ( 3) ( 1) ( 3) ( )k k k k

n nS n n n n n n S − − −

− − = − − + − − +  

                    

                 
2 3 2

1, 1( 1) ( 3) ( 1) ( 3) ... ( 1)( 3) ( )k k

nn n n n n n n n n S− −

−= − − + − − + + − − +  

                 

)2()3()3)(1(...)3()1()3()1( 32 −+−+−−++−−+−−= −− nnnnnnnnnnnn kk  

                 )2(]1)1(...)1()1[()3( 32 −++−++−+−−= −− nnnnnn kk  

                 
1( 1) 1

( 2) ( 3)
2

kn
n n n

n

−− −
= − + −

−
. 

 
1

1, 1

( 1) 1
( ) ( 2) ( 3)

2

k
k

n

n
S n n n

n


−

−

− −
 = − + −

−
, for all k, 2k  .■ 

 

4. Upper Bounds for the Nullity of Coalescence Graphs 

In this section, we shall introduce and prove a lower and an upper bound for the 

nullity of the coalescence graph 21 GG  . 

Proposition 4.1:    For any singular graphs G1 andG2.      
1)()()(1)()( 212121 ++−+ GGGGGG    
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Proof: Let G1 and G2 be two singular graphs of orders p1 and p2, respectively, thus 

first we label the vertices of G1 by 
1

...,, 21 puuu , with a high zero- sum weighting 

1
...,,, 21 pxxx  and the vertices of G2 by 

2
...,,, 21 pvvv , with a high zero- sum weighting 

2
...,,, 21 pyyy .  

Assume that 1u  and 1v  are rooted vertices of G1 and G2 respectively. Then 

equality holds at the left if either or both rooted vertices are non- zero weighted because 

there exists a high zero- sum weighting for 21 GG   which is the enlargement of high 

zero- sum weightings for G1 and G2 reducing or vanishing one non- zero weight at the 

identification vertex. See Figure 4.1 where 321 PGG ==
. 

 
     Moreover, strictly holds at the left side if both rooted vertices have zero weights in 

their high zero- sum weightings, because there exists a zero- sum weighting which is the 

union of both high zero-sum weightings of G1 and G2. 

       Equality holds at the right side if both rooted vertices are cut vertices with zero 

weights in their high zero- sum weightings, and each component obtained with a 

deleting of a rooted cut vertex is singular, because there exists  a high zero- sum 

weighting for 21 GG   that uses an extra independent variable further than the variables 

used in high zero- sum weightings of   G1 and G2. See Figure 4.2. 

       Moreover, strictly holds at the right side if one rooted vertices does not satisfy the 

condition of equality as indicated above. ■ 

 
Note:  Let w be the identification vertex )( vuw =  of G = 21 GG  . Then, by 

interlacing Theorem [2, p314], 1)()( −− wGG    i.e 

1)()()( 21 −−−− vGuGG       uG1 , vG2 .  Hence, 

         1 2 1 2 1 2( ) ( ) 1 ( ) ( ) ( ) 1G u G v G G G u G v    − + − −   − + − + . 
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