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ABSTRACT

In this paper, we study and give some properties of annihilating-ideal graphs of
Zy, also we find Hosoya polynomial and Wiener index for this graph.
Key word: Annihilating — ideal graph, Z», Hosoya polynomial, Wiener index.
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1. Introduction
In this paper (o) be the ideal of R generated by o and" A"(R) be the set of non-
zero ideals with non-zero annihilators. We associate a simple graph AG(R) with vertices

A’(R) and two ideal vertices I, and I, are adjacent if and only if 111,= (0) [2]".

Recall according to [3]

1- Let G (V, E) be a simple graph with vertices set V and edges set E be connected if
there is a path between any two distinct vertices of G. For a vertices x and y of G,
denoted d(x,y) be the length of a shortest path form x to y.

2- The diameter of G denoted by diam (G) and equal max{d(x,y): x and y are vertices
of G}.

3- The degree of xe V (G) is denoted by deg(x) and it is the number of vertices who's
adjacent with x in G.

4- 1f G1 and G2 are graphs, then we say that G1 is an isomorphic to Gz, (or G1= G») ,if
there exists a one-to -one mapping ¢ from V(G;1) onto V(G2) such that ¢ preserves
the adjacent.

5- The complete sub-graph K; of any graph G is called a clique, and (G ) is the clique
number of G, which is the greatest integer t > 1, such that K; cG.

As usual, we shall assume that p and q are distinct prime numbers. [s]([s] resp.) It
means that the smallest integer is not less than s (the greatest integer is not greater than s
resp.). Zn we denote a ring of integer modulo n, . By [4] any ideal of Z, is principal and
Zn local ring if and only if n=p™, where m is a positive integer number. In [2] Behboodi
and Rakeei show that for every ring R, the annihilating-ideal graph AG(R) is connected
and diam(AG(R))<3.
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2. on Annihilating-ldeal Graph of Zp™
In this section we give some basic properties of annihilating ideal graph of Zp™.
First we give an order and size of AG (Z,™), where m>4.

Theorem 2.1:
If R=2,", then AG(R) has order m-1 vertices and the size a1, where
m(m-2) _
YR if m even,
) mn?
YR if m odd.

Proof: Since any ideal of Z, is principal , then clearly that the ideals of ring Z,™
are{(p),(p?),....(p™1)}, therefor AG(R) has (m-1) vertices ideal.

Now to find size of graph AG(R). _
Since p™= 0 mod p™ , then ( p)(p!)=0 iff i+j > m, where 1<i,j< m-1, so that (p')
adjacent with (p') whenever 1<i<m-1 and j= (m-i),...,m-1, which implies that
Yitm— 1. 1=(m-1)—(m—i)+1=i,andsince (p) (p) 01fandonly1f1>[ ]
Then we have (p') has loop, so that
. i, if 1<i<|3]1,
deg((p)) =

i1, if E] <i<m-1,

q

Becsiy) dev= 321 X (D) = S 1 2 1 =252+ [

Since ZVGAG(me) degv=2a; , where a; is the number of edges of AG(Z,"), then

ay = m(m-2) (mj)2

and

,when mis even, and a; = ,whenmis odd. g

The next result we give the clique number of AG(Z,™).

Theorem 2.2
For any positive number m>4, AG(Z,™) contains a sub-graph K[E] and w(AG(me)):E]
2
Proof : There are pHeIementS divisible by p[7], we can write V = {v,,v,, ...,V[E]} :
2

where vi= (p™) , 1 <i< [?] this means that all ideal vertices of V are adjacent each
other .Thus V = V(k[m]) a complete sub graph of AG(Z,™). Also any ideal vertices
2
_ -i m . - - . [E] m
x=(p™"), [;]‘HSIS m-1 are non-adjacent with ideal vertex va] = (plz1), so that , [;]
2

greats integer such that k[m] CcAG(Z,™), whence oa(AG(me)):[%] -
2

Recall that "radius of G is rad (G) = min{d(x,y) : x and y are vertices of G} and
the center of G is defined by Cent(G) = {xe V(G) : d(x,y)= rad (G) for any

YEV(G)}3]".

Proposition2.3
For any positive number m>4, rad(AG(Zp™))=1 and Cent(AG(Z,™)=(p™?1).
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Proof: Since Z,™ be a local ring, then by [7] every minimal ideal vertex adjacent with
every ideal vertices in AG(Z,™). That means that the graph AG(Z,™) contains subgraph
K1,m-2), 50 rad (AG(z,m ))=1 and hence (p™*)< Cent(AG(Z,")) ...(1).

Now, let xe AG(Z,™ )such that x & (p™1) and for any y€ (p) , then xy# 0 , this
means that x & Cent (AG(Z,™)) and hence Cent(AG(Z,™)< (p™2)...(2).
Form (1) and (2), we get Cent (AG(Z,™) = (p™) m

Proposition 2.4

For any positive number m>4, we have diam(AG(Z,™))=2

Proof: Clearly the ideal vertex (p™?) adjacent with every ideal vertices in AG(Z,™), also
the ideal vertices a.1=(p) and a.2=(p?) are non-adjacent, then we have diam(AG(Z,™))=2.

Theorem 2.5
For any positive number m>4, AG(Zy")= (AG(Z;™) U {K1Us}) where s = |21 and

Us is added edges are numbered s that connecting K to (p™") where i =12EJ

Proof; We observe that the number of vertices of two graph are equal (m-1). In
AG(Zy™) the ideal vertices (p') and (p') are adjacent if and only if i+j > m, also in
G=(AG(Z,"™*) U{K1,Us}), the ideal vertices ui= (p') and uj= (p') are adjacent if and only

if i+j > m-1, or ui= w, where V(Ki)=w. i = [?]and j= [?]mZ Therefor we can
label the vertices in AG(Z,™) are vi= (p"), i=1, ..., m-1 and the vertices in G are

( (p)), if i= 1,2,...,[%]—1,
u=4 w, ifi= [;]

(pim1), if i= [;] +1,..,m—1,
We can defined a mapping f from AG(Z,™) to, G= (AG(Z,™ 1) U {K1,Us}), such
that f (vi)=ui, where 1<i<m-1.
Clearly that f is onto and one-to-one, we only prove that if e=uv is an edge in
AG(Z,™) then f(e)=Ff(u)f(v) is an edge in G.
Let e =vijvj edge from vi to vj in AG(Z,™), therefore i+j> m we get two cases.

Case 1: Ifiorj= [?] sayi= [?] then vj has two sub cases a and b:

Sub-case a: If m is an even number then [9] = 9, so vi adjacent with vj, where
j:(?+1) , m-1, on the other hand |- = f(vi) = w and f(vj)= uj =(p" 1)for all j= (— + 1)
,....,m-1. From defined G, we see w adjacent with uj= (p'h), j—; +1,..,m — 1, therefor
if e is an edge in AG(Z,™), then f(e) is an edge in G.

Sub-case b: If mis odd then [m] m—“ the vertex viadjacent with v; if and only if

j=oot ol m—“ +1,...m—1, except case, (— because i=j , vi adjacent with v; .

2 2
Where j = M (=t 1) — 1. On the other hand since i —(mT”) then f (vi)=w

and

m+1
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) m-1
(), if )= >
f(vj)z . m+1
(p]-l); if j= - +1,...m-1.
From defined G, observe that w adjacent with u;, j= &2 1), @D 41, m-2.

2
That mean if e is an edge in AG(Z,™) then f (e) is an edge i |n G.

Case 2: If i and j #[Z|, then e edge in AG(Z,™) iff i+j>m and ij# [Z|.

We get two sub-cases ¢ and d:

Sub-case c: ifi or j <[?], without loss generality let i < [?], then f(vi) = ui =(p')

since i+j> m we get j >[?] therefor f(vj) = (p"1)= uk ,where :[%]H,..., m-1and k=j-1

on the other hand uiuk adjacent iff i+k > m-1, because p™'= 0 mod m-1, therefor ui
adjacent with ux that mean if e is an edge in AG(z,m) , then f(e) is an edge in G.

Sub-case d : if i and j >H then f(vi) = ui= (p4) and f(vp)= u; = (p),

since 1>[;] then ui, uj adjacent where i#j and 1, —[;], ...,m-1 that is means, if e is an
edge in AG(Z,™), then f(e) is an edge .

Sothat AG(Z,") =G

3. On Annihilating- Ideal Graph of Zpy™q.
First we give order and size of AG (Zp™q) for all positive number m>3.

Theorem 3.1
Let R=Z,"q, then AG(R) has order 2m vertices and the sizes
2
31, if meven,
a|= §
1 3m2+1

, if m odd.

4
Proof : The ideals of ring R are {(p),(p?).....p™).,(q),(pq),(p? q).....(p™)}. So that
AG(Z," ) has 2m vertices ideal.

Now to find size of graph AG (Z,™ q), we must find degree of any vertices ideal.
Since p™q = 0 mod p™q, and p and q are distinct prime, then (p') is adjacent with (pq) iff
i+j>m, where 0<j<m-1 1<i<m. Then
deg(p)) = = nl . 1=m-1-(m-i)+1=i. Also (q) adjacent with only ideal vertex (p™) so
that deg(q) =1. Finally since (p'q) is adjacent with (p') iff i+j> m and Yitm- 1=i+1

Also (p'g) is adjacent with (plq) iff i+j > m, for all 1<i,j<m-1 and since Z]‘“I}] 41=i, then

s 11+ Yitm-i 1=2i+1, also, we note (p'q) contained loop if and only if i >[ ]
Therefor
2i+1, if1<i< [E]

J — 2 )

deg(p'q) = m
21 if [5] <i<m-1,
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Which implies that

[%]1 i=m-1 i=m
degv=1+ ) Qi+1)+ Z 21+21
VEAG(R) i=1 i:[%] i=1
i=m-1 i=m
m ) ) m; 2(m-1)m m(m+1)
_1+[E]'1+ Z 2i+ ) i _[5]+ —t—
i=1 i=1
B [m] N 3m?-m
_ 12 2
Since
degv =2a,
VEAG(R)
, where a; is the number of edges of AG(Z,"q), then
3m?
a;= L if m even
and
2
a|= 3m +1, if m odd . ]
Theorem 3.2

for all positive number m>3. AG(Z,"y) contains a sub-graph K[E] .,and
2
_|m
m(AG)_H +1
Proof: We can write V={ vl,vZ,...,v[m] }, where vi=(p™'q), 1 <i< [%] this mean that all
2
ideal vertices of V are adjacent each other, and V form K[E] ,since (p™) is adjacent with
2

all vertices in V and not adjacent with (p'), where 1<i< m-1, also V[E] not adjacent with
2

every vertices (p'q), where lsjs[?] — 1, therefor VU{(p™} form the largest sub-graph
Kjm},, in AG(Z5"a). Then o(AG (")) = [%]H. =

Proposition 3.3

For all positive number m>3, we have diam(AG(Zr"q))=3
Proof: In AG(Zpm q) we can find four ideal vertices are defined as a1=(p), c..=(p™q),
os=(p™ and o= (q)  since deg(ou)=deg(ou), a0tz =0, a205=0 and azes=0 but ctzots 20,
0201470 and ouoia#0 so that d(ou , aa )= 3, Therefor dim AG(Zpmq) =3 .

Example: Let R=Z24, then the diameter of the graph AG(R) is equal 3.
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(2%
(22.3)

4. On Annihilating - Ideal Graph of Zp™q"
Let m and r are positive numbers such that m,r > 2 . In this section, we can
extended all results in section 3

Theorem4.1

Let R =2Z," ¢, then AG(R) has order mr+m-+r-1 vertices and the sizes.
m?r2+3m?r+3mr2-4m-4r+2r2+2m?
8 )
m2r2+3m?r+3mr2-3m-3r+2ré+2m?+3

aj{= - , if mand r are odd,

m2r24+3m?r+3mr2-4m-3r+2r24+2m?+2
3 )

Proof : Since R has ideals (p'), (@) where 1<i<m, 1<k<r and (p'q¥), where 1<i<m
, I<k<r , since p™g'= 0 (mod p™q"), hence the order of AG(R) = mr+m-+r-1.

Now to find the size we must find degree of all vertices ideal of R since ("
adjacent with (p'q") iff i+j > m, then deg(p') 2] n-l 1=i similarly deg(q¥) =
To find deg (p'g¥), where 1<i<m, 1<k<r and (p'q¥) # p™q".
Since (p'g¥) adjacent with (p'g®) iff i+j > m and k+s >, so that j=m-i,...,m and s =r-k
.t , which implies that 2, ;¥ y1=m-(Mm-D+Dr—-(C-k+1)=

(i+ 1) (k+ 1), but p"g'= 0 (mod p™q"), also (p'g*) has loop iff i> [?]and k> E]
(+Dk+D-2, if  [F]<i and [ <k

So that deg(piq*)= {
(i+1)(k+1)-1 , otherwise.
Now, we find a: of R Since 2a;=Y,eacrydegv , then we have three cases

if m and r are even,

if m odd and r even.

Case 1: If mand r are even

2a,= Z degV = ZZ((1+1)(1<+1) 1)- 221 ((m+1)(r+1)- 2)+21+Zk

v EAG(R) i=1 k=1 i=% k— i=1
m r m r m r m r
=YD Y DY DY Y (kD E+D2)+ Y i+ )k
i=1 k=1 i=1 k=1 i — i=1 k=1

1l
RE
Sl

m(m+ 1) . r(r+1)

_ (m(m+1) n m) (r(r;—l) +F) -mr- mr+2rr;+2r+4 ( r4m-tr- 1)+ + .

2

2r243m?r 4+3m r2-6m-6r+2r24+2r+2m?+2m
4
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So that
2r2 43m?r+3mr?-4m-4r+2r?+2m?
a{=
8
Case 2:I1f m and r are odd we get
2a,= Z deg V= Z(i+1)2(k+1)-z 1- Z Z 1-((m+1)(r+1)-2)+Zi+Zk
v EAG(R i=1 k=1 i=1 k=1 i +1 =% i=1 k=1

=<ii+il>< 1k+z: )—rm (Tzl)(m-i_l) ((m+1)(r+1)—2)+lZ:z+Zk

_m2r2+3m2r +3m r2-5m-5r+3+2r2+2r+2m?+2m
B 4

So that
2r2 4 3m?r+3mr2-3m-3r+2r2+2m?+3

dq = 3

Case 3: Since p and g are distinct prime number, then if m odd and r even or r odd and
m even we get the same result, so without loss generality let m odd and r even.

2a,= Z degV—Z(l+1)Z(k+1) Z Z Z 21 ((m+1)(r+1)- z)+zl+2k
i=1 k=1 i=1

v EAG(® - m+1

(21+21><;k+z > (m+1)(r+2) (m+1)(r+1)- 2+21+Zk

i=1

2r243m?r +3m r2-6m-5r+2+2r2+2r+2m?+2m

4
So that
_ m?r2+3m%r+3mr2-4m-3r+2r2+2m?+2
a{= 8 |
Proposition 4.2

For all positive numbers m,r>2, diam(AG(Zp"q"))=3.
Proof: By the same method of proof Proposition 3.3, we can choose a1=(p) and o=(q)
and we get d(o1,02)=3 .

Theorem 4.3
Let R=Z,"q", then AG(R) has a sub-graph of Ks , Furthermore o(AG (R)=s, where
( mr+2m-+2r ]
— if m and r are even,
mr+m+r+1
S=+ — if m and r are odd,
mr+m+2(r+1) .
L 2 , if m even and r odd.

37



On Annihilating - Ideal Graph of Zn

Proof: If m and r are even, then vij=(p'q)) vertices, where m/2<i<m, 1/2<j<r and
ViiZ(p™g")=0 are all adjacent with every others. And the number of this vertices equal

m r
mr+2m+2r
Z Z 1= — 2 =s.

m/2 r/2

Also any vertices in AG(R)/{vij} are non-adjacent with (p™2q"?), therefore Ks the
largest sub-graph in AG(R) in this case. Then o(AG(R))=s.

If m and r are odd, similarly vi=(p'q’), where (m+1)/2<i<m, (r+1)/2<j<r and
Vi#(p™g")=0 with the vertices (p™*V/2q-V2) and (p™M-D"2q*D2) the largest sub-graph in
AG(R). And the number of vertices equal

mr+m+r+1
S=T.

Similarly, if m even and r odd, we get
mr+m+2(r+1)
S:f . -

5. Hosoya polynomial and Wiener index of Annihilating -1deal graph of Zn.

"Hosoya polynomial of the graph G is defined by : H(G;x) = Zﬁfén(c) d(G, k)x¥,
where d(G, k) the number of pairs of vertices of a graph G are at distance k a part , for
k = 0,1, ..., diam(G) . The Winer index of G is define as the sum of all distances
between vertices of the graph and denoted by W(G) , and we can find this index by
differentiating Hosoya polynomial with respect to x then putting x=1", see[5] ,[8].

In [1] Ahmadi and Jahani-Nezhad first study the Winer index of zero divisor
graph of Z, where n=p? and p?g. In [6] Mohammad and Authman extended this result
for n=p™ and p™q and study the Hosoya polynomial of this type. In this section we study
Hosoya polynomial and Winer index of annihilating-ideal graph of Z,, where n=p™,p™q
and p™q".

Lemma 5.1[5]

Let G be a connected graph of order r. Then ¥24" d(G,i) =%r(r+ 1).

Clearly if R=Zy%, then AG(R) =K, therefore H (AG(R,x)=1. Also if R=Z,°, where
s=3,4, then AG(R)=K: or Ki, respectively so that H(AG(R,X)=2+x or 3+2x+x?
respectively. Therefore we calculate Hosoya polynomial of AG (Z,™) for all positive
number m>4.

Theorem 5.2
For all positive number m>4, H(AG(Z,",X) = ao+ a1X +axx?, where ap= m-1,
m(m-2)
. if m even, ]

81: _ 2 a.n

D" it m odd,

22
(m2)” , if m even,
dr= 24
w43 ifm odd.

Proof: From Theorem2.1 and Lemma5.1, we get the result. gy
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Corollary 5.3
—(m-2)23m-4) , ifmeven,
For all positive number m>4,W(AG (Z,") = (m-1)(3m-7) .
— if m odd.
Example 1: )
Let R =Z,° then ()
(2
() (p%)
H (AG (Zp°, X) = 5+ 6x +4x?
W (AG(Zp®)) = 6+ 8 =14
4
Theorem 5.4 ()
For all positive number m>3, we have
3m* 5m*-8m+4 3 _
2m+ 2 X+ 2 x“+(m-1)x>, if m even,
H(AG(Zymg ,x)= 5 5
3m“+1  5m“-8m+3 3 .
2m+ 2 x+ 2 x“+(m-1)x>, if m odd.
Proof: Since diam(AG(Z,"q)=3 and applying Theorem3.1, we have a,=2m and .
(3m? _
T if m even,
7Y 3mzy1 .
R if m odd.

Now to find as we can write AG(Z,"q) = U™,(B; U C;), where Bi =(p™'q) ,

1=1,2,...m andC;= (pm'i+1) ,1=1,2,...,m . Then there are three cases.

Case 1: Let xe Bi andy € Bjwhere 1<i ., <m then C; = (P") is adjacent with every

vertices in Bi 1<i<m, and that means d(x,y)< 2 and this contradict our hypothesis.

Case 2: Letx € Ciandy € Cj where 1<i,j<m we see that a vertex Bi= (p™*q) is
adjacent with every vertices in Cj for all 1<i<m because 1+i < 1+m for any 1<i <m

, and that means d(x,y) <2 and this contradiction.

Case 3: IfxeBj andy € Cjfor some 1<i,j<m , in this case we see that d(x,y) =3 if

and only if i=mand 2 <j<m , because that d(x,y) <2 forany 1< i<m-1and

2

<j <m alsod(x,y)=1for 1 <1< m and j= 1, therefor the number of of pairs of

vertices that that are distance three apart is (m-1).
Finally, we find az, applying by Lemma 5.1 we get
a2 =(5m?- 8m+4)/4, when m even, a; = (5m-8m+3)/4, when m odd.gg
Corollary 5.5:
13 m2-4m-4

7 ,if m even,
w (AG(ZP"“Q)) ~)13m?4m5 |
—  if m odd.
Example 2:
Let R=Zp%, then  H(AG(Z%,X) = 12+  27x

W(AG (Z#%,))=27+2.34+3.5=110

39
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Finally we give extended to theorem 5.4

Theorem 5.6
For any positive numbers m,r>2, we have
H(AG(Z,mqr) )=ap+a;x+a,x*+azx® , where ag=mr+m-+r-1 and
( m?r? + 3m?r + 3mr? — 4m — 4r + 2r? + 2m?
8
m?r? + 3m?r + 3mr? — 3m — 3r + 2r? + 2m? + 3

a; =1 5 ,if m and r are odd,

m?r? + 3m?r + 3mr? — 4m — 3r + 2r? + 2m? + 2

,if m and r are even,

,if m odd and r even,

8
[ 3m2r24+5m?r+5mr2+2m?+2r?-12mr-8m-8r+16

8

3m?r?+5m?r+5mr?+2m?+2r2-12mr-9m-9r+13
ap;=-1 3 ,if m and r odd,

3m?r?+5m?r+5mr?+2m?+2r?-12mr-8m-9r+14
\ 8
and az= mr-1
Proof:_By Theorem 4.1, AG(R) has order a, = mr + m + r — 1 vertices and the sizes.
( m?r?4+3m?r+3mr2-4m-4r+2r2+2m?
8
m?r?+3m?r+3mr?-3m-3r+2r?+2m?+3
a;=1 5 ,if m and r are odd,
m2r2+43m?r+3mr2-4m-3r+2r24+2m?+2

,if m and r even,

,if m odd and r even.

,if m and r are even,

,if m odd and r even,

\ 8

To find as let A= {(p'g)): 1< i<m and, 1< j< r} — {0}, B ={(p"): 1< i <m} and
C={(@):1<j<r}.

If X,y € A or B, since every element in this case is adjacent with ideal vertex (p™*q") so
that d(x,y) < 2 which is contradiction .

Similarly , if x,y € A or C ,then every element in this case is adjacent with ideal vertex
(p™g™) so that d(x,y) < 2 which is contradiction, if x€ B and y € C since every element
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in B is adjacent with ideal vertex (p' q") for i =1,..., m-1 and therefor d(x,y) = 3
except the case where i=m and j=r so that the number of pairs of vertex that are distance

three a part is mr-1 .
To find ay, sinceziil?)m @46 1) = @ by Lemma 5.1, then
( 3m?r’4+5m?r+5mr?+2m?+2r?-12mr-8m-8r+16

3 ,if m and r even,
3m?r?+5m?r+5mr2+2m?+2r2-12mr-9m-9r+13
A=A 5 ,if m and r odd,
3m?r?+5m?r+5mr?+2m?+2r2-12mr-8m-9r+14
3 ,if m odd and r even.
Corollary 5.7:
(7 m?r?-20m-20r+13m?r+13mr?+6r’+6m?+8
3 if mand r even
7 m?r?-21m-21r+13m?r+13mr2+6r2+6m?+5
W(AG(Zp"q))=1 = if m and r odd
7 m?r?-20m-21r+13m?r+13mr?+6r’+6m?+6
\ 3 if m odd and r even
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