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ABSTRACT 

In this paper, we study and give some properties of annihilating-ideal graphs of 

Zn, also we find Hosoya polynomial and Wiener index for this graph.  
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 nZبيان تالف المثاليات لـحلقات 
 

 صهباء عبد الستار يونس حسام قاسم محمد
 كلية علوم الحاسبات والرياضيات 

 ، الموصل، العراقجامعة الموصل
 الملخص

كييييييرل  و ييييييا  ،nZفييييييا بييييييرا البحييييييا، وييييييانا ووعلييييييا يعييييييا ال ييييييوا  ل ياوييييييات  ييييييال  الم اليييييييات لحل ييييييات 
 الهوسويا ودليل وينر لهره ال ياوات.

 دليل وينر. ،, متعادة حاود بوسويا  nZ ، بيان  ل  الم اليات : الكلمات المفتاحية
 

1. Introduction 

In this paper () be the ideal of R generated by  and" A*(R) be the set of non-

zero ideals with non-zero annihilators. We associate a simple graph AG(R) with vertices 

A*(R) and two ideal vertices I1 and I2 are adjacent if and only if I1I2= (0) [2]". 

Recall according to [3] 

1- Let G (V, E) be a simple graph with vertices set V and edges set E be connected if 

there is a path between any two distinct vertices of G. For a vertices x and y of G, 

denoted d(x,y) be the length of a shortest path form x to y. 

2- The diameter of G denoted by diam (G) and equal max{d(x,y): x and y are vertices 

of G}. 

3- The degree of x∈ V (G) is denoted by deg(x) and it is the number of vertices who's 

adjacent with x in G. 

4- If G1 and G2 are graphs, then we say that G1 is an isomorphic to G2 , (or G1≅ G2) ,if 

there exists a one-to -one mapping φ from V(G1) onto V(G2) such that  φ preserves 

the adjacent. 

5- The complete sub-graph Kt of any graph G is called a clique, and (G ) is the clique 

number of G , which is the greatest integer t ≥ 1, such that Kt G. 

As usual, we shall assume that p and q are distinct prime numbers. ⌈s⌉(⌊s⌋ resp.) It 

means that the smallest integer is not less than s (the greatest integer is not greater than s 

resp.). Zn we denote a ring of integer modulo n, . By [4] any ideal of Zn is principal and 

Zn local ring if and only if n=pm, where m is a positive integer number. In [2] Behboodi 

and Rakeei show that for every ring R, the annihilating-ideal graph AG(R) is connected 

and diam(AG(R))≤3. 
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2. on Annihilating-Ideal Graph of ZP
m

. 

In this section we give some basic properties of annihilating ideal graph of ZP
m. 

First we give an order and size of AG (Zp
m), where m≥4. 

Theorem 2.1: 

If R=Zp
m, then AG(R) has order m-1 vertices and the size a1, where 

a1=

{
 

 
m(m-2)

4
,       if m even,

(m-1)2

4
,      if m odd.

 

Proof: Since  any  ideal of Zn  is principal , then  clearly that the ideals of ring Zp
m 

are{(p),(p2),…,(pm-1)}, therefor AG(R) has (m-1) vertices ideal. 
Now to find size of graph AG(R). 

Since pm ≡ 0 mod pm , then  ( pi)(pj )=0 iff  i+j ≥ m, where 1≤i,j≤ m-1, so that (pi) 

adjacent with (pj)  whenever  1≤i< m-1  and   j= (m-i),…,m-1, which implies that   
∑ 1 = (m − 1) − (m − i) + 1m−1
j=m−i = i, and since (pi) (pi) =0 if and only if i≥ ⌈

m

2
⌉. 

 Then we have (pi) has loop, so that  

 deg((pi))={
i  ,     if     1≤i≤ ⌈

m

2
⌉ -1  ,  

i-1,    if      ⌈
m

2
⌉≤i≤m-1 ,   

 

 and 

 ∑ deg v=    v∈AG(zpm)
∑ i+∑ (i-1)m-1

i=⌈
m

2
⌉

⌈
m

2
⌉-1

i=1
=∑ i-∑ 1m-1

i=⌈
m

2
⌉

m-1
i=1 =

m(m-3)

2
+ ⌈

m

2
⌉ 

     Since   ∑ deg v=2a1    v∈AG(zpm)
 , where a1 is the number of edges of AG(Zp

m), then 

a1 =
m(m-2)

4
  , when m is even, and a1 =

(m-1)2

4
  , when m is odd.  ▄ 

      

The next result we give the clique number of AG(Zp
m). 

Theorem 2.2 

For any positive number m≥4, AG(Zp
m) contains a sub-graph K

⌈
m

2
⌉
 and (AG(Zp

m))=⌈
m

2
⌉ 

Proof : There are  p⌈
m

2
⌉
elements divisible by p⌈

m

2
⌉
, we can write V = {v1, v2, … , v⌈m

2
⌉
}  , 

where vi= (pm-i) , 1  ≤ i ≤ ⌈
m

2
⌉ this means that all ideal vertices of V are adjacent each 

other .Thus V =  V(k
⌈
m

2
⌉
) a complete sub graph of AG(Zp

m). Also any ideal vertices 

x=(pm-i), ⌈
m

2
⌉+1≤i≤ m-1 are non–adjacent with ideal vertex v

⌈
m

2
⌉
= (p⌈

m

2
⌉), so that , ⌈

m

2
⌉ 

greats integer such that  k
⌈
m

2
⌉
⊆AG(Zp

m), whence (AG(Zp
m))=⌈

m

2
⌉  ▄ 

 Recall that "radius of G is rad (G) = min{d(x,y) : x and y are vertices of G} and 

the center of G is defined by Cent(G) = {x∈ V(G) : d(x,y)= rad (G) for any 

y∈V(G)}[3]". 

Proposition2.3 

For any positive number m≥4, rad(AG(Zp
m))=1 and Cent(AG(Zp

m))=(pm-1).  
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Proof: Since Zp
m be a local ring, then by [7] every minimal ideal vertex adjacent with 

every ideal vertices in AG(Zp
m). That means that the graph AG(Zp

m) contains subgraph 

K1,(m-2), so rad (AG(zpm  ))=1 and hence (pm-1) Cent(AG(Zp
m)) …(1). 

Now, let xAG(Zp
m )such that x ∉ (pm-1) and for any y∈ (p) , then xy≠ 0 , this 

means that x ∉ Cent (AG(Zp
m)) and hence Cent(AG(Zp

m)) (pm-1)…(2). 

Form (1) and (2), we get Cent (AG(Zp
m)) = (pm-1)   ▄ 

Proposition 2.4 

For any positive number m≥4, we have diam(AG(Zp
m))=2 

Proof: Clearly the ideal vertex (pm-1) adjacent with every ideal vertices in AG(Zp
m), also 

the ideal vertices 1=(p) and 2=(p2) are non-adjacent, then we have diam(AG(Zp
m))=2. 

Theorem 2.5  

For any positive number m≥4, AG(Zp
m)≅ (AG(Zp

m-1) ∪ {K1,Us}) ,where s =  ⌈
m

2
⌉-1  and 

Us is added edges are numbered  s that connecting K1 to (pm-i) where i =1,2,…,⌊
m

2
⌋. 

Proof: We observe that the number of vertices of two graph are equal (m-1). In 

AG(Zp
m) the ideal vertices (pi) and (pj) are adjacent if and only if  i+j ≥ m, also in 

G=(AG(Zp
m-1) ∪{K1,Us}), the ideal vertices ui= (pi ) and uj= (pj) are adjacent if and only 

if  i+j ≥ m-1 , or ui= w, where V(K1)=w, i = ⌈
m

2
⌉and j = ⌈

m

2
⌉,…,m-2. Therefor we can 

label the vertices in AG(Zp
m) are vi= (pi), i=1, …, m-1 and  the vertices in G  are  

ui =

{
 
 

 
 (pi) ,       if   i = 1,2, … , ⌈

m

2
⌉ − 1,   

w,          if   i =  ⌈
m

2
⌉,                        

(pi−1),       if   i =  ⌈
m

2
⌉ + 1,… ,m − 1.

 

 We can defined a mapping f from AG(Zp
m) to, G= (AG(Zp

m-1) ∪ {K1,Us}), such 

that f (vi)=ui, where 1≤ i ≤m-1. 

 Clearly that f is onto and one-to-one, we only prove that if e=uv is an edge in 

AG(Zp
m) then f(e)=f(u)f(v) is an edge in G. 

 Let e =vivj edge from vi to vj in AG(Zp
m), therefore i+j≥ m we get two cases. 

Case 1: If i or j =  ⌈
m

2
⌉, say i =  ⌈

m

2
⌉ then vj has two sub cases a and b: 

Sub-case a: If m is an  even number then ⌈
m

2
⌉ =

m

2
, so vi adjacent with vj, where 

j=(
m

2
+1) ,..., m-1, on the other hand  i= 

m

2
, f(vi) = w and f(vj)= uj =(pj-1)for all j=( 

m

2
+ 1)  

,…,m-1. From defined G, we see w adjacent with uj= (pj-1), j=
m

2
+ 1,… ,m − 1, therefor 

if e is an edge in AG(Zp
m), then f(e) is an edge in G. 

Sub-case b: If m is  odd then ⌈
m

2
⌉ =

m+1

2
, the vertex  vi adjacent with vj if and only if 

 j =
m−1

2
,
m+1

2
,
m+1

2
+ 1,… ,m − 1 , except case, 

(m+1)

2
 because i=j  , vi adjacent with vj . 

Where j = 
(m−1)

2
, (
m+1

2
+ 1) ,… ,m − 1. On the other hand since i =(

m+1

2
)  then f (vi)=w 

and  
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f(vj)={
(pj),        if           j=

m-1

2
 ,                      

(pj-1),    if            j=
m+1

2
+1,…,m-1.    

 

 From defined G, observe that w adjacent with uj, j= 
(m-1)

2
, 
(m+1)

2
+1,…, m-2. 

That mean if e is an edge in AG(Zp
m) then f (e) is an edge in G. 

Case 2: If i and  j ≠⌈
m

2
⌉, then e edge in AG(Zp

m) iff  i+j ≥ m and i,j≠ ⌈
m

2
⌉ . 

We get two sub-cases c and d: 

Sub-case c: if i or j ˂⌈
m

2
⌉, without loss generality let i ˂ ⌈

m

2
⌉, then f(vi) = ui =(pi) 

since i+j≥ m we get j ˃⌈
m

2
⌉, therefor f(vj) = (pj-1)= uk ,where j =⌈

m

2
⌉+1,…, m-1 and  k=j-1 

on the other hand uiuk adjacent iff i+k ≥ m-1, because pm-1≡ 0  mod m-1, therefor  ui 

adjacent with uk that mean if e is an edge in AG(zpm) , then f(e) is an edge in G. 

Sub-case d : if i and  j ˃⌈
m

2
⌉, then f(vi) = ui= (pi-1) and f(vj)= uj = (pj-1), 

since i˃⌈
m

2
⌉ then ui, uj adjacent where i≠j and i,j =⌈

m

2
⌉, …,m-1  that is means, if e is an 

edge in  AG(Zp
m), then f(e) is an edge . 

So that AG(Zp
m) ≅ G  ▄ 

3. On Annihilating- Ideal Graph of Zp
m

 q. 

 First we give order and size of AG (Zp
m

 q) for all positive number m≥3. 

Theorem 3.1 

Let R=Zp
m

q , then AG(R) has order 2m vertices and the sizes 

 a1={

3m2

4
,           if     m even ,  

3m2+1

4
 ,       if        m odd.

 

Proof : The ideals of ring R are {(p),(p2),…,(pm),(q),(pq),(p2 q),…,(pm-1q)}. So that 

AG(Zp
m

 q) has 2m vertices ideal. 
 Now to find size of graph AG (Zp

m
 q), we must find degree of any vertices ideal. 

Since pmq ≡ 0 mod pmq, and p and q are distinct prime, then (pi) is adjacent with (pjq) iff 

i+j≥m, where 0≤j≤m-1, 1≤i≤m. Then 
deg(pi) = ∑  1=m-1-(m-i)+1=im-1

j=m-i . Also (q) adjacent with only ideal vertex (pm) so 

that deg(q) =1. Finally since (piq) is adjacent with (pj) iff  i+j≥ m and ∑ 1=i+1m
j=m-i . 

Also (piq) is adjacent with (pjq) iff i+j ≥ m, for all 1≤i,j≤m-1 and since ∑ 1=i m-1
j=m-i , then 

∑ 1+ m-1
j=m-i ∑ 1=2i+1m

j=m-i , also,  we note (piq) contained loop if and only if i ≥ ⌈
m

2  
⌉  

Therefor 

 deg(piq)={
2i+1 ,   if 1≤i< ⌈

m

2
⌉  ,          

2i ,         if ⌈
m

2
⌉≤i≤m-1,
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Which implies that 

∑ deg v

v∈AG(R)

=1+ ∑(2i+1)+

⌈
m
2
⌉-1

i=1

∑ 2i+∑i 

i=m

i=1

i=m-1

i=⌈
m
2
⌉

 

=1+ ⌈
m

2
⌉ -1+ ∑ 2i+∑i 

i=m

i=1

i=m-1

i=1

 = ⌈
m

2
⌉+

2(m-1)m

2
+
m(m+1)

2
 

=⌈
m

2
⌉+

3m2-m

2
 . 

Since 

∑ deg v

v∈AG(R)

=2a1 

, where a1 is the number of edges of AG(Zp
mq), then 

a1=
3m2

4
, if m even 

and 

a1=
3m2+1

4
, if m odd .   ▄  

Theorem 3.2  

 for all positive number m≥3. AG(Zp
m

q) contains a sub-graph  K
⌈
m

2
⌉+1

and 

(AG)=⌈
m

2
⌉ +1 

Proof: We can write V={ v1,v2,…,v
⌈
m

2
⌉
 }, where vi=(pm-iq), 1 ≤i≤ ⌈

m

2
⌉  this mean that all 

ideal vertices of V are adjacent each other, and V form  K
⌈
m

2
⌉
 ,since (pm) is adjacent with 

all vertices in V and not adjacent with (pi), where 1≤i≤ m-1, also v
⌈
m

2
⌉  

not adjacent with 

every vertices (pjq), where 1≤j≤⌈
m

2
⌉ − 1, therefor V∪{(pm)} form the largest sub-graph 

 K
⌈
m

2
⌉+1

 in AG(Zp
mq). Then   (AG (Zp

mq)) =  ⌈
m

2
⌉+1.   ▄ 

Proposition 3.3 

 For all positive number m≥3, we have diam(AG(ZP
mq))=3 

Proof: In AG(ZPm q)  we can find four ideal vertices are defined as 1=(p), 2=(pm-1q), 

3=(pm) and 4= (q)   since deg(1)=deg(4), 12 =0, 23=0 and 34=0 but 13 ≠0, 

24≠0 and 14≠0  so that d(1 , 4 )= 3, Therefor dim AG(ZPm q) = 3  .      ▄ 

Example: Let R=Z24, then the diameter of the graph AG(R) is equal 3. 
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4. On Annihilating - Ideal Graph of  Zp

m
 q

r 

Let m and r are positive numbers such that m,r ≥  2 . In this section, we can 

extended all results in section 3 

Theorem4.1 

 Let R = Zp
m

 q
r, then AG(R) has order mr+m+r-1 vertices and the sizes. 

a1

{
 
 

 
 

=

m2r2+3m2r+3mr2-4m-4r+2r2+2m2

8
,             if m and r are even,             

m2r2+3m2r+3mr2-3m-3r+2r2+2m2+3

8
,   if m and r are odd,           

m2r2+3m2r+3mr2-4m-3r+2r2+2m2+2

8
,    if m odd and r even.          

  

Proof : Since  R has ideals (pi), (qk) where  1 ≤ i ≤ m, 1≤ k≤ r  and (piqk), where  1≤i≤m 

, 1≤ k≤ r  , since pmqr≡ 0 (mod pmqr), hence  the order of AG(R) = mr+m+r-1. 

 Now to find the size we must find degree of all vertices ideal of R since (pi) 

adjacent with (pjqr) iff   i+j ≥ m, then deg(pi)  =∑ 1=im-1
j=m-i   similarly deg(qk)  =k . 

To find deg (piqk), where 1≤i≤m, 1≤k≤r and (piqk) ≠ pmqr. 

Since (piqk) adjacent with (pjqs) iff i+j ≥ m and k+s ≥ r , so that  j= m-i ,…,m and s = r-k 

,…,r , which implies that ∑ ∑ 1 = (m − (m − i) + 1)(r − (r − k) + 1)r
s=r−k

m
j=m−i =

(i + 1)(k + 1), but pmqr≡ 0 (mod pmqr), also (piqk) has loop iff  i ≥   ⌈
m

2
⌉and  k ≥  ⌈

r

2
⌉. 

So that deg(piqk)={
(i+1)(k+1)-2  ,         if      ⌈

m

2
⌉≤i   and ⌈ 

r

2
⌉≤k,

(i+1)(k+1)-1     ,      otherwise.                              
 

 Now, we find a1 of R Since  2a1=∑ deg v    v∈AG(R)   , then we have three cases 

Case 1: If m and r are even  

2a1= ∑ degV 

v ∈AG(R)

=∑∑((i+1)(k+1)-1)

r

k=1

m

i=1

-∑∑1

r

k=
r
2

-((m+1)(r+1)-2)

m

i=
m
2

+∑i

m

i=1

+∑k

r

k=1

 

 

=∑(i+1)

m

i=1

∑(k+1)-∑∑1

r

k=1

m

i=1

-

r

k=1

∑  ∑1

r

k=
r
2

m

i=
m
2
 

-((m+1)(r+1)-2)+∑i

m

i=1

+∑k

r

k=1

 

 

 

=(
m(m+1)

2
+ m) (

r(r+1)

2
+r) -mr-

mr+2m+2r+4

4
-(mr+m+r-1)+

m(m+1)

2
+
r(r+1)

2
  

 

 

=
m2r2+3m2r +3m r2-6m-6r+2r2+2r+2m2+2m

4
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So that  

a1=
m2r2+3m2r+3mr2-4m-4r+2r2+2m2

8
 

 

Case 2:If m and r are odd we get  

2a1= ∑ deg V= 

v ∈AG(R)

∑(i+1)

m

i=1

∑(k+1)-∑∑1

r

k=1

m

i=1

-

r

k=1

∑ ∑ 1

r

k=
r+1
2

m

i=
m+1
2

-((m+1)(r+1)-2)+∑i

m

i=1

+∑k

r

k=1

 

 

= (∑𝑖

𝑚

𝑖=1

+∑1

𝑚

𝑖=1

)(∑𝑘

𝑟

𝑘=1

+∑1

𝑟

𝑘=1

) − 𝑟𝑚 − (
𝑟 + 1

2
) (
𝑚 + 1

2
) − ((𝑚 + 1 )(𝑟 + 1) − 2) +∑𝑖

𝑚

𝑖=1

+∑𝑘

𝑟

𝑘=1

 

 

=
m2r2+3m2r +3m r2-5m-5r+3+2r2+2r+2m2+2m

4
 

So that 

a1     =
m2r2+3m2r+3mr2-3m-3r+2r2+2m2+3

8
 

Case 3: Since p and q are distinct prime number, then if m odd and r even or r odd and 

m even we get the same result, so without loss generality let m odd and r even. 

 

2a1= ∑ deg V=

v ∈AG(R)

∑(i+1)

m

i=1

∑(k+1)-∑

m

i=1

∑1

r

k=1

-

r

k=1

∑

m

i=
m+1
2

∑1

r

k=
r
2

-((m+1)(r+1)-2)+∑i

m

i=1

+∑k

r

k=1

 

 

(∑i

m

i=1

+∑1

m

i=1

)(∑k

r

k=1

+∑1

r

k=1

) -rm- (
m+1

2
) (
r+2

2
) -(m+1 )(r+1)-2+∑i

m

i=1

+∑k

r

k=1

 

 

=
m2r2+3m2r +3m r2-6m-5r+2+2r2+2r+2m2+2m

4
 

So that  

a1=
m2r2+3m2r+3mr2-4m-3r+2r2+2m2+2

8
  .    ▄ 

Proposition 4.2 

For all positive numbers m,r≥2, diam(AG(ZP
mqr))=3. 

Proof: By the same method of proof Proposition 3.3, we can choose 1=(p) and 2=(q) 

and we get d(1,2)=3 .   ▄ 

Theorem 4.3 

Let R=Zp
mqr , then AG(R) has a sub-graph of Ks , Furthermore (AG (R)=s, where 

s=

{
 
 

 
 
mr+2m+2r

4
  ,     if m and r are even ,      

mr+m+r+1

4
     ,  if m and r are odd ,         

mr+m+2(r+1)

4
 ,   if m even and r odd.
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Proof: If m and r are even, then vij=(piqj) vertices, where m/2≤i≤m,  r/2≤j≤r and 

vij≠(pmqr)=0 are all adjacent with every others. And the number of this vertices equal 

∑∑1=
mr+2m+2r

4

r

r/2

=s.

m

m/2

 

.Also any vertices in AG(R)/{vij} are non-adjacent with (pm/2qr/2), therefore Ks the 

largest sub-graph in AG(R) in this case. Then (AG(R))=s. 

If m and r are odd, similarly vij=(piqj), where (m+1)/2≤i≤m, (r+1)/2≤j≤r and 

vij≠(pmqr)=0 with the vertices (p(m+1)/2q(r-1)/2) and (p(m-1)/2q(r+1)/2) the largest sub-graph in 

AG(R). And the number of vertices equal 

 

s=
mr+m+r+1

4
.   

. 

Similarly, if m even and r odd, we get 

s=
mr+m+2(r+1)

4
. ▄  

 

5. Hosoya polynomial and Wiener index of Annihilating -Ideal graph of Zn. 

"Hosoya polynomial of the graph G is defined by : H(G;x) = ∑ d(G, k)xk
diam(G)
k=0  , 

where d(G, k) the number of pairs of vertices of  a graph G are at distance k a part , for 

k = 0,1, …, diam(G) . The Winer index of G is define as  the sum of all distances 

between vertices of the graph and denoted by W(G) , and we can find this index by 

differentiating Hosoya polynomial with respect to x then putting x=1", see[5] ,[8]. 

In [1] Ahmadi and Jahani-Nezhad first study the Winer index of zero divisor 

graph of Zn where n=p2 and p2q. In [6] Mohammad and Authman extended this result 

for n=pm and pmq and study the Hosoya polynomial of this type. In this section we study 

Hosoya polynomial and Winer index of annihilating-ideal graph of Zn, where n=pm,pmq 

and pmqr . 

Lemma 5.1[5] 

Let G be a connected graph of order r. Then ∑ d(G,i)
diam(G)
i=0 =

1

2
r(r+1). 

Clearly if R=Zp
2, then AG(R) =K1, therefore H (AG(R,x)=1. Also if R=Zp

s, where 

s=3,4, then AG(R)=K2 or K1,2 respectively so that H(AG(R,x)=2+x or 3+2x+x2 

respectively. Therefore we calculate Hosoya polynomial of AG (Zp
m) for all positive 

number m≥4.  

Theorem 5.2  

For all positive number m≥4, H(AG(Zp
m,x) = a0+ a1x +a2x

2,  where  a0= m-1,  

a1={

m(m-2)

4
,   if m even,

(m-1)2

4
, if m odd,

      and 

  a2={

(m-2)2

4
 ,  if m even,

m2-4m+3

4
, if m odd.

 

                    

Proof: From Theorem2.1 and Lemma5.1, we get the result. ▄ 
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Corollary 5.3 

For all positive number m≥4,W(AG (Zp
m) = {

(m-2)(3m-4)

4
,      if m even,

(m-1)(3m-7)

4
,    if m odd.

 

Example 1: 

Let R =Zp
6 then  

 

 

 

 

 

H (AG (Zp
6, x) = 5+ 6x +4x2   

W (AG(Zp6)) = 6+ 8 =14 

Theorem 5.4 

For all positive number m≥3, we have 

H(AG(Zpmq ,x)=

{
 

 2m+
3m2

4
x+

5m2-8m+4

4
x2+(m-1)x3 ,          if m even,

2m+
3m2+1

4
x+

5m2-8m+3

4
x2+(m-1)x3, if m odd.

 

Proof: Since diam(AG(Zp
m

q)=3 and applying Theorem3.1, we have a0= 2m  and . 

a1=

{
 

 
3m2

4
,               if m even,

3m2+1

4
,        if m odd.

 

 Now to find a3 we can write AG(Zp
m

q) = ⋃ (Bi ∪ Ci),
m
i=1  where Bi =(pm-iq) , 

i=1,2,…,m   and Ci = (pm-i+1) , i=1,2,…,m . Then there are three cases. 

Case 1: Let x∈ Bi  and y ∈ Bj where  1≤ i ,j ≤ m  then C1 = (Pm) is adjacent with every 

vertices in Bi  1≤ i ≤m , and that means d(x,y)≤ 2 and this contradict our hypothesis. 

Case 2: Let x ∈  Ci and y ∈  Cj where  1≤ i ,j ≤ m  we see that a vertex  Bi= (pm-1q) is 

adjacent with every vertices in Ci for all 1≤i≤m  because  1+i   ≤ 1+m for any 1≤ i   ≤m  

, and that means d(x,y) ≤ 2 and this  contradiction. 

 Case 3: If x ∈ Bi  and y ∈  C j for some 1≤ i ,j ≤ m  , in this case we see that d(x,y) =3 if 

and only if   i=m and 2 ≤ j ≤ m  , because that  d(x,y)  ≤ 2  for any  1≤  i ≤ m-1 and      2 

≤ j  ≤ m  also d(x,y) = 1 for 1 ≤ i ≤  m and j= 1 , therefor the number of  of pairs of 

vertices that  that are distance three apart is (m-1). 

Finally, we find a2, applying by Lemma 5.1 we get  

a2 =(5m2- 8m+4)/4, when m even, a2 = (5m2-8m+3)/4, when m odd.▄ 

Corollary 5.5: 

 W(AG(Z
p
mq))={

13 m2-4m-4

4
, if m even,

13 m2-4m-5

4
, if m odd.   

    

Example 2:  

Let R=ZP
6

q, then H(AG(ZP
6

q,x)) = 12+ 27x +34x2+ 5x3,                                                

W(AG (ZP
6

q))=27+2.34+3.5=110 

(4p) 

(2p) 

(2p) 

(3p) 
(5p) 



 On Annihilating - Ideal Graph of Zn 
 

 

 40 

 
 

Finally we give extended to theorem 5.4 

Theorem 5.6 

For any positive numbers m,r≥2, we have 

H(AG(Zpmqr))=a0+a1x+a2x
2+a3x

3 , where a0=mr+m+r-1 and 

a1 =

{
  
 

  
 

m2r2 + 3m2r + 3mr2 − 4m − 4r + 2r2 + 2m2

8
, if m and r are even,

m2r2 + 3m2r + 3mr2 − 3m − 3r + 2r2 + 2m2 + 3

8
, if m and r are odd,

m2r2 + 3m2r + 3mr2 − 4m − 3r + 2r2 + 2m2 + 2

8
, if m odd and r even,

 

a2=

{
  
 

  
 

3m2r2+5m2r+5mr2+2m2+2r2-12mr-8m-8r+16

8
, if m and r even,

3m2r2+5m2r+5mr2+2m2+2r2-12mr-9m-9r+13

8
, if m and r odd,

3m2r2+5m2r+5mr2+2m2+2r2-12mr-8m-9r+14

8
, if m odd and r even.

 

and a3= mr-1 

Proof: By Theorem 4.1, AG(R) has order  a0 = mr +m+ r − 1 vertices and the sizes. 

a1=

{
  
 

  
 

m2r2+3m2r+3mr2-4m-4r+2r2+2m2

8
, if m and r are even,

m2r2+3m2r+3mr2-3m-3r+2r2+2m2+3

8
, if m and r are odd,

m2r2+3m2r+3mr2-4m-3r+2r2+2m2+2

8
, if m odd and r even,

 

To find a3 let A= {(piqj): 1≤ i≤m and, 1≤ j≤ r} – {0}, B ={(pi): 1≤ i ≤m} and                   

C = {(qj):1≤ j ≤ r}. 

If x,y ∈ A or B , since every element in this case is adjacent with ideal vertex (pm-1qr) so 

that d(x,y) ≤ 2 which is contradiction . 

Similarly , if  x,y ∈  A or C ,then every element in this case is adjacent with ideal vertex 

(pmqr-1) so that d(x,y) ≤ 2 which is contradiction, if x∈ B and y ∈ C since every element 
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in B is adjacent with ideal vertex (pi qr)  for i = 1,…, m-1   and therefor d(x,y) = 3 

except the case where i=m and j=r so that the number of pairs of vertex that are distance 

three a part is mr-1 .   

To find a2, since∑ d(G, i) =  
r(r+1)

2

diam (G)
i=0     by Lemma 5.1, then 

a2=

{
  
 

  
 

3m2r2+5m2r+5mr2+2m2+2r2-12mr-8m-8r+16

8
, if m and r even,

3m2r2+5m2r+5mr2+2m2+2r2-12mr-9m-9r+13

8
, if m and r odd,

3m2r2+5m2r+5mr2+2m2+2r2-12mr-8m-9r+14

8
, if m odd and r even.

 

 

 

 

Corollary 5.7: 

W(AG(Zpmqr))=

{
  
 

  
 

7 m2r2-20m-20r+13m2r+13mr2+6r2+6m2+8

8
   if m and r even

7 m2r2-21m-21r+13m2r+13mr2+6r2+6m2+5

8
   if m and r odd

7 m2r2-20m-21r+13m2r+13mr2+6r2+6m2+6

8
  if m odd and r even
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