Nullity and Bounds to the Nullity of Dendrimer Graphs

Khidir R. Sharaf

Didar A. Ali

khidirsharaf@yahoo.com

Didar.math@vahoo.com

Department of Mathematics faculty of Science, University of Zakho, Zakho - Kurdistan-Region, Iraq

Received on: 28/06/2012 Accepted on: 04/12/2012

ABSTRACT

In this paper, a high zero-sum weighting is applied to evaluate the nullity of a dendrimer graph for some special graphs such as cycles, paths, complete graphs, complete bipartite graphs and star graphs.

Finally, we introduce and prove a sharp lower and a sharp upper bound for the nullity of the coalescence graph of two graphs.

Keywords: Graph spectra, Nullity of graphs

درجة الشذوذ وحدود درجة الشذوذ لبيانات Dendrimer

خدر شرف دیدار علی

قسم الرياضيات كلية العلوم، جامعة زلخو، زلخو، إقليم كردستان، العراق

تاريخ استلام البحث: 2012/06/28 تاريخ استلام البحث: 2012/06/28

الملخص

في هذا البحث, تم تطبيق تقنية التوزين العالي لإحتساب درجة الشذوذ للبيان (dendrimer D) إذ D بيان خاص, كالدارة, الدرب, البيان التام, البيان الثنائي التجزئة التام أوالنجمة.أخيراً , وضعنا وأثبتنا قيود حادة D دنيا وعليا للبيان D .

الكلمات المفتاحية: أطياف البيان، درجة الشذوذ للبيان.

1. Introduction

The characteristic polynomial of the adjacency matrix A(G) is said to be the characteristic polynomial of the graph G, denoted by $\varphi(G; x)$. The eigenvalues of A(G) are said to be the eiegenvalues of the graph G, the occurrence of zero as an eigenvalue in the spectrum of the graph G is called the "nullity" of G denoted by $\eta(G)$. Brown and others [4] proved that a graph G is singular if, and only if, G possesses a non-trivial zero-sum weighting, and asked, what causes a graph to be singular and what are the effects of this on its properties. Rashid [11] proved that a high zero-sum weighting M_v(G) of a graph G, that is (the maximum number of non zero independent variables used in a high zero- sum weighting for a graph G, is equal to the nullity of G) It is known that $0 \le \eta(G) \le p-2$ if G is a non empty graph with p vertices. Cheng and Liu [5] proved that if G has p vertices with no isolated vertices, then $\eta(G) = p-2$ if, and only if, G is isomorphic to a complete bipartite graph $K_{m,n}$, and $\eta(G) = p - 3$ if, and only if, G is isomorphic to a complete 3 partite graph K_{a,b,c}. Omidi [10] found some lower bounds for the nullity of graphs and proved that among bipartite graphs with p vertices, q edges and maximum degree Δ which do not have any cycle of length a multiple of 4 as a subgraph, the greatest nullity is p - $2\lceil a/\Delta \rceil$.

In this paper, we continue the research along the same lines. We derive formulas to determine the nullity of dendrimer graphs.

2 Definition and Preliminary Results

Definition 2.1: [5, p.16] and [8] A vertex weighting of a graph G is a function f: V(G) →R where R is the set of real numbers, which assigns a real number (weight) to each vertex. The weighting of G is said to be non-trivial if there is, at least, one vertex $v \in V(G)$ for which $f(v) \neq 0$.

Definition 2.2: [5, p.16] A non-trivial vertex weighting of a graph G is called a zerosum weighting provided that for each $v \in V(G)$, $\sum f(w) = 0$, where the summation is taken over all $w \in NG(v)$.

Clearly, the following weighting for G is a non-trivial zero-sum weighting where as indicated in Figure 2.1.

Figure 2.1. A non-trivial zero-sum weighting for a graph G.

theorem 2. 3: [4] a graph g is singular if, and only if, there is a non-trivial zero-sum weighting for g.■

Hence, the graph G depicted in Figure 2.1 is singular. Out of all zero-sum weightings of a graph G, a high zero-sum weighting of G is one that uses maximum number of non-zero independent variables.

proposition 2.4: [6, p.35] and [8] in any graph g, the maximum number mv(g) of nonzero independent variables in a high zero-sum weighting equals the number of zeros as an eigenvalues of the adjacency matrix of g, (i.e. $mv(g) = \eta(g)$).

In Figure 2.1, the weighting for the graph G is a high zero-sum weighting that uses 5 independent variables, hence, $\eta(G) = 5$.

The complement of the disjoint union of m edges is called a cocktail graph and is denoted by CP(m) = (mK2)c = K2,2,...,2 = Km(2).

Proposition 2. 5: [6, p.20] The spectrum of the cocktail graph CP(m) is:
$$S_p(CP(m)) = \begin{pmatrix} 2m-2 & 0 & -2 \\ 1 & m & m-1 \end{pmatrix}, \text{thus } \eta(CP(m)) = \begin{cases} 2, & \text{if } m=1, \\ m, & \text{if } m>1. \end{cases}$$

Proposition 2.6: [2] The adjacency matrix of the wheel graph Wp, A(Wp), has eigenvalues $1+\sqrt{p}$, $1-\sqrt{p}$ and $2\cos\frac{2\pi r}{p-1}$, r=0, 1, ..., p-2. Hence, $\eta(Wp)=2$ if $p=1 \pmod 4$

and o otherwise.

Proposition 2.7: [4, p.72]i) The eigenvalues of the cycle Cp are of the form $2\cos\frac{2\pi r}{r}$,

r = 0, 1, ..., p-1. According to this, $\eta(CP) = 2$ if $p=0 \pmod{4}$ and 0 otherwise.

ii) The eigenvalues of the path Pp are of the form $2\cos\frac{\pi r}{p+1}$, $r=1,2,\ldots p$. And thus,

 $\eta(PP)=1$ if p is odd and 0 otherwise.

iii) The spectrum of the complete graph Kp, consists of p-1 and -1 with multiplicity p-1.

iv) The spectrum of the complete bipartite graph Km,n , consists of \sqrt{mn} , $-\sqrt{mn}$ and zero m+n-2 times

Corollary 2.8: [4, p.234] If G is a bipartite graph with an end vertex, and if H is an induced subgraph of G obtained by deleting this vertex together with the vertex adjacent to it, then $\eta(G) = \eta(H)$.

Corollary 2.9: [4, p.235] Let G1 and G2 be two bipartite graphs in which $\eta(G1) = 0$. If the graph G is obtained by joining an arbitrary vertex of G1 by an edge to an arbitrary vertex of G2, then $\eta(G) = \eta(G2)$.

Coalescence Graphs

To **identify** nonadjacent vertices u and v of a graph G is to replace the two vertices by a single vertex incident to all the edges which are incident in G to either u or v. Denote the resulting graph by $G/\{u,v\}$. To **contract** an edge e of a graph G is to delete the edge and then (if the edge is a link) identify its ends. The resulting graph is denoted by G/e.

Definition 2.10: [7] Let (G_1, u) and (G_2, v) be two graphs rooted at vertices u and v, respectively. We attach G_1 to G_2 (or G_2 to G_1) by identifying the vertex u of G_1 with the vertex v of G_2 . Vertices u and v are called **vertices of attachment**. The vertex formed by their identification is called the **coalescence vertex**. The resulting graph $G_1 \circ G_2$ is called the **coalescence (vertex identification)** of G_1 and G_2 .

Definition 2.11: [7] Let $\{(G_1, v_1), (G_2, v_2), ..., (G_t, v_t)\}$ be a family of not necessary distinct connected graphs with roots $v_1, v_2, ..., v_t$, respectively. A connected graph $G = G_1 \circ G_2 \circ ... \circ G_t$ is called the **multiple coalescence** of $G_1, G_2, ..., G_t$ provided that the vertices $v_1, v_2, ..., v_t$ are identified to reform the coalescence vertex v. The **t-tupple**

coalescence graph is denoted by G is the multiple coalescence of t isomorphic copies of a graph G. In the same ways $G_1 \circ G_2$ is the multiple coalescence of G_1 and t copies of G_2 .

Remark 2.12: [7] All coalescened graphs have v as a common cut vertex. Some graphs and their operations will, herein, be illustrated in Figure 2.2.

Figure 2.2. Multiple coalescence $G_1 \circ G_2 \circ G_3$, t-tupple coalescence G_1 and coalescence of both $G_1 \circ G_2$.

Definition 2.13: [7] Let G be a graph consisting of n vertices and $L = \{H_1, H_2, ..., H_n\}$ be a family of rooted graphs. Then, the graph formed by attaching H_k to the k-th $(1 \le k \le n)$ vertex of G is called the **generalized rooted product** and is denoted by G(L); G itself is called the **core** of G(L). If each member of L is isomorphic to the rooted graph H, then the graph G(L) is denoted by G(H). Recall G_1 , G_2 and G_3 from Figure 2.2. Then, we have

Figure 2.3. Generalized rooted product graphs

Definition 2.14: [7] The generalization of the rooted product graphs is called the **F**-graphs, which are consecutively iterated rooted products defined as: $\overset{\circ}{F} = K_1$, $\overset{\circ}{F} = G = H$, $\overset{\circ}{F} = G(H), ..., \overset{s+1}{F} = \overset{s}{F}(H), s \ge 1$.

Definition 2.15: [7] A family of **dendrimers** $\stackrel{\kappa}{D}$ ($k \ge 0$) is just a rooted product graph which is defined as follows:

 $\stackrel{0}{D}=\mathrm{K}_1, \stackrel{1}{D}=\mathrm{G}=\mathrm{H}, \stackrel{2}{D}$ is the rooted product of G and H, in which some attachments of H are not made (i.e., H attached to the vertices of G which are not attached before). In general, $\stackrel{k+1}{D}(k\geq 1)$ is constructed from $\stackrel{k}{D}$, and the number of copies of H attached to $\stackrel{k}{D}$ obeys some fixed generation law. Hence, $\stackrel{k+1}{D}$ is $\stackrel{k}{D}$ with G attached to each vertex of $\stackrel{k}{D}$ which is not in $\stackrel{k-1}{D}$, that is to each $u\in V(D)-V(D)$.), $k\geq 1$.

Figure 2.4. F-graphs and Dendrimer graphs $\overset{k}{D}$, where $G = H = C_3$.

3 Nullity of Dendrimer Graphs

In this section, we determine the nullity of dendrimer graphs D^k , $k \ge 0$, where $D^1 = G$ of some known graphs such as C_p , P_p , K_p and $K_{m,n}$. In each case, we consider that the nullity of the dendrimer graph D^0 is defined to be, $\eta(D^0) = \eta(K_1) = 1$. The dendrimer C_p^k for the **cycle** C_p is a connected graph with order

$$p(C_p^k) = p + p(p-1) + p(p-1)^2 + \dots + p(p-1)^{k-1} = \sum_{i=1}^k P(p-1)^{i-1}. \text{ And size}$$

$$q(C_p^k) = q + pq + p(p-1)q + \dots + p(p-1)^{k-2}q$$

$$= p + p^2 + p^2(p-1) + \dots + p^2(p-1)^{k-2} = p + p^2 \sum_{t=2}^k (p-1)^{t-2}.$$

Moreover, the diameter of C_p^k is (2k-1). $diam(C_p)$. Also for k > 1, the degrees of each vertex of C_p^k is either 2 or 4.

Proposition 3.1: For a dendrimer graph C_p^k , $k \ge 1$, we have:

i) If
$$p = 4n$$
, $n = 1, 2, ...$, then $\eta(C_{4n}^1) = 2$.
And for all k, $k \ge 2$, $\eta(C_{4n}^k) = \eta(C_{4n}^{k-1}) + 4n(4n-1)^{k-2}$.

ii) If
$$p = 4n + 2$$
, $n = 1, 2, ...$, then $\eta(C_{4n+2}^k) = 0$, for all k, $k \ge 1$.

iii) If
$$p = 4n - 1$$
, $n = 1, 2, ...$, then $\eta(C_{4n-1}^1) = 0$, $\eta(C_{4n-1}^2) = 1$.
And for all k, $k \ge 3$, $\eta(C_{4n-1}^k) = 0$.

iv) If
$$p = 4n + 1$$
, $n = 1, 2, ...$, then $\eta(C_{4n+1}^k) = 0$. for all k, $k \ge 1$.

Proof: i) For k = 1 it is clear that $\eta(C_{4n}) = 2$, n = 1, 2, ..., by Proposition 2.7 (i). For k = 2, $C_{4n}(C_{4n})$, is a rooted product of C_{4n} and C_{4n} . So we need to prove that $\eta(C_{4n}^2) = 2 + 4n$. Let $x_{i,j}$, i, j = 1, 2, ..., 4n be a weighting for the vertex $v_{i,j}$ in C_{4n}^2 , n = 1, 2, ..., as indicated in Figure 3.1

Figure 3.1. A weighting of C_{4n}^2 , n=1,2,...

From the condition that $\sum_{w \in N_G(v)} f(w) = 0$, for all v in C_{4n}^2 , n = 1, 2, ..., we have, {for the

cycles identified with the vertices $v_{i,1}$ }.

For
$$j = 1, 3, ..., 4n - 3$$
.

$$x_{1,j} + x_{1,j+2} = 0 \qquad \Rightarrow \qquad x_{1,j} = -x_{1,j+2} x_{2,j} + x_{2,j+2} = 0 \qquad \Rightarrow \qquad x_{2,j} = -x_{2,j+2} \vdots x_{4n,j} + x_{4n,j+2} = 0 \qquad \Rightarrow \qquad x_{4n,j} = -x_{4n,j+2}$$
 ...(3.1)

And, for j = 2, 4, ..., 4n - 2.

$$\begin{cases}
 x_{1,j} + x_{1,j+2} = 0 & \Rightarrow & x_{1,j} = -x_{1,j+2} \\
 x_{2,j} + x_{2,j+2} = 0 & \Rightarrow & x_{2,j} = -x_{2,j+2} \\
 \vdots & & & \\
 x_{4n,j} + x_{4n,j+2} = 0 & \Rightarrow & x_{4n,j} = -x_{4n,j+2}
 \end{cases}$$
...(3.2)

Also, from the condition that $\sum_{w \in N_G(v)} f(w) = 0$, for all v in the central cycle C_{4n} , we have,

For
$$i = 1, 3, ..., 4n - 3$$
.

$$x_{i,1} + x_{i+2,1} = 0 \implies x_{i,1} = -x_{i+2,1}$$
 ...(3.3)

And, for i = 2, 4, ..., 4n - 2.

$$x_{i,1} + x_{i+2,1} = 0 \implies x_{i,1} = -x_{i+2,1}$$
 ...(3.4)

Therefore, for each i in the Equations (3.1), (3.2) and (3.4) we have used exactly two non-zero independent variables, one of which in the weight of $x_{i,1}$, where i is odd and the other in the weight of $x_{i,1}$, where i is even. And from Equation (3.2) we have used 4n non-zero independent variables.

Thus, the maximum number of non-zero independent variables used in a high zerosum weighting of C_{4n}^2 , n = 1, 2, ..., is equal to 2 + 4n.

On the other hand, we have $\eta(C_{4n}) = 2$, n = 1, 2, ..., by Lemma 2.7 (i). But $C_{4n}^2 = C_{4n}(C_{4n})$, so each identification of a copy of C_{4n} with a vertex of C_{4n} adds (increases) one to the nullity of a dendrimer graph. Since C_{4n} has 4n vertices; thus, 4n copies of a cycle C_{4n} are identified to C_{4n} .

Therefore, $\eta(C_{4n}(C_{4n})) = \eta(C_{4n}) + 4n = 2 + 4n$.

For $k \ge 3$, we use the iteration $C_{4n}^2(C_{4n})$. This graph is a rooted product of C_{4n}^2 and C_{4n} . Since C_{4n}^2 is a dendrimer graph having 4n cycles and each cycle has 4n-1 vertices to be identified with new vertices, hence we attach a copy of C_{4n} to 4n(4n-1) vertices. Also, each copy of C_{4n} adds (increases) one to the nullity of a dendrimer graph. Therefore, $\eta(C_{4n}^2(C_{4n})) = \eta(C_{4n}^2) + 4n(4n-1) = 2 + 4n + 4n(4n-1)$.

Similarly, we have, $\eta(C_{4n}^{k-1}(C_{4n})) = \eta(C_{4n}^{k-1}) + 4n(4n-1)^{k-2}$ where $k \ge 3$.

ii) For each $k, k \ge 1$, there exists no non-trivial zero-sum weighting for C_{4n+2}^k , n = 1, 2, Thus, by Theorem 2.3, C_{4n+2}^k is non-singular.

iii) For k=1, there exists no non-trivial zero-sum weighting for C_{4n-1} , n=1,2,.... Thus, by Theorem 2.3, C_{4n-1} is non-singular. For k=2, $C_{4n-1}(C_{4n-1})$, is a rooted product of C_{4n-1} and C_{4n-1} . To prove that $\eta(C_{4n-1}(C_{4n-1}))=1$. Let $x_{i,j}$, i,j=1,2,...,4n-1 be a weighting for

Figure 3.2. A weighting of C_{4n-1}^2 , n = 1, 2, ...

vertex $v_{i,j}$ in C_{4n-1}^2 , n = 1, 2, ..., as indicated in Figure 3.2.

Then, from the condition that $\sum_{w \in N_G(v)} f(w) = 0$, for all v in C_{4n-1}^2 , n = 1, 2, ..., we

have:

For i = 1, 2, ..., 4n - 1, and j = 1, 3, ..., 4n - 3.

$$x_{i,j} + x_{i,j+2} = 0 \implies x_{i,j} = -x_{i,j+2}$$
 ...(3.5)

And, For i = 1, 2, ..., 4n - 1, and j = 2, 4, ..., 4n - 2.

$$x_{i,j} + x_{i,j+2} = 0 \implies x_{i,j} = -x_{i,j+2}$$
 ...(3.6)

Hence, from Equations (3.5) and (3.6), we get:

$$x_{1,1} = x_{1,4} = x_{1,5} = x_{1,8} = x_{1,9} = \dots = x_{1,4n-4} = x_{1,4n-3} = -x_{1,2}$$
 ...(3.7)

And
$$x_{1,2} = x_{1,3} = x_{1,6} = x_{1,7} = \dots = x_{1,4n-2} = x_{1,4n-1} = -x_{1,1}$$
 ...(3.8)

Also, from the condition that $\sum_{w \in N_G(v)} f(w) = 0$, for all v in C_{4n-1}^2 , n = 1, 2, ..., we have:

$$x_{1,2} + x_{1,4n-1} + x_{2,1} + x_{4n-1,1} = 0$$

Since
$$x_{1,2} = x_{1,4n-1} = -x_{1,1}$$
, therefore, $x_{2,1} = x_{4n-1,1} = x_{1,1}$...(3.9)

Hence, from Equations (3.7), (3.8) and (3.9), we get

For i = 1, 2, ..., 4n - 1.

$$x_{i,1} = x_{i,4} = x_{i,5} = x_{i,8} = x_{i,9} = \dots = x_{i,4n-4} = x_{i,4n-3} = x_{1,1}$$
 ...(3.10)

And, For i = 1, 2, ..., 4n - 1.

$$x_{i,2} = x_{i,3} = x_{i,6} = x_{i,7} = \dots = x_{i,4n-2} = x_{i,4n-1} = -x_{1,1}$$
 ...(3.11)

Therefore, each vertex of C_{4n-1}^2 , n = 1, 2, ... has a weight $x_{1,1}$ or $-x_{1,1}$.

This means that there exists a non-trivial zero-sum weighting for C_{4n-1}^2 used exactly one non-zero independent variable in a high zero-sum weighting of C_{4n-1}^2 . Hence,

$$\eta(C_{4n-1}^2) = 1.$$

Finally, the proof of $\eta(C_{4n-1}^k) = 0$, for $k \ge 3$, is similar to that for k=2.

iv) The proof is similar to that of part (ii).■

Corollary 3.2: For a dendrimer graph C_{4n}^k , $k \ge 2$, n=1,2,..., we have

$$\eta(C_{4n}^k) = 2 + 4n\left[\sum_{i=0}^{k-2} (4n-1)^i\right].$$

Proof: From Proposition 3.1 (i), we have:

$$\eta(C_{4n}^k) = \eta(C_{4n}^{k-1}) + 4n(4n-1)^{k-2}, \text{ for } k \ge 2$$

$$\therefore \quad \eta(C_{4n}^k) = 2 + 4n \left[\sum_{i=0}^{k-2} (4n-1)^i \right], \text{ for } k \ge 2. \blacksquare$$

Let P_p be a **path** with usually labeled vertices $v_1, v_2, ..., v_p$. If p is odd, this graph has a non-trivial zero-sum weighting, say x, 0, -x, 0, ..., which provides that an odd path is singular. Moreover, the dendrimer P_p^k has order

$$p(P_p^k) = p + p(p-1) + p(p-1)^2 + ... + p(p-1)^{k-1}$$
 and size $q(P_p^k) = p(P_p^k) - 1$.

While, the diameter of D^k depends on the choice of the rooted vertex. Also, the maximum degree will be either 3 or 4 for $k \ge 2$, while the minimum degree is 1.

In general, $diam(P_p^k) \le (2k-1)(p-1)$, equality holds if k=1 or the rooted vertex is an end vertex of the path.

Proposition 3.3: For a dendrimer graph P_p^k , $k \ge 1$ we have:

- i) If p = 2n, n = 1, 2, ..., then $\eta(P_{2n}^k) = 0$ for all k, $k \ge 1$.
- ii) If p = 2n + 1, n = 1, 2, ..., and the rooted vertex has a non-zero weight, then $\eta(P_{2n+1}^k) = 1$ for all k, $k \ge 1$.
- iii) If $p=2n+1,\ n=1,2,...$, and the rooted vertex has a zero weight, then $\eta(P_{2n+1})=1,\ \eta(P_{2n+1}^2)=2n+1$, and $\eta(P_{2n+1}^k)=(2n+1)(2n)^{k-2}+\eta(P_{2n+1}^{k-2})$, for all k, $k\geq 3$.

Proof: i) The proof is similar to that of Proposition 3.1 (ii).

ii) For k=1, it is clear that $\eta(P_{2n+1})=1$ by Proposition 2.7 (ii). For k=2, $P_{2n+1}^2=P_{2n+1}(P_{2n+1})$, is a rooted product of P_{2n+1} and P_{2n+1} . To prove that $\eta(P_{2n+1}^2)=1$, let $x_{i,j}$, i,j=1,2,...,2n+1 be a weighting for the vertex $v_{i,j}$ in P_{2n+1}^2 , n=1,2,..., as indicated in Figure 3.3.

Figure 3.3. A weighting of P_{2n+1}^2 where the rooted vertex has a non-zero weight.

Then, from the condition that $\sum_{w \in N_G(v)} f(w) = 0$, for all v in P_{2n+1}^2 , n = 1, 2, ..., we have:

For all i,
$$i = 1, 2, ..., 2n + 1$$
.
 $x_{i,2n} = 0$ (3.12)

Because $x_{i,2n}$ are the neighbors of the end vertices.

Also, for all i, j, for which i, j = 1, 2, ..., 2n + 1

$$x_{i,j} = -x_{i,j+2}$$
 and $x_{i,j} = -x_{i+2,j}$...(3.13)

Thus, from Equations (2.13) and (2.14), we get:

For i = 1, 2, ..., 2n + 1 and j = 2, 4, ..., 2n.

$$x_{i,j} = 0$$
. ...(3.14)

Hence, from the condition that $\sum_{w \in N_G(v)} f(w) = 0$, for all $v \in P_{2n+1}^2$ and Equations (3.13)

and (3.14), we get: $x_{1,2} + x_{2,1} = 0 \implies x_{2,1} = 0$. While, from Equation (3.13) and for all I and j, for which i = 2, 4, ..., 2n j = 1, 2, ..., 2n + 1, we have: $x_{i,j} = 0$. Therefore, each vertex of P_{2n+1}^2 has the weight 0 or $x_{1,2n+1}$ or $-x_{1,2n+1}$. Thus, any high zero-sum weighting of P_{2n+1}^2 will use only one non-zero variable, say $x_{1,2n+1}$. Therefore, $\eta(P_{2n+1}^2)=1$ where the rooted vertex has non-zero weight, and for $k \ge 3$, similar steps for the proof hold as in the case where k = 2. Thus, any high zero-sum weighting of P_{2n+1}^k , $k \ge 3$, will use only one non-zero variable. Hence, $\eta(P_{2n+1}^k) = 1$.

iii) For k = 1, it is clear that $\eta(P_{2n+1}) = 1$ by Proposition 2.7 (ii). For k = 2, $P_{2n+1}^2 = P_{2n+1}(P_{2n+1})$, is a rooted product of P_{2n+1} and P_{2n+1} . To prove that $\eta(P_{2n+1}^2) = 2n+1$, where the rooted vertex has zero weight, let the rooted vertex is neighbor of end vertex in P_{2n+1} , and let $x_{i,j}$, i, j = 1, 2, ..., 2n + 1 be a weighting for P_{2n+1}^2 , n = 1, 2, ..., as indicated in Figure 3.4.

Figure 3.4. A weighting of
$$P_{2n+1}^2$$
 where the rooted vertex has a zero weight.
Then, from the condition that $\sum_{w \in N_G(v)} f(w) = 0$, for all v in P_{2n+1}^2 , $n = 1, 2, ...$, we

For all i, j, for which i = 1, 2, ..., 2n + 1 and j = 2, 4, ..., 2n.

$$x_{i,j} = 0$$
 ...(3.15)

And, for all i and j, for which i = 1, 2, ..., 2n + 1 and j = 1, 3, ..., 2n + 1.

$$x_{i,j} = -x_{i,j+2}$$
 ...(3.16)

Therefore, for each i we use one variable. Thus, the maximum number of non-zero independent variables used in a high zero-sum weighting of P_{2n+1}^2 is equal to 2n+1. Hence, $\eta(P_{2n+1}^2) = 2n+1$.

On the other hand, $P_{2n+1}^2 = P_{2n+1}(P_{2n+1})$, since P_{2n+1} has 2n+1 vertices to be attachment and each vertex adds (increases) one to the nullity, thus:

$$\eta(P_{2n+1}^2) = (2n+1)*1 = 2n+1.$$

For k=3, use the iteration $P_{2n+1}^3=P_{2n+1}^2(P_{2n+1})$. Since, P_{2n+1}^2 is a dendrimer graph having 2n+1 paths and each path has 2n vertices to be attachment, thus we attach P_{2n+1} to (2n+1)(2n) vertices. But, each copy of P_{2n+1} adds (increases) one to the nullity of a dendrimer graph, and together the variable used in a high zero-sum weighting of P_{2n+1} . Therefore,

$$\eta(P_{2n+1}^3) = (2n+1)(2n) + \eta(P_{2n+1})$$
$$= (2n+1)(2n) + 1.$$

Similarly, we have: $\eta(P_{2n+1}^k) = (2n+1)(2n)^{k-2} + \eta(P_{2n+1}^{k-2})$, for each k, $k \ge 3$.

Corollary 3.4: For a dendrimer graph P_{2n+1}^k , $k \ge 2$, n=1,2,..., and the rooted vertex has zero weight, we have:

i) If k is odd,
$$k \ge 3$$
, then: $\eta(P_{2n+1}^k) = 1 + (2n+1) \sum_{i=1}^{\frac{k-1}{2}} (2n)^{2i-1}$.

ii) If k is even,
$$k \ge 2$$
, then: $\eta(P_{2n+1}^k) = (2n+1)\sum_{i=0}^{\frac{k-2}{2}} (2n)^{2i}$.

Proof: i) From Proposition 3.3 (iii), we have:

$$\eta(P_{2n+1}) = 1, \ \eta(P_{2n+1}^2) = 2n+1, \text{ and}$$

$$\eta(P_{2n+1}^k) = (2n+1)(2n)^{k-2} + \eta(P_{2n+1}^{k-2}), \text{ for each k, } k \ge 3$$

$$\therefore \quad \eta(P_{2n+1}^k) = (2n+1)(2n)^{k-2} + (2n+1)(2n)^{k-4} + \eta(P_{2n+1}^{k-4})$$

$$\vdots$$

$$= (2n+1)(2n)^{k-2} + (2n+1)(2n)^{k-4} + \dots + (2n+1)(2n)^1 + \eta(P_{2n+1})$$

$$= (2n+1)(2n)^{k-2} + (2n+1)(2n)^{k-4} + \dots + (2n+1)(2n)^1 + 1$$

$$= (2n+1)\left[(2n)^{k-2} + (2n)^{k-4} + \dots + (2n)^1\right] + 1$$

$$= (2n+1)\sum_{i=1}^{\frac{k-1}{2}} (2n)^{2i-1} + 1.$$

$$\therefore \quad \eta(P_{2n+1}^k) = 1 + (2n+1) \sum_{i=1}^{\frac{k-1}{2}} (2n)^{2i-1} , \text{ if k is odd, } k \ge 3.$$

ii) From Proposition 3.3 (iii), we have:

$$\eta(P_{2n+1}) = 1, \ \eta(P_{2n+1}^2) = 2n+1, \text{ and}
\eta(P_{2n+1}^k) = (2n+1)(2n)^{k-2} + \eta(P_{2n+1}^{k-2}), \text{ for each k, } k \ge 3
\therefore \eta(P_{2n+1}^k) = (2n+1)(2n)^{k-2} + (2n+1)(2n)^{k-4} + \eta(P_{2n+1}^{k-4})
\vdots
= (2n+1)(2n)^{k-2} + (2n+1)(2n)^{k-4} + \dots + (2n+1)(2n)^2 + \eta(P_{2n+1}^2)
= (2n+1)(2n)^{k-2} + (2n+1)(2n)^{k-4} + \dots + (2n+1)(2n)^2 + (2n+1)
= (2n+1)[(2n)^{k-2} + (2n)^{k-4} + \dots + (2n)^2 + 1]
= (2n+1)[(2n)^0 + (2n)^2 + \dots + (2n)^{k-4} + (2n)^{k-2}]$$

$$= (2n+1) \sum_{i=0}^{\frac{k-2}{2}} (2n)^{2i} .$$

$$\therefore \quad \eta(P_{2n+1}^k) = (2n+1) \sum_{i=0}^{\frac{k-2}{2}} (2n)^{2i} , \text{ if k is even, } k \ge 2. \blacksquare$$

The nullities of dendrimers of complete graphs are determined in the next proposition.

Proposition 3.5: For a dendrimer graph K_n^k , $k \ge 1$ we have:

i) If p = 3, then $\eta(K_3^k) = 0$ for all k, $2 \neq k \geq 1$. And $\eta(K_3^2) = 1$.

ii) If $p \ge 4$, then $\eta(K_n^k) = 0$ for all k, $k \ge 1$.

Proof: The proof is immediate by Proposition 3.1.

Every Complete bipartite graph $K_{m,n}$, $m,n,\geq 2$ has exactly 3 distinct eigenvalues, while the dendrimer $K_{m,n}^k$, $k\geq 2$, loses this property.

Proposition 3.6: For a dendrimer graph $K_{m,n}^k$, $k \ge 1$, $m, n \ge 2$, we have:

$$\eta(K_{m,n}) = m + n - 2$$
, and

$$\eta(K_{m,n}^k) = \eta(K_{m,n}^{k-1}) + (m+n)(m+n-1)^{k-2} \, (m+n-3) \,, \text{ for all k}, \ k \geq 2 \,.$$

Proof: For k = 1, it is clear that $\eta(K_{m,n}) = m + n - 2$ by Prop. 2.7(iv). For k = 2,

 $K_{m,n}^2 = K_{m,n}(K_{m,n})$, is a rooted product of $K_{m,n}$ and $K_{m,n}$. To prove that

 $\eta(K_{m,n}^2) = (m+n-2) + (m+n)(m+n-3)$, which is the number of independent variables used in a high zero-sum weighting for $K_{m,n}^2$. For $k \ge 3$, we use the iteration

 $K_{m,n}^3 = K_{m,n}^2(K_{m,n})$, since $K_{m,n}^2$ is a dendrimer graph having (m+n) complete bipartite graphs $K_{m,n}$, and each graph has (m+n-1) vertices to be attached; hence, we attach

 $K_{m,n}$ to (m+n)(m+n-1) vertices, but each copy of $K_{m,n}$ adds (increases) (m+n-3) to the nullity of the dendrimer graph.

Thus,
$$\eta(K_{m,n}^k) = \eta(K_{m,n}^{k-1}) + (m+n)(m+n-1)^{k-2}(m+n-3)$$
, for all k, $k \ge 2$.

Corollary 3.7: For a dendrimer graph $K_{m,n}^k$, $k \ge 2$, $m, n, \ge 2$, :

$$\eta(K_{m,n}^{k}) = (m+n-2) + (m+n)(m+n-3) \frac{(m+n-1)^{k-1}-1}{m+n-2}$$

Proof: From Proposition 2.15, we have: $\eta(K_{m,n}) = m + n - 2$, and

$$\eta(K_{m,n}^k) = \eta(K_{m,n}^{k-1}) + (m+n)(m+n-1)^{k-2}(m+n-3)$$
, for all k, $k \ge 2$.

$$\therefore \eta(K_{m,n}^k) = \eta(K_{m,n}^{k-2}) + (m+n)(m+n-1)^{k-3}(m+n-3)$$

$$+(m+n)(m+n-1)^{k-2}(m+n-3)$$
:

:

$$= \eta(K_{m,n}^2) + (m+n)(m+n-1)^1(m+n-3)$$

+ ... + (m+n)(m+n-1)^{k-3}(m+n-3)

$$+(m+n)(m+n-1)^{k-2}(m+n-3)$$

$$= (m+n-2) + (m+n)(m+n-3) + (m+n)(m+n-1)^{1}(m+n-3) + ... + (m+n)(m+n-1)^{k-3}(m+n-3) + (m+n)(m+n-1)^{k-2}(m+n-3) = (m+n-2) + (m+n)(m+n-3)[1 + (m+n-1)^{1} + ... + (m+n-1)^{k-3} + (m+n-1)^{k-2}] = (m+n-2) + (m+n)(m+n-3) \frac{(m+n-1)^{k-1}-1}{m+n-2}, \text{ for all } k, k \ge 2. \blacksquare$$

Star graphs are special cases of complete bipartite graphs, namely $S_{1,n-1}$ is $K_{1,n-1}$ with a partite set consisting of a single vertex called the central vertex.

Proposition 3.8: For a dendrimer graph $S_{1,n-1}^k$, $k \ge 1$, $n \ge 3$, we have:

i) If the rooted vertex of $S_{1,n-1}$ is the central vertex, then

$$\eta(S_{1,n-1}) = n-2, \ \eta(S_{1,n-1}^2) = n(n-2), \text{ and}$$

$$\eta(S_{1,n-1}^k) = n(n-1)^{k-2}(n-2) + \eta(S_{1,n-1}^{k-2}), \text{ for all k, } k \ge 3.$$

ii) If the rooted vertex of $S_{1,n-1}$ is a non-central vertex, then

$$\eta(S_{1,n-1}) = n-2$$
, and $\eta(S_{1,n-1}^k) = n(n-1)^{k-2}(n-3) + \eta(S_{1,n-1}^{k-1})$, for all $k, k \ge 2$.

Proof: i) For k=1, it is clear that $\eta(S_{1,n-1})=n-2$ by Proposition 2.7 (iv). For k=2, $S_{1,n-1}^2=S_{1,n-1}(S_{1,n-1})$, is a rooted product of $S_{1,n-1}$ and $S_{1,n-1}$. To prove that $\eta(S_{1,n-1}^2)=n(n-2)$; let $x_{i,j}$, i,j=1,2,...,n be a weighting for $S_{1,n-1}^2$, as indicated in Figure 3.5.

Figure 3.5. A weighting of $S_{1,n-1}^2$, where the rooted vertex of $S_{1,n-1}$ is the central vertex.

Then, from the condition that
$$\sum_{w \in N_G(v)} f(w) = 0$$
, for all v in $S_{1,n-1}^2$, we have:

$$x_{1,n} = x_{2,n} = \dots = x_{n,n} = 0$$
 ...(3.17)
And,

$$x_{1,1} + x_{1,2} + \dots + x_{1,n-1} = 0$$

$$x_{2,1} + x_{2,2} + \dots + x_{2,n-1} = 0$$

$$\vdots$$

$$x_{n,1} + x_{n,2} + \dots + x_{n,n-1} = 0$$
Then,
$$x_{1,n-1} = -x_{1,1} - x_{1,2} - \dots - x_{1,n-2}$$

$$x_{2,n-1} = -x_{2,1} - x_{2,2} - \dots - x_{2,n-2}$$

$$\vdots$$

$$\dots(3.18)$$

 $x_{n,n-1} = -x_{n,1} - x_{n,2} - \dots - x_{n,n-2}$

Then, from Equation (3.18), the number of independent variables used in a high zerosum weighting of $S_{1,n-1}^2$ is equal to n(n-2).

Hence,
$$\eta(S_{1,n-1}^2) = n(n-2)$$
.

For k=3, use the iteration $S_{1,n-1}^3=S_{1,n-1}^2(S_{1,n-1})$, since $S_{1,n-1}^2$ is a dendrimer graph having n star graphs $S_{1,n-1}$ and each graph has n-1 vertices to be attachment, thus we attach $S_{1,n-1}$ to n(n-1) vertices. But also, each copy of $S_{1,n-1}$ adds (increases) (n-3) to the nullity of a dendrimer graph, together the variable used in a high zero-sum weighting of $S_{1,n-1}$.

Therefore.

$$\eta(S_{1,n-1}^3) = n(n-1)(n-2) + \eta(S_{1,n-1})$$
$$= n(n-1)(n-2) + (n-2).$$

Similarly, we have:

$$\eta(S_{1,n-1}^k) = n(n-1)^{k-2}(n-2) + \eta(S_{1,n-1}^{k-2}), \text{ for each k, } k \ge 3.$$

ii) The proof is similar to that of Proposition 3.6.■

Corollary 3.9: For a dendrimer graph $S_{1,n-1}^k$, $k \ge 2$, $n \ge 3$, we have:

i) If k is odd, $k \ge 3$, and the rooted vertex of a graph $S_{1,n-1}$ is its central vertex, then,

$$\eta(S_{1,n-1}^k) = (n-2) + n(n-2) \sum_{i=1}^{\frac{k-1}{2}} (n-1)^{2i-1}$$

ii) If k is even, $k \ge 2$, and the rooted vertex of a graph $H = S_{1,n-1}$ is its central vertex,

then:
$$\eta(S_{1,n-1}^k) = n(n-2) \sum_{i=0}^{\frac{k-2}{2}} (n-1)^{2i}$$
.

iii) For all k, $k \ge 2$, if the rooted vertex of a graph $H = S_{1,n-1}$ is a non central vertex, then,

$$\eta(S_{1,n-1}^k) = (n-2) + n(n-3) \frac{(n-1)^{k-1} - 1}{n-2}$$
, for all k, $k \ge 2$.

Proof: i) From Proposition 3.8 (i), we have:

$$\eta(S_{1,n-1}) = n-2, \ \eta(S_{1,n-1}^2) = n(n-2), \text{ and}$$

$$\eta(S_{1,n-1}^k) = n(n-1)^{k-2}(n-2) + \eta(S_{1,n-1}^{k-2}), \text{ for all } k, \ k \ge 3.$$

$$\therefore \quad \eta(S_{1,n-1}^k) = n(n-1)^{k-2}(n-2) + n(n-1)^{k-4}(n-2) + \eta(S_{1,n-1}^{k-4})$$

$$= n(n-1)^{k-2} (n-2) + n(n-1)^{k-4} (n-2) + \dots + n(n-1)(n-2) + \eta(S_{1,n-1})$$

$$= n(n-1)^{k-2} (n-2) + n(n-1)^{k-4} (n-2) + \dots + n(n-1)(n-2) + (n-2)$$

$$= n(n-2) \left[(n-1)^{k-2} + (n-1)^{k-4} + \dots + (n-1) \right] + (n-2)$$

$$= n(n-2) \sum_{i=1}^{\frac{k-1}{2}} (n-1)^{2i-1} + (n-2).$$

$$\therefore \quad \eta(S_{1,n-1}^{k}) = (n-2) + n(n-2) \sum_{i=1}^{\frac{k-1}{2}} (n-1)^{2i-1}, \text{ if k is odd, } k \ge 3.$$

ii) From Proposition 3.8 (i), we have:

$$\eta(S_{1,n-1}^{2}) = n(n-2), \text{ and}$$

$$\eta(S_{1,n-1}^{k}) = n(n-1)^{k-2}(n-2) + \eta(S_{1,n-1}^{k-2}), \text{ for each } k, k \ge 2$$

$$\therefore \quad \eta(S_{1,n-1}^{k}) = n(n-1)^{k-2}(n-2) + n(n-1)^{k-4}(n-2) + \eta(S_{1,n-1}^{k-4})$$

$$\vdots$$

$$= n(n-1)^{k-2}(n-2) + n(n-1)^{k-4}(n-2) + \dots + n(n-1)^{2}(n-2) + \eta(S_{1,n-1}^{2})$$

$$= n(n-1)^{k-2}(n-2) + n(n-1)^{k-4}(n-2) + \dots + n(n-1)^{2}(n-2) + n(n-2)$$

$$= n(n-2)\left[(n-1)^{k-2} + (n-1)^{k-4} + \dots + (n-1)^{2} + 1\right]$$

$$= n(n-2)\sum_{i=0}^{\frac{k-2}{2}}(n-1)^{2i}.$$

$$\therefore \quad \eta(S_{1,n-1}^k) = n(n-2) \sum_{i=0}^{\frac{k-2}{2}} (n-1)^{2i} , \text{ if k is even, } k \ge 2.$$

iii) From Proposition 3.8 (ii), we have:

$$\eta(S_{1,n-1}) = n-2$$
, and $\eta(S_{1,n-1}^k) = n(n-1)^{k-2}(n-3) + \eta(D^{k-1})$, for all k, $k \ge 2$.

$$\vdots \quad \eta(S_{1,n-1}^k) = n(n-1)^{k-2}(n-3) + n(n-1)^{k-3}(n-3) + \eta(S_{1,n-1}^{k-2})$$

:
=
$$n(n-1)^{k-2}(n-3) + n(n-1)^{k-3}(n-3) + ... + n(n-1)(n-3) + \eta(S_{1,n-1}^2)$$

$$= n(n-1)^{k-2} (n-3) + n(n-1)^{k-3} (n-3) + \dots + n(n-1)(n-3) + n(n-3) + (n-2)$$

$$= n(n-3) [(n-1)^{k-2} + (n-1)^{k-3} + \dots + (n-1) + 1] + (n-2)$$

$$= (n-2) + n(n-3) \frac{(n-1)^{k-1} - 1}{n-2}.$$

$$\therefore \quad \eta(S_{1,n-1}^{k}) = (n-2) + n(n-3) \frac{(n-1)^{k-1} - 1}{n-2}, \text{ for all } k, \ k \ge 2. \blacksquare$$

4. Upper Bounds for the Nullity of Coalescence Graphs

In this section, we shall introduce and prove a lower and an upper bound for the nullity of the coalescence graph $G_1 \circ G_2$.

Proposition 4.1: For any singular graphs G_1 and G_2 . $\eta(G_1) + \eta(G_2) - 1 \le \eta(G_1 \circ G_2) \le \eta(G_1) + \eta(G_2) + 1$

Proof: Let G_1 and G_2 be two singular graphs of orders p_1 and p_2 , respectively, thus first we label the vertices of G_1 by $u_1, u_2, ..., u_{p_1}$, with a high zero- sum weighting $x_1, x_2, ..., x_{p_1}$ and the vertices of G_2 by $v_1, v_2, ..., v_{p_2}$, with a high zero- sum weighting $y_1, y_2, ..., y_{p_3}$.

Assume that u_1 and v_1 are rooted vertices of G1 and G2 respectively. Then equality holds at the left if either or both rooted vertices are non-zero weighted because there exists a high zero-sum weighting for $G_1 \circ G_2$ which is the enlargement of high zero-sum weightings for G1 and G2 reducing or vanishing one non-zero weight at the identification vertex. See Figure 4.1 where $G_1 = G_2 = P_3$.

Figure 4.1. $G_1 \circ G_2$ where either or both rooted vertices have non-zero weight.

Moreover, strictly holds at the left side if both rooted vertices have zero weights in their high zero- sum weightings, because there exists a zero- sum weighting which is the union of both high zero-sum weightings of G_1 and G_2 .

Equality holds at the right side if both rooted vertices are cut vertices with zero weights in their high zero- sum weightings, and each component obtained with a deleting of a rooted cut vertex is singular, because there exists a high zero- sum weighting for $G_1 \circ G_2$ that uses an extra independent variable further than the variables used in high zero- sum weightings of G_1 and G_2 . See Figure 4.2.

Moreover, strictly holds at the right side if one rooted vertices does not satisfy the condition of equality as indicated above. ■

Figure 4.2. $G_1 \circ G_2$ where both rooted vertices are cut vertices with zero weight and each component obtained by the deleting of rooted vertex is singular.

Note: Let w be the identification vertex $w = (u \equiv v)$ of $G = G_1 \circ G_2$. Then, by interlacing Theorem [2, p314], $|\eta(G) - \eta(G - w)| \le 1$ i.e

$$\begin{split} \left| \eta(G) - \eta(G_1 - u) - \eta(G_2 - v) \right| &\leq 1 \quad \forall \ \ u \in G_1 \ , \ v \in G_2 \ . \ \ \text{Hence}, \\ \eta(G_1 - u) + \eta(G_2 - v) - 1 &\leq \eta(G_1 \circ G_2) \leq \eta(G_1 - u) + \eta(G_2 - v) + 1 \ . \end{split}$$

<u>REFERENCES</u>

- [1] Andra'sfai, B.; (1991), Graph theory Flows, Matrices, Adam Hilger, Bristol.
- [2] Beineke, L.W. and Wilson, R.J.; (1978), Selected Topics in Graph Theory. Academic Press, Inc., London.
- [3] Beineke, L.W., Wilson, R.J. and Cameron, P.J.; (2005), Topics in Algebraic GraphTheory, Cambridge University Press.
- [4] Brown, M., Kennedy, J.W. and Servatius, B.; (1993), Graph singularity, Graph Theory Notes of New York, XXV, pp.23-32.
- [5] Cheng, B. and Liu, B.; (2007), On the nullity of graphs, J. of Linear Algebra Issn 1081-3810, Volume 16, pp.60-67.
- [6] Cvetkovic', D.M., Doob, M. and Sachs, H.; (1979), Spectra of Graphs-Theory and Application, Academic Press, New York.
- [7] Cvetkovic', D.M., Doob, M., Gutman, I. and Torgas'ev, A.; (1988), Recent Results in the Theory of Graph Spectra, North-Holland. Amsterdam.
- [8] Gervacio, S.V. and Ruivivar, L.A.; (2000), Construction of r-regular singular graphs, Indian J. Pure Apple. Math. 31(5), pp.499-504.
- [9] Mohammed, D.H.; (2005), On the Degree of Singularity of Some Compound Graphs, M.Sc. Thesis, Duhok University, Duhok.
- [10] Omidi, G.R.; (2009), On the nullity of bipartite graphs, Graphs and Combinatorics, Springer, Verlag 25, pp.111-114.
- [11] Rashid, P.A.; (2001), Characterization for the Degree of the Singularity of a Graph, M.Sc. Thesis, Salahuddin University, Erbil.