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ABSTRACT
This paper introduces the notion of maximal GP-ideal .We studied
the class of rings whose maximal left ideal are right GP-ideal. We call such
ring MRGP-rings. We consider a necessary and sufficient condition for
MRGP-rings to be MRCP-rings. We also study the connection between
MRGP-ring, kasch ring, division ring and the strongly regular ring.
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1- Introduction:

Throughout this paper, R will denote an associative ring with

identity. For any element a in R, we define the right annihilater of a by
r(a)={xeR:ax=0} , and likewise the left annihilater 1(a) . Y,Z,J will denote
respectively the right singular ideal, the left singular ideal and the Jacobson
radical of R. Recall that 1) An ideal I is said to be a right (left) pure if for
every ael , there exists bel such that a=ab(ba) [1] 2) R is called a uniform
ring if for every non-zero ideal of R is essential , [4] .3)
A ring R is said to be left kasch ring, if every maximal right ideal is a right
annihilator [3] 4) R is said to be strongly regular if for each acR , there
exists xeR such that a=a?x. Following [1] . 5)A ring R is called reduced if R
has no non-zero nilpotent element and an ideal | of a ring R is said to be
right (left) GP-ideals if for every acl, there exists bel and a positive integer
n such that a"=a"b(ba") [5].

2-MRGP-Rings:
Following [6] a maximal left ideal M of the ring R is said to be a
right Co-pure if for every acM, Ma is a right pure.

Definition 2-1: A ring R is called MRCP-ring , if all maximal left ideals are
right Co-pure , .see[6]

Definition 2-2: R is called MRGP-ring , if for any maximal left ideal M of
R, any aecM, Ma is a right GP-ideal .

Clearly every MRCP-ring is an MRGP-ring, however the converse is
not true as the following example shows:
Example: The ring Z1> of integers modulo 12 is an MRGP-ring but not an
MRCP-ring.

We now consider a necessary and sufficient condition for MRGP-
ring to be an MRCP-ring.

Theorem 2-3: Let R be a reduced MRGP-ring. Then R is MRCP-ring

Proof: Let M be any maximal left ideal of R. Since R is MRGP-ring , then
Ma is a right GP-ideal of R and there exists ¢, b M and a positive integer n
such that (ba)"=(ba)"(ca) this implies that (ba)"(1-ca)=0 and hence (1-
ca)er(ba)"c r(ba) .

Therefore (1-ca) )er(ba) , whence (ba)(1-ca)=0 . Thus ba=ba ca (Ma
is a right pure) and hence R is MRCP-ring.
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Lemma 2-4: let a be a non-zero element of the ring R and let r(a) =0. Then
r(a®"=0

Theorem 2-5: let R be an MRGP-ring and r(a)=0 . Then a is a left
invertible.

Proof: let a eR with r(a)=0 . If Ra=#R , there exists a maximal left ideal M
containing Ra . Since R is an MRGP- ring, there exists be M and a positive
integer n such that a®"=a2"(ba) .Whence (1-ba)er(a®") =0, yielding 1M,
which contradicts M#R . Therefore Ra=R. In particular ra=1 for some reR .
Hence a is a left invertible.

Proposition 2-6: Let R be a right uniform reduced MRGP-ring. Then R is a
division ring.

Proof: If 0+acR and Ra=#R. Let M be a maximal left ideal containing Ra.
Since R is MRGP-rings , then for every acM, Ma is a right GP-ideal, so
(ca)"=(ca)" ba , for some c,b M and a positive integer n. Since R is a right
uniform then every right ideal is essential ideal.

Consider I(ba) " R(ca)" , let xel (ba)(1R(ca)" implies that xba=0
and (ca)"=x,s0 (ca)"ba=0, then (ca)"ba=(ca)"=0.Therefore I(ba) () R(ca)"=0
implies I(ba)=0, since R is reduced , r(ba)=0 .By Theorem (2-5) , ba is a left
invertible , there exists y R such that v(ba)=1 , so (vb)a=1eM, a
contradiction. Therefore Ra=R. So R is division ring.

A ring R is called zero commutative (briefly ZC) [2] if for a,beR
ab=0 implies ba=0

Proposition(2-7): Let R be a zero commutative , MRGP-ring. Then R is a
kasch ring .
Proof: Let M be any maximal left ideal of R, and let Z be the left singular
ideal of R, if M Z=0, then for any yeZ, y¢M, this implies that I(y) is an
essential left ideal of R.
Let xel(y)NI(1-y) , then xy=0 and x(1-y)=0 , yields x=xy=0. Therefore I(y)
M 1(1-y) =0, whence 1(1-y)=0.

Since R is a zero commutative , then we have r(1-y)=0 . By Theorem
(2-5) 1-y is an invertible element of R , hence yeJc M a contradiction. Thus
M Z=O0.

Let ac M Z, since R is an MRGP-ring , then Ma is a right GP-
ideal of R and there exists c,beM and a positive integer n such that
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(ba)"=(ba)"(ca). We claim that I(ca) (1R(ba)"=0, if not let del(ca)()R(ba)" ,
then d ca=0 and d=r(ba)" for some r in R,so r(ba)"ca=0,implies r(ba)" =0,
whence d=0 . Therefore I(ca) (1R(ba)"=0 , but r(ca) is essential then
R(ba)"=0 and hence b"a"=0 implies that b"el(a") and a"er(b") .Therefore
M=I(a") and M=r(b") .

The following theorem gives the condition of being MRGP-ring is
strongly regular.

Theorem 2-8: Let R be a reduced MRGP-ring. Then R is strongly regular.

Proof: Let z be a non-zero element in R. We claim that Rz+I(z)=R. If

Rz+1(z)=R, let M be a maximal left ideal containing Rz+I(z). Since R is an

MRGP- ring, then Mz is a right GP-ideal and there exists ceM and a

positive integer n such that (z)>"=(z)*"(cz) . Whence (1-cz)er(z)?" . Since R

is reduced, we have (1-cz))er(z)>"=1(z*")=I(z)cM this implies that 1M, a

contradiction . Therefore Rz+I(z)=R, in particular xz+y=1, xeR, yel(z).
Thus z=xz? , and therefore R is strongly regular.
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