
 Raf. J. of Comp. &  Math’s. , Vol. 9, No. 1, 2012 
 

 

23 

Controlling and Protecting Windows Applications by Analyzing and  

Manipulating PE File Format 

Rawaa P. Qasha 

rawa_qasha@uomosul.edu.iq 

Zaid A. Monther 

 

College of Computer Sciences and Mathematics 

University of Mosul 

Received on: 09/02/2011                                     Accepted on: 02/11/2011 

ABSTRACT 

PE (Portable Executable) is the native file format of Windows32. Analyzing and 

manipulating the PE file gives valuable insights into the structure and work of 

Windows. 

This research includes analysis the components of Windows executable files as a 

structure and defined values, to provide the capability of protection and controlling 

Windows programs by applying specified modifications that can be undid on PE 

specific value to stop the program from being executed by unwanted user. Also it 

includes analyzing the structure of PE file and comparing a specified part from PE with 

a same part from common viruses file, this process offers a good way to detect 

malicious programs and viruses in the computer by saving viruses signatures in a 

specified file and scanning all PE files. The other part of the research rebuild the Import 

Address Table of any PE files that may make a call to one of three important and 

essential registry API functions in order to control the using of these functions in the 

system using one of the API hooking techniques to control Undesirable programs. 

The objective of the research is to control the executable files of the Windows 

system in order to provide protection for these files and the system as a whole.  

Research program was developed using Visual C + + 9.0. 

Keywords: Portable Executable file, Windows System , Protection , API 

Hooking. 

 PEالتحكم وحماية تطبيقات ويندوز عن طريق تحليل ومعالجة ملفات 
 رواء بطرس بولص    زيد عبد الإله منذر

 علوم الحاسوب والرياضياتكلية 
 جامعة الموصل

 2011/11/2تاريخ القبول:                             2011/02/9تاريخ الاستلام : 

 الملخص
. إن الفحن(ــ  32 )المحمولــل لنفيذ(ــو  نــو ايمــ(ا المنــي اوزــن  لو يــ    Portable Executionإن الـــ 

   عم  نظام الو ي   .يعط  نظرة قيمل ف  هيكنيل  PE الفعام  مع مني 
  حمايل  لفوف(ر إمكانيل معرفل،  قيم كهيكنيل لنو ي    الفيذ(ويل المنذات مكونات احن(  البحث نوا يفضمن

لإيقاف  PEعيها عنى قيمل مح دة من مني  الفراجع بالإمكان مح دة اغ((رات اطب(ا طر ا عن   ي    برامج  مراقبل
 لمرغوب فيه.ايذ(و البرامج من قب  الممفخ م غ(ر ا

 مقارنل جزء مح د من المني مع نذس الجزء من منذات الذ(ر سات  PE  شم  أيضا احن(  هيكنيل مني 
 الذ(ر سات اواقيع ف  الحاسبل خزن   الذ(ر سات الخب(ثل البرامج عن لنكشي ج( ة  س(نل اوفر العمنيل الشائعل، نوه



 Rawaa P. Qasha & Zaid A. Monther 
 

 

 24 

ع المنذات الفيذ(ويل ف  اليظام. الجزء اوخر لنبحث ف  لجمي ممح إجراء ثم خاص مني ف  عن(ها الحصول يفم الف 
الثلاثل  اوساسيل ف  الفعام  مع  APIيقوم باسف عاء إح ى د ال الـ  PEإعادة بياء ج  ل اسف(راد وي مني 

به ف الفحكم بعم  البرامج  APIالرجمف(ري  ذلك لنميطرة عنى اسفخ ام نوه ال  ال باسفخ ام اقييل ازطياد 
 الغ(ر مرغوب ف(ها.  اونظمل

 المنذات لهوه اوف(ر الحمايل أج   من   ي    ليظام لنفيذ(و القابنل المنذات عنى الميطرة نو البحث من اله ف

   .كك   اليظام
 . 9.0++  س  فيجوال باسفخ ام البحث برنامج اطو ر ام

  اجهل الفطبيقات البرمجيل، الكنمات المذفاحيل :منذات الفيذ(و المحمولل ، نظام   ي    ، حمايل ، الفقاط 
 

    

1. Introduction: 

Windows stores its executables in a special format called PE format, PE stands 

for Portable Executable. It’s the native file format of Win32, even NT's kernel mode 

driver use PE file format. The format of an operating system's executable file is in many 

ways a mirror of the operating system built-in assumptions and behaviors. Since, an 

operating system's executable format and data structures reveal quite a bit about the 

underlying OS [10]. 

Microsoft introduces the PE as a part of the original Win32 specifications. 

However, PE files are derived from the earlier Common Object File Format (COFF) [6]. 

The term "Portable Executable" was chosen because the intent was to have a 

common file format for all flavors of Windows, on all supported CPUs. 

Each PE uses number of API functions reside in one or more of the DLL files to 

performs its task and, only the information about the functions is kept in a specific part 

of PE. That information includes the function names and the names of the DLLs in 

which they reside [6]. 

The registry is a simple, hierarchical database of information that Windows 

operating systems and applications use to define the configuration of the system. 

Without the registry, Windows would be nothing more than a collection of programs, 

unable to perform even the basic tasks that we expect from an operating system. 

Registry API functions are used to access and make modifications to registry 

components [1].          

2. Related Work:  

Many previous works presented and implemented analyzing PE format since is 

the standard executed file for Windows system. Shengying [15] surveys binary code 

analysis from the most fundamental perspective views: the binary code formats, several 

of the most basic analysis tools. 

Shengying [15] and Galen [4] describe various ways of function interception and 

present a generic method to achieve this task without relying on commercial packages; 

the ways depend on modifying the intercepted function. In [5] Greg also presents 

different methods for API hooking methods, one of them is used and implemented in 

this work which depends on the format of PE file. 

 

 



Controlling and Protecting Windows Applications by Analyzing and … 
 

 

 25 

3. The Structure of PE File Format 

The meaning of "portable executable" is that the file format is universal across 

win32 platform: the PE loader of every win32 platform recognizes and uses this file 

format [6]. 

The general layout of a PE file format is shown in the following figure [7]: 

 

 
Figure (1). PE General Layout 

 

All PE files (even 32-bit DLLs) must start with a simple DOS MZ header. It's 

provided to be used when the program is run from DOS, so DOS can recognize it as a 

valid executable and can thus run the DOS stub which is stored next to the MZ header. 

The DOS stub is actually a valid EXE that is executed in case the operating system 

doesn't know about PE file format. It can simply display a string like "This program 

requires Windows" or it can be a full-blown DOS program depending on the intent of 

the programmer [6][9]. 

 The following few sections demonstrate some of PE parts that are used to 

accomplish the research work. 

3.1 PE Header 

The PE header is a general term for the PE-related structure named 

IMAGE_NT_HEADERS. This structure contains many essential fields that are used by 

the PE loader. In case the program is executed in the operating system that knows about 

PE file format, the PE loader can find the starting offset of the PE header from the DOS 

MZ header, since PE loader can recognize and use the file format in all win32 platforms 

depending on . It is the real file header [4][12]. 



 Rawaa P. Qasha & Zaid A. Monther 
 

 

 26 

The PE header is defined and has fields as follows: 

Signature is the PE signature, "PE" followed by two zeroes. 

FileHeader is a structure that contains the information about the physical 

layout/properies of the PE file in general. 

Some fields in FileHeader are also important such as the OptionalHeader  field, 

which is also a structure called IMAGE_OPTIONAL_HEADER32. It contains 

information about the logical layout in the PE file, such as: 

DataDirectory structure that includes the VirtualAddress of the   

IMAGE_IMPORT_DESCRIPTOR which represent the address of the 

IAT (Import Address Table) [5][6]. 

3.2 Import Address Table (IAT): 

The import address table is actually an array of 

IMAGE_IMPORT_DESCRIPTOR structures. Each structure contains information 

about a DLL the PE file imports symbols from, such as API functions. 

This work uses the following fields: 

Name field contains the RVA (Relative Virtual Address) to the name of the 

DLL, in short, the pointer to the name of the DLL. 

FirstThunk contains an RVA of an array of IMAGE_THUNK_DATA 

structures which have the field Function that contains the address of the imported API 

function [5][13].    

4. API Functions and DLL: 

API stands for Application Programming Interface. An API is a set of calls, 

functions and routines that can be used by any application to access the operating 

system's functionality. The use of a common API allows applications to be developed 

once and deployed on multiple operating systems [13]. 

These functions are contained in Dynamic Link Libraries (DLL), which each 

program has access it when it’s executed. These functions are added only when the 

application is loaded into memory for execution. 

A DLL is a file on disk (usually with a DLL extension) consisting of global data, 

compiled functions, and resources, that becomes part of a process. It is compiled to load 

at a preferred base address, and if there's no conflict with other DLLs, the file gets 

mapped to the same virtual address of a process. The DLL has various exported 

functions, and the client program (the program that loaded the DLL in the first place) 

imports those functions. 

Windows matches up the imports and exports when it loads the DLL [2]. In 

Win32, each process gets its own copy of the DLL's read/write global variables. So, for 

sharing memory among processes, a shared data section must be declared in the DLL 

[8]. 

5. Windows Registry: 

The registry plays a key role in the configuration and control of Windows 

systems. It is the repository for both system-wide and per-user settings. It is also a 

window into various in-memory structures maintained by the Windows executive and 

kernel. Application and system settings stored in the registry. 

The registry is a database whose structure is similar to that of a logical disk 

drive. The registry contains keys, which are similar to a disk's directories, and values, 

which are comparable to files on a disk. A key is a container that can consist of other 



Controlling and Protecting Windows Applications by Analyzing and … 
 

 

 27 

keys (subkeys) or values. Values, on the other hand, store data. Top-level keys are root 

keys[8]. 

The registry is accessible to the Win32 programmer via API functions. There are 

functions to create and delete keys, look up values within keys, and more [1][3]. 

Monitoring the registry API functions gives the ability to monitor all programs 

that attempt to change values in the registry, especially viruses and malicious programs, 

and control accessing to registry keys and values by hooking these functions and gives 

permission for continuing calling these functions or denied the operation. 

6. Software Implementation: 

The software contains three parts each of which deal with certain part of PE files 

to offer protection capabilities for the files from unauthorized user and detect viruses 

which are PE-like files and protect registry system from any ineligible using. The 

following sections demonstrate software parts: 

6.1 Changing in PE Values: 

This part performs modification on specified PE field to prevent unauthorized 

users from using the modified PE file and executing it. Each PE contains "Machine" 

field that is used to indicate the permission to execute the file or prevent it. "Machine" 

is the first field from the IMAGE_FILE_HEADER STRUCT that is part from the PE 

header structure IMAGE_NT_HEADERS STRUCT. 

Machine field contains the CPU platform of the file is intended for. For Intel 

platform, the value is IMAGE_FILE_MACHINE_I386 (14Ch). So, changing the value 

of this field can be used as a quick way to prevent a program to be executed. 

Changing Machine field is accomplished as shown in the following code: 

HANDLE hFileMapping; LPVOID lpFileBase; 

PIMAGE_DOS_HEADER dosHeader; 

PIMAGE_NT_HEADERS pINTH; 

hfile=CreateFile (name,GENERIC_READ|GENERIC_WRITE,0, 

(LPSECURITY_ATTRIBUTES)NULL, OPEN_EXISTING, 0, NULL); 

hFileMapping = CreateFileMapping(hfile, NULL, PAGE_READWRITE, 0, 

0, NULL); 

lpFileBase = MapViewOfFile(hFileMapping, FILE_MAP_ALL_ACCESS, 

0, 0, 0); 

pINTH = (PIMAGE_NT_HEADERS) 

pINTH->FileHeader.Machine=0x0000; 

6.2 Detecting PE-Like Viruses: 

The second part of the work presents a method to detect any virus and malicious 

program that has PE-like format. 

Security products such as virus scanners look for characteristics byte sequence 

(signature) to identify malicious code. The quality of the detector is determined by the 

techniques employed for detection. A good malware detection technique must be able to 

identify malicious code that is hidden or embedded in the original program and should 

have some capability for detection of yet unknown malware [16]. 

In this work, detection operation is implemented by analyzing the virus file and 

gives it a signature by reading first 128 bytes (it is a unique value for each PE), storing 

the signature with virus name in a file and then use this signatures to detect the 

occurrence of this kind of viruses in the system. 



 Rawaa P. Qasha & Zaid A. Monther 
 

 

 28 

This part consists of several steps including: 

- Obtaining a signature for virus file using special purpose programs, such as 

OllyDbg. The first 128 byte is selected as virus signature. Each new signature is added 

to a file contains all virus signatures. 

- Parsing the PE file and compare between the values obtained from a specific 

part from the PE file, that correspond to the same part of virus file, with the signature of 

virus file as follows: 

hFile=CreateFile(virus_file_name, GENERIC_READ, 

FILE_SHARE_READ, NULL, OPEN_EXISTING, 

FILE_ATTRIBUTE_READONLY, NULL); 

ReadFile(hFile, pMem, sizeof(IMAGE_DOS_HEADER), 

&ReadBytes, NULL); 

DosHeader = (PIMAGE_DOS_HEADER) pMem; 

if(memcmp(DosHeader,DosHdrSignature,128)==0) 

MessageBox (NULL, "Safe","Scanner",MB_OK); 

else 

MessageBox (NULL,"infected", "Scanner",MB_OK); 

 

This method had been applied on Windows systems XP and 7 and it differs from 

the traditional antivirus programs that it checks only exe files, so it consume less time 

and CPU usage. 

6.3 Import Table Intercepting: 

Third part of this work includes controlling three registry API functions [14]: 

-RegCreateKeyEx(): used to create new keys. 

-RegDeleteKey(): used to delete a key. 

-RegOpenKeyEx(): used to open a subkey. 

 

which are the most important ones. Controlling process is performed by hooking 

these functions through intercepting IAT of any PE attempt to call them as demonstrate 

in the following sections. 

When an application uses a function in another DLL or PE file, the application 

must import the address of the function. Most applications that use the Win32 API do so 

through an IAT. Each DLL the application uses is contained in the application's image 

in the file system in a structure called the IMAGE_IMPORT_DESCRIPTOR. This 

structure contains the name of the DLL whose functions are imported by the 

application, and two pointers to two arrays of IMAGE_IMPORT_BY_NAME 

structures. The IMAGE_IMPORT_BY_NAME structure contains the names of the 

imported functions used by the application. 

When the operating system loads the application in memory, it parses these 

IMAGE_IMPORT_DESCRIPTOR structures and loads each required DLL into the 

application's memory. Once the DLL is mapped, the operating system then locates each 

imported function in memory and overwrites one of the IMAGE_IMPORT_BY_NAME 

arrays with the actual address of the function[11][13]. 

So, to control the API used by an application, the address of the target function 

in the IAT can must be replaced by the address of the new own function. 

The steps required to perform the replacement operation are: 

- Parsing the PE file of the target application in memory to obtain the address of 

the IAT in the PE file. 



Controlling and Protecting Windows Applications by Analyzing and … 
 

 

 29 

- Replacing the IAT entry which represent the address of the original imported 

API function in DLL with the address of the own new function. 

 

 
Figure (2). IAT Intercepting 

 

This will cause all calls made by applications to the original function to be 

routed to the new function. The new one then can decide to pass control to original 

function or take some other actions [5]. 

Also this method required that the new function must be in the application's 

address space, when it be there, the hooking program can pares the PE of the target 

application in memory and replace the target function's address in the IAT with the 

address of the special function. Then, when the  function is called, new function will be 

executed instead of the original function. Figure (2) depict the intercepting operation. 

6.3.1 Executing code inside another process 

The replacement process and the new function in the intercepting operation must 

be resided in the target applications (processes) address space for them to work. To 



 Rawaa P. Qasha & Zaid A. Monther 
 

 

 30 

achieve this, they must be a part of a DLL, and then the DLL must inject in the target 

process address space. Once the DLL is loaded into the target process, it can alter the 

execution path of commonly used APIs [5]. 

The code below implements the replacement process in this work using 

RegOpenKeyEx API function . 
 

typedef LONG (CALLBACK *MY_RegOpenKey) (HKEY , 

LPCTSTR , DWORD , REGSAM , PHKEY ); 

MY_RegOpenKey Orig_RegOpenKeyEx = 

(MY_RegOpenKey)GetProcAddress(hmod,"RegOpenKeyExW"); 

LONG CALLBACK Hook_RegOpenKeyEx(HKEY , 

LPCTSTR , DWORD , REGSAM , PHKEY); 

hDllInst = hInst; 

ReplaceIATEntryInAllMod("kernel32.dll",(PROC)Orig_RegOpenKeyEx, 

(PROC)Hook_RegOpenKeyEx); 
 

Injecting a DLL into the address space of an external process is a key element of 

a hooking system. It provides an excellent opportunity to have a control over process's 

thread activities. 

This research uses Remote Threads method to inject DLL to another process as 

described below. 

6.3.2 Injecting a DLL using Remote Threads 

The common way to load the DLL into the target process is by creating what is 

called a remote thread in that process, the main function used for this purpose is 

CreateRemoteThread function, which has the following prototype[12][15]: 

HANDLE CreateRemoteThread( 

HANDLE hProcess, LPSECURITY_ATTRIBUTES lpThreadAttributes, 

SIZE_T dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress, 

LPVOID lpParameter, DWORD dwCreationFlags, 

LPDWORD lpThreadId ); 

CreateRemoteThread as the name suggest is used to create a thread in another 

process. In this method, it can be exploit from the prototype matching between thread 

function and LoadLibrary() API function, as shown below: 

DWORD WINAPI ThreadProc (LPVOID lpParameter); 

HMODULE WINAPI LoadLibrary (LPCTSTR lpFileName); 

This match gives a hint that the LoadLibrary can be used as a thread function, 

which will be executed after the remote thread has been created. Therefore, the target 

process will be forced to call LoadLibrary. 

In other word, CreateRemoteThread() can be called with LoadLibrar() address 

and it will cause LoadLibrary call to be executed in target process's context. This way, 

LoadLibrary can load the DLL containing the hooking processes in the target process 

[5]. 

6. Software Overview: 

Software interface window of this research consists of three parts, as depicts in 

figure (3): 



Controlling and Protecting Windows Applications by Analyzing and … 
 

 

 31 

 
Figure (3). Software Interface Window 

 

The first part can be used to prevent a selected PE from being executed using the 

following buttons: 

- Select EXE File: is used to select a PE file from the system. 

- Change PE Header: is used to modify Machine field in the selected file. 

- Reset: returns Machine field to its original value. 

The second part is used to perform scanning operation for comparing between 

virus signature and system PE files, then display the path of matched ones. After Virus 

signature is entered in the textbox, “Add Signature to File” button must be pressed to 

store virus name and its signature to a specified file then Scan button is used to start 

scanning operation between virus signatures from the specified signatures file and PE 

files in the system. 

The third part contains three checked box: 

- Controlling Registry Key Creation: is checked to control the operation of creating new 

registry key. 

- Controlling Registry Key Deletion: is checked to control delete registry key operation. 

- Controlling Opening Registry Key: is checked to control open registry key operation. 

When any of the above checked boxes is unchecked, the corresponding API 

function will be unhooked and is called directly by any application. 

7. Testing and Results: 

Testing process was applied on data sets contains 50 viruses obtained from 

infected computers and from the website VX Heavens (http://vx.netlux.org) and 200 PE 

executable files produced by different runtime environments in the system. Also 

numbers of viruses’ signatures are stored in the file’s signature to be used for scanning 

stage such as: Fun.exe, DC.exe, Other.exe, SVIQ.exe, win.exe, WinSit.exe and 

killerjeff.exe The above data sets are used with research software and three antivirus 

programs. The results of detection rate are depicted in the following table: 
 

 



 Rawaa P. Qasha & Zaid A. Monther 
 

 

 32 

Table (1). The Comparison Results 

Detection 

program 

Research 

software 

Kaspersky 

Antivirus 

12.0.0.20 

Avira 

Antivirus 

10.2.0.700 

ESET NOD32 

Antivirus 

5.0.93.0 

Detection Rate 

 
98% 88% 92% 94% 

8. Conclusion 

PE management process is a critical and important operation, since the 

sophisticated structure and organization of PE format, in addition to the fact that it’s an 

essential part of Windows operating system, so any error made through PE 

manipulation will cause serious problem in the system. 

The Import Address Table is an essential part of the PE, and the knowledge of 

the import table performance helps to realize how an API is requested during running 

time, and how can be controlled. Also this research deals with another important part of 

Windows, the registry, so monitoring its main functions gives a powerful tools to 

protect the system from many malicious program and viruses. 

  



Controlling and Protecting Windows Applications by Analyzing and … 
 

 

 33 

REFERENCES 

[1] Andrew S. Tanenbaum, 2009, "Modren Operating Systems", Pearson Prentice 

Hal, 3rd Edition. 

[2] Charles Petzold, 1998, "Programming Windows", Microsoft Press, 5th Edition. 

[3] David A. Solomon and Mark E. Russinovich, 2009, "Windows Internals,  

Including Windows Server 2008 and Windows Vista", 5th Edition. 

[4] Galen Hunt and Doug Brubacher, 2000, " Detours: Binary Interception of Win32 

Functions", Microsoft Research http://research.microsoft.com/sn/detours. 

[5] Greg Hoglund, James Butler, 2005, " Rootkits: Subverting the Windows 

Kernel", Addison Wesley Professional. 

[6] Iczelion, “Iczelion’s Tutorials for Win32ASM, Tutorial 24: Windows Hooks”, 

2002, http://win32assembly.online.fr/tut24.html. 

[7]  “ Bypassing Anti-Virus Scanners”, 2004, InterNot Security Team. 

[8] Johnson M. Hart, 2004, "Windows System Programming", Addison Wesley 

Professional, 3rd Edition. 

[9] M. Pietrek, "Peering Inside the PE: A Tour of the Win32 Portable Executable 

File Format", Microsoft Systems Journal, March 1994. 

[10] Matt Pietrek, 2002, “An In-Depth Look into the Win32 Portable Executable 

File", MSDN Magazine, February 2002. 

[11] Mathias Rauen, 2006, “API Hooking Methods”,  

 http://www.madshi.net/apihooking.htm. 

[12] Reverend Bill Blunden, 2009, “The Rootkit Arsenal - Escape and Evasion in the 

Dark Corners of the System", Wordware Publishing, Inc. 

[13] Richter Jeffrey, 1999, "Programming Application for Microsoft Windows", 4th 

Edition, Microsoft Press. 

[14] Richard Simon, 2000, "Microsoft Windows 2000 API SuperBible", Sams 

Publishing, 5th Edition. 

[15] Seung-Woo Kim, 2005, "Intercepting System API Call", Intel Corporation. 

[16] Vinod P. & V.Laxmi,M.S.Gaur, “Survey on Malware Detection Methods”, 

Department of Computer Engineering, Malaviya National Institute of 

Technology, Jaipur, Rajasthan. 


