Raf. J. of Comp. & Math’s. , Vol. 9, No. 1, 2012

Controlling and Protecting Windows Applications by Analyzing and
Manipulating PE File Format

Rawaa P. Qasha Zaid A. Monther
rawa_gasha@uomosul.edu.iq
College of Computer Sciences and Mathematics
University of Mosul

Received on: 09/02/2011 Accepted on: 02/11/2011

ABSTRACT

PE (Portable Executable) is the native file format of Windows32. Analyzing and
manipulating the PE file gives valuable insights into the structure and work of
Windows.

This research includes analysis the components of Windows executable files as a
structure and defined values, to provide the capability of protection and controlling
Windows programs by applying specified modifications that can be undid on PE
specific value to stop the program from being executed by unwanted user. Also it
includes analyzing the structure of PE file and comparing a specified part from PE with
a same part from common viruses file, this process offers a good way to detect
malicious programs and viruses in the computer by saving viruses signatures in a
specified file and scanning all PE files. The other part of the research rebuild the Import
Address Table of any PE files that may make a call to one of three important and
essential registry API functions in order to control the using of these functions in the
system using one of the APl hooking techniques to control Undesirable programs.

The objective of the research is to control the executable files of the Windows
system in order to provide protection for these files and the system as a whole.

Research program was developed using Visual C + + 9.0.

Keywords: Portable Executable file, Windows System , Protection , API
Hooking.

PE cilale dallaag Jalad Gk 8 jeaiyy @ildubi dilaag aSail)
Jle al) a8 ales gupkas ¢y
alualylly qigulal) agle 4.l
Juagall daals
2011/11/2 :J) g 2011/02/9 = s gyl
uealall

Jalaall) .32 il L) Caldll Gauis g4 (Msdall Asesdl) Portable Execution) o
sl ol Jeeg A0S 8 A 5yl asy PE Cile e Jalaill

Llos 4plSa) sl (Adyra plly LSS Hpausll dunenil) Cllall CligSe alas Caadd) 138 ey
Gl PE ile (e 83m0 dai o Lgie aalill GISGY L Baase st Gl 3k e s3ug el &l
caad Qgepall e aadidl U8 (e mabll i

Gy pudll lile e eiall Gah pe il (e 223 g3 A3)lkeg PE Cile 30Sia Jilas Liagl Jadg
Cleg padll wlss (3a dawladl (& Sl yudlly all ald) o CaESH 82 Aoy Hi50 dolanl) 020 (AL

23

Rawaa P. Qasha & Zaid A. Monther

Gl A gal) Laladl) 6 L) k) asesd s eha) & pald Cile b lgle Jgeanl) 2y A
e Jabaall b Ay 260 APL I Jlsy saa) elesiuls asi PE cile (Y ahiiad Joan el sale]
gl oy oSaill Cangy APL sblaaal 4 alasinly Jisall sda slasicl e sl dlldy (gl
A Cisege Ll Al

lalall o3¢l dpleall s al (e gaing allaal bl AL Clalal) e Bylasd) ga Canll (g Cangl
(S il

9.0+ as Dl plasialy Gand) aliyy skt o

oma) kil dgaly Bl ¢ dles ¢ jgning alai ¢ Algenal) Mgl clile: dpabiaal) el

1. Introduction:

Windows stores its executables in a special format called PE format, PE stands
for Portable Executable. It’s the native file format of Win32, even NT's kernel mode
driver use PE file format. The format of an operating system's executable file is in many
ways a mirror of the operating system built-in assumptions and behaviors. Since, an
operating system's executable format and data structures reveal quite a bit about the
underlying OS [10].

Microsoft introduces the PE as a part of the original Win32 specifications.
However, PE files are derived from the earlier Common Object File Format (COFF) [6].

The term "Portable Executable” was chosen because the intent was to have a
common file format for all flavors of Windows, on all supported CPUs.

Each PE uses number of API functions reside in one or more of the DLL files to
performs its task and, only the information about the functions is kept in a specific part
of PE. That information includes the function names and the names of the DLLs in
which they reside [6].

The registry is a simple, hierarchical database of information that Windows
operating systems and applications use to define the configuration of the system.
Without the registry, Windows would be nothing more than a collection of programs,
unable to perform even the basic tasks that we expect from an operating system.
Registry APl functions are used to access and make modifications to registry
components [1].

2. Related Work:

Many previous works presented and implemented analyzing PE format since is
the standard executed file for Windows system. Shengying [15] surveys binary code
analysis from the most fundamental perspective views: the binary code formats, several
of the most basic analysis tools.

Shengying [15] and Galen [4] describe various ways of function interception and
present a generic method to achieve this task without relying on commercial packages;
the ways depend on modifying the intercepted function. In [5] Greg also presents
different methods for APl hooking methods, one of them is used and implemented in
this work which depends on the format of PE file.

24

Controlling and Protecting Windows Applications by Analyzing and ...

3. The Structure of PE File Format

The meaning of "portable executable” is that the file format is universal across
win32 platform: the PE loader of every win32 platform recognizes and uses this file
format [6].

The general layout of a PE file format is shown in the following figure [7]:

DosMZ Header

DOS Stub

PE File Header
PE Signature

Image_Optional_Header :

Section Table
Array of Image_Section_Headers

Data Directories

Sections

idata

ASIT

|
[
| data
l
L

text

-

Figure (1). PE General Layout

All PE files (even 32-bit DLLS) must start with a simple DOS MZ header. It's
provided to be used when the program is run from DOS, so DOS can recognize it as a
valid executable and can thus run the DOS stub which is stored next to the MZ header.
The DOS stub is actually a valid EXE that is executed in case the operating system
doesn't know about PE file format. It can simply display a string like "This program
requires Windows" or it can be a full-blown DOS program depending on the intent of
the programmer [6][9].

The following few sections demonstrate some of PE parts that are used to
accomplish the research work.

3.1 PE Header

The PE header is a general term for the PE-related structure named
IMAGE_NT_HEADERS. This structure contains many essential fields that are used by
the PE loader. In case the program is executed in the operating system that knows about
PE file format, the PE loader can find the starting offset of the PE header from the DOS
MZ header, since PE loader can recognize and use the file format in all win32 platforms
depending on . It is the real file header [4][12].

25

Rawaa P. Qasha & Zaid A. Monther

The PE header is defined and has fields as follows:

Signature is the PE signature, "PE" followed by two zeroes.

FileHeader is a structure that contains the information about the physical
layout/properies of the PE file in general.

Some fields in FileHeader are also important such as the OptionalHeader field,
which is also a structure called IMAGE_OPTIONAL HEADER32. It contains
information about the logical layout in the PE file, such as:

DataDirectory structure that includes the VirtualAddress of the

IMAGE_IMPORT_DESCRIPTOR which represent the address of the

IAT (Import Address Table) [5][6].

3.2 Import Address Table (1AT):

The import address table IS actually an array of
IMAGE_IMPORT_DESCRIPTOR structures. Each structure contains information
about a DLL the PE file imports symbols from, such as API functions.

This work uses the following fields:

Name field contains the RVA (Relative Virtual Address) to the name of the
DLL, in short, the pointer to the name of the DLL.

FirstThunk contains an RVA of an array of IMAGE_THUNK_ DATA
structures which have the field Function that contains the address of the imported API
function [5][13].

4. API Functions and DLL:

API stands for Application Programming Interface. An API is a set of calls,
functions and routines that can be used by any application to access the operating
system's functionality. The use of a common API allows applications to be developed
once and deployed on multiple operating systems [13].

These functions are contained in Dynamic Link Libraries (DLL), which each
program has access it when it’s executed. These functions are added only when the
application is loaded into memory for execution.

A DLL is a file on disk (usually with a DLL extension) consisting of global data,
compiled functions, and resources, that becomes part of a process. It is compiled to load
at a preferred base address, and if there's no conflict with other DLLs, the file gets
mapped to the same virtual address of a process. The DLL has various exported
functions, and the client program (the program that loaded the DLL in the first place)
imports those functions.

Windows matches up the imports and exports when it loads the DLL [2]. In
Win32, each process gets its own copy of the DLL's read/write global variables. So, for
sharing memory among processes, a shared data section must be declared in the DLL

[8].
5. Windows Registry:

The registry plays a key role in the configuration and control of Windows
systems. It is the repository for both system-wide and per-user settings. It is also a
window into various in-memory structures maintained by the Windows executive and
kernel. Application and system settings stored in the registry.

The registry is a database whose structure is similar to that of a logical disk
drive. The registry contains keys, which are similar to a disk's directories, and values,
which are comparable to files on a disk. A key is a container that can consist of other

26

Controlling and Protecting Windows Applications by Analyzing and ...

keys (subkeys) or values. Values, on the other hand, store data. Top-level keys are root
keys|[8].

The registry is accessible to the Win32 programmer via API functions. There are
functions to create and delete keys, look up values within keys, and more [1][3].

Monitoring the registry API functions gives the ability to monitor all programs
that attempt to change values in the registry, especially viruses and malicious programs,
and control accessing to registry keys and values by hooking these functions and gives
permission for continuing calling these functions or denied the operation.

6. Software Implementation:

The software contains three parts each of which deal with certain part of PE files
to offer protection capabilities for the files from unauthorized user and detect viruses
which are PE-like files and protect registry system from any ineligible using. The
following sections demonstrate software parts:

6.1 Changing in PE Values:

This part performs modification on specified PE field to prevent unauthorized
users from using the modified PE file and executing it. Each PE contains "Machine"
field that is used to indicate the permission to execute the file or prevent it. "Machine"
is the first field from the IMAGE_FILE_HEADER STRUCT that is part from the PE
header structure IMAGE_NT_HEADERS STRUCT.

Machine field contains the CPU platform of the file is intended for. For Intel
platform, the value is IMAGE_FILE_MACHINE_1386 (14Ch). So, changing the value
of this field can be used as a quick way to prevent a program to be executed.

Changing Machine field is accomplished as shown in the following code:
HANDLE hFileMapping; LPVOID IpFileBase;

PIMAGE_DOS_HEADER dosHeader;

PIMAGE_NT_HEADERS pINTH;

hfile=CreateFile (name,GENERIC_READ|GENERIC_WRITE,0,
(LPSECURITY_ATTRIBUTES)NULL, OPEN_EXISTING, 0, NULL);
hFileMapping = CreateFileMapping(hfile, NULL, PAGE_READWRITE, 0,
0, NULL);

IpFileBase = MapViewOfFile(hFileMapping, FILE_MAP_ALL_ACCESS,
0,0, 0);

pINTH = (PIMAGE_NT_HEADERS)
pINTH->FileHeader.Machine=0x0000;

6.2 Detecting PE-Like Viruses:

The second part of the work presents a method to detect any virus and malicious
program that has PE-like format.

Security products such as virus scanners look for characteristics byte sequence
(signature) to identify malicious code. The quality of the detector is determined by the
techniques employed for detection. A good malware detection technique must be able to
identify malicious code that is hidden or embedded in the original program and should
have some capability for detection of yet unknown malware [16].

In this work, detection operation is implemented by analyzing the virus file and
gives it a signature by reading first 128 bytes (it is a unique value for each PE), storing
the signature with virus name in a file and then use this signatures to detect the
occurrence of this kind of viruses in the system.

27

Rawaa P. Qasha & Zaid A. Monther

This part consists of several steps including:

- Obtaining a signature for virus file using special purpose programs, such as
OllyDbg. The first 128 byte is selected as virus signature. Each new signature is added
to a file contains all virus signatures.

- Parsing the PE file and compare between the values obtained from a specific
part from the PE file, that correspond to the same part of virus file, with the signature of
virus file as follows:

hFile=CreateFile(virus_file_name, GENERIC_READ,

FILE_SHARE_READ, NULL, OPEN_EXISTING,

FILE_ATTRIBUTE_READONLY, NULL);

ReadFile(hFile, pMem, sizeof(IMAGE_DOS_HEADER),

&ReadBytes, NULL);

DosHeader = (PIMAGE_DOS_HEADER) pMem;

if(memcmp(DosHeader,DosHdrSignature,128)==0)

MessageBox (NULL, "Safe","Scanner",MB_OK);

else

MessageBox (NULL,"infected", "Scanner”,MB_OK);

This method had been applied on Windows systems XP and 7 and it differs from
the traditional antivirus programs that it checks only exe files, so it consume less time
and CPU usage.

6.3 Import Table Intercepting:

Third part of this work includes controlling three registry API functions [14]:
-RegCreateKeyEXx(): used to create new keys.

-RegDeleteKey(): used to delete a key.

-RegOpenKeyEXx(): used to open a subkey.

which are the most important ones. Controlling process is performed by hooking
these functions through intercepting IAT of any PE attempt to call them as demonstrate
in the following sections.

When an application uses a function in another DLL or PE file, the application
must import the address of the function. Most applications that use the Win32 API do so
through an IAT. Each DLL the application uses is contained in the application's image
in the file system in a structure called the IMAGE_IMPORT_DESCRIPTOR. This
structure contains the name of the DLL whose functions are imported by the
application, and two pointers to two arrays of IMAGE_IMPORT _BY_NAME
structures. The IMAGE_IMPORT_BY_NAME structure contains the names of the
imported functions used by the application.

When the operating system loads the application in memory, it parses these
IMAGE_IMPORT_DESCRIPTOR structures and loads each required DLL into the
application's memory. Once the DLL is mapped, the operating system then locates each
imported function in memory and overwrites one of the IMAGE_IMPORT_BY_NAME
arrays with the actual address of the function[11][13].

So, to control the API used by an application, the address of the target function
in the IAT can must be replaced by the address of the new own function.

The steps required to perform the replacement operation are:

- Parsing the PE file of the target application in memory to obtain the address of
the IAT in the PE file.

28

Controlling and Protecting Windows Applications by Analyzing and ...

- Replacing the IAT entry which represent the address of the original imported
API function in DLL with the address of the own new function.

Application.exe

A standard application Headers

Code Section

Call ReadFileA

Import Section Kernel3Z.dll
ReadFiled
0x12345678 ReadFileA()
— L)
Application.exe
A hooked application Headers v Hook :
Code Section — JMP 0x12345678
Call ReadFileA
iyl St Kernel32.dll
* N
ReadFileA ReadFileA ()
0x98765432

Figure (2). IAT Intercepting

This will cause all calls made by applications to the original function to be
routed to the new function. The new one then can decide to pass control to original
function or take some other actions [5].

Also this method required that the new function must be in the application's
address space, when it be there, the hooking program can pares the PE of the target
application in memory and replace the target function's address in the IAT with the
address of the special function. Then, when the function is called, new function will be
executed instead of the original function. Figure (2) depict the intercepting operation.

6.3.1 Executing code inside another process

The replacement process and the new function in the intercepting operation must
be resided in the target applications (processes) address space for them to work. To

29

Rawaa P. Qasha & Zaid A. Monther

achieve this, they must be a part of a DLL, and then the DLL must inject in the target
process address space. Once the DLL is loaded into the target process, it can alter the
execution path of commonly used APIs [5].

The code below implements the replacement process in this work using
RegOpenKeyEx API function .

typedef LONG (CALLBACK *MY_RegOpenKey) (HKEY ,

LPCTSTR, DWORD , REGSAM, PHKEY);

MY _RegOpenKey Orig_RegOpenKeyEx =

(MY _RegOpenKey)GetProcAddress(hmod,"RegOpenKeyExW");

LONG CALLBACK Hook RegOpenKeyExX(HKEY ,

LPCTSTR , DWORD , REGSAM , PHKEY);

hDIlInst = hinst;

Replacel ATEntryInAllMod("kernel32.dII",(PROC)Orig_RegOpenKeyEX,
(PROC)Hook_RegOpenKeyEX);

Injecting a DLL into the address space of an external process is a key element of
a hooking system. It provides an excellent opportunity to have a control over process's
thread activities.

This research uses Remote Threads method to inject DLL to another process as
described below.

6.3.2 Injecting a DLL using Remote Threads

The common way to load the DLL into the target process is by creating what is
called a remote thread in that process, the main function used for this purpose is
CreateRemoteThread function, which has the following prototype[12][15]:

HANDLE CreateRemoteThread(

HANDLE hProcess, LPSECURITY_ATTRIBUTES IpThreadAttributes,

SIZE_T dwsStackSize, LPTHREAD_START_ROUTINE IpStartAddress,

LPVOID IpParameter, DWORD dwCreationFlags,

LPDWORD IpThreadld);

CreateRemoteThread as the name suggest is used to create a thread in another
process. In this method, it can be exploit from the prototype matching between thread
function and LoadLibrary() API function, as shown below:

DWORD WINAPI ThreadProc (LPVOID IpParameter);

HMODULE WINAPI LoadLibrary (LPCTSTR IpFileName);

This match gives a hint that the LoadLibrary can be used as a thread function,
which will be executed after the remote thread has been created. Therefore, the target
process will be forced to call LoadLibrary.

In other word, CreateRemoteThread() can be called with LoadLibrar() address
and it will cause LoadLibrary call to be executed in target process's context. This way,
LoadLibrary can load the DLL containing the hooking processes in the target process

[5].
6. Software Overview:

Software interface window of this research consists of three parts, as depicts in
figure (3):

30

Controlling and Protecting Windows Applications by Analyzing and ...

PE Controlling and Protecting

Stop EXE File Running

[setectxeFle | [ChangePEHeader | [Reset |

Find Specific EXE File
Enter Signature : |

Scan

| Add Signature to File |

Contreling Registry

[] Controlling Registry Key Creation
[] Controlling Registry Key Deletion
[] Controlling Opening Registiy Key

Figure (3). Software Interface Window

The first part can be used to prevent a selected PE from being executed using the

following buttons:

- Select EXE File: is used to select a PE file from the system.

- Change PE Header: is used to modify Machine field in the selected file.
- Reset: returns Machine field to its original value.

The second part is used to perform scanning operation for comparing between
virus signature and system PE files, then display the path of matched ones. After Virus
signature is entered in the textbox, “Add Signature to File” button must be pressed to
store virus name and its signature to a specified file then Scan button is used to start
scanning operation between virus signatures from the specified signatures file and PE
files in the system.

The third part contains three checked box:

- Controlling Registry Key Creation: is checked to control the operation of creating new
registry key.

- Controlling Registry Key Deletion: is checked to control delete registry key operation.

- Controlling Opening Registry Key: is checked to control open registry key operation.

When any of the above checked boxes is unchecked, the corresponding API
function will be unhooked and is called directly by any application.

7. Testing and Results:

Testing process was applied on data sets contains 50 viruses obtained from
infected computers and from the website VX Heavens (http://vx.netlux.org) and 200 PE
executable files produced by different runtime environments in the system. Also
numbers of viruses’ signatures are stored in the file’s signature to be used for scanning
stage such as: Fun.exe, DC.exe, Other.exe, SVIQ.exe, win.exe, WinSit.exe and
killerjeff.exe The above data sets are used with research software and three antivirus
programs. The results of detection rate are depicted in the following table:

31

Rawaa P. Qasha & Zaid A.

Monther

Table (1). The Comparison Results

. Kaspersky Avira ESET NOD32
Detection Research L. .. .
rogram software Antivirus Antivirus Antivirus
P 12.0.0.20 10.2.0.700 5.0.93.0
Detection Rate 98% 88% 92% 94%

8. Conclusion

PE management process is a critical and important operation, since the
sophisticated structure and organization of PE format, in addition to the fact that it’s an
essential part of Windows operating system, so any error made through PE

manipulation will cause serious problem in the system.

The Import Address Table is an essential part of the PE, and the knowledge of
the import table performance helps to realize how an API is requested during running
time, and how can be controlled. Also this research deals with another important part of
Windows, the registry, so monitoring its main functions gives a powerful tools to

protect the system from many malicious program and viruses.

32

Controlling and Protecting Windows Applications by Analyzing and ...

[1]

[2]
[3]

[4]
[5]
[6]

[7]
[8]

[9]

[10]
[11]
[12]
[13]
[14]

[15]
[16]

REFERENCES

Andrew S. Tanenbaum, 2009, "Modren Operating Systems", Pearson Prentice
Hal, 3rd Edition.

Charles Petzold, 1998, "Programming Windows", Microsoft Press, 5th Edition.

David A. Solomon and Mark E. Russinovich, 2009, "Windows Internals,
Including Windows Server 2008 and Windows Vista", 5th Edition.

Galen Hunt and Doug Brubacher, 2000, " Detours: Binary Interception of Win32
Functions", Microsoft Research http://research.microsoft.com/sn/detours.

Greg Hoglund, James Butler, 2005, " Rootkits: Subverting the Windows
Kernel", Addison Wesley Professional.

Iczelion, “Iczelion’s Tutorials for Win32ASM, Tutorial 24: Windows Hooks”,
2002, http://win32assembly.online.fr/tut24.html.

“ Bypassing Anti-Virus Scanners”, 2004, InterNot Security Team.

Johnson M. Hart, 2004, "Windows System Programming”, Addison Wesley
Professional, 3rd Edition.

M. Pietrek, "Peering Inside the PE: A Tour of the Win32 Portable Executable
File Format", Microsoft Systems Journal, March 1994.

Matt Pietrek, 2002, “An In-Depth Look into the Win32 Portable Executable
File", MSDN Magazine, February 2002.

Mathias Rauen, 2006, “API Hooking Methods”,
http://www.madshi.net/apihooking.htm.

Reverend Bill Blunden, 2009, “The Rootkit Arsenal - Escape and Evasion in the
Dark Corners of the System", Wordware Publishing, Inc.

Richter Jeffrey, 1999, "Programming Application for Microsoft Windows", 4th
Edition, Microsoft Press.

Richard Simon, 2000, "Microsoft Windows 2000 API SuperBible", Sams
Publishing, 5th Edition.

Seung-Woo Kim, 2005, "Intercepting System API Call", Intel Corporation.

Vinod P. & V.Laxmi,M.S.Gaur, “Survey on Malware Detection Methods”,
Department of Computer Engineering, Malaviya National Institute of
Technology, Jaipur, Rajasthan.

33

