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ABSTRACT
Oscillation conditions of second order impulsive delay differential equations with
impulses are investigated, some sufficient conditions for all solutions to be oscillatory are
obtained. Also, two examples are given to illustrate the applicability of the results obtained.
Keywords: oscillation, impulsive differential equations, non oscillatory.
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1. Introduction:

Many evolution processes in nature are characterized by the fact that at certain
moments of time they experience an abrupt change of state. This has been the main
reason for the development of the theory of impulsive ordinary differential equations.
The impulsive differential equations are therefore a new branch of the theory of
ordinary differential equations. The investigation of these equations was rather slow as
compared to ordinary differential equations without impulse. This is due to the great
difficulties caused by the specific properties of the impulsive equations such as beating,
bifurcation, merging, and loss of property of autonomy of the solutions. Despite these
difficulties, the theory of differential equations with impulses is emerging as an
important area of investigation, since it is much richer than the corresponding theory of
differential equations. Moreover, such equations represent a natural framework for
mathematical modeling of several real world phenomena.

In this paper, we are concerned with the problem of oscillation of solutions of second
order impulsive delay differential equations.
Consider the following system
x' =t x), t+ 6, i=172.. )
Al g, = 1,(2) (L1)
x(ty +) = x,,
where f(t,x) is a real-valued function defined on D =R, X2 |, D is a domain in
R* {I.(x)} is a sequence of real numbers for x € 2 ,and {8,} is a sequence of real
number which satisfies &, < 8., and lim,__68;, = =.
The solution of (1.1) is such a piecewise continuous function that has discontinuities of
the first kind at t = &, satisfying the jumps condition, that is
ﬂxlr:E[ =x(8, +) —=x(6, —) =1L [xI:E':- —:I}
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assumes that f(t,x) € €(D) and I.(x) € C(12).

(1.1) Definitions

Definition 1.1 [3] A real-valued function x(t) is called a solution of (1.1) on
[tpty +T7), T =0 if

(i) x(tg +) =xgand (t,x(t)) € D for t € [ty ty + T),

(ii) =(t) is continuously differentiable and satisfies (1.1) on every subinterval of
[ty to + T) not containing t = &,

(iii) x(t +) = x(t) + I, (x(t)) fort = 6, € [ty t, + T) at which x(z) is assumed to be
left continuous , i.e., (8, —) = x(8,)

Definition 1.2 [5] A nontrivial function x(t), which may be a solution of an impulsive
differential equations (IDE), is called oscillatory if there exists a sequence {t,,} such that
lim,_,.t, = o0 and x(t,)x(t,+) = 0. Otherwise, x(t) is said to be nonoscillatory. A
nonoscillatory function is either eventually positive or negative, i.e., there exists t; such
that x(t) = 0 forall t = t,.

A differential equation is called oscillatory if every solution of the equation is
oscillatory and nonoscillatory if it has at least one nonoscillatory solution.
Next, consider

[r()x" ()] + a(t)f (x(g(t)) =0 (1.2)
Where the following conditions hold:
a) r € C1(0,m),r(t) = 0;

b) a € €(0,x),a(t) = 0;
¢) g €CH(0,%),9(t) < t,g'(1) 2 0,lim,., g(t) = oo;
d) f € C(—o0,0)n C1(—e0,0) N C1(0,0),vf(y) = 0,F 7 =0, for y = 0.

(1.2) Helping Results
Theoreml1.1 ([13]) Suppose that j“:—;:m , and that there exist two positive

functions p(t) € C*(0,c0) and ¢(v) € C*(0,c0) with the following properties:
PFOz0 (rBP®) <0 ¢ =0,

T dy
“&5 Fide(s) <o forsome §>0
w plgledaie) ,
[TEETESdt = foramy  T>0

where R(t) = [* 2 Then,equation (1.2) is ascillatory.
T T ris)

Theorem 1.2 ([13]) Suppose that [~ :’—; < o, j;;"% < o forsomed =0, and
that there exists a positive function o(t) € C*(0,c0) with the following properties:

g'(t)= 0, (r(t)e'(t)) =0

JrDC dt = w

gledr(t) -

[T a(ta(t)dt = .
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Then, equation (1.1)is oscillatory.

2. Main Results

Consider the following system which contains delay arguments and imposes
impulse condition and obtain oscillation criteria for the corresponding impulsive
differential equation

[F(x ()] + a(t]f[x[g(t]) =0, t+6, ,kEN
Ar@x @ ., + beh(x(g(1)) =0, (2.1)
Ax(t)],=p, = 0,
Assume that the following conditions are held:
a)r € C10,x),r(t) = 0;
b) a € C(0,=), a(t) = 0;
C) g €CY0,x),g(t) =t g (t) =0,lim,_,_g(t) = =
d) f € €(—o0,0) N CH(—o0,0) N CH0,), vf(¥) = 0,f (¥) =0, for y= 0
e) {b, } is positive sequence; k = 1,2, ...

f) For a given ¢, = 0 there exists ¢, = 0 such that h—xi =, if x| = ¢y

According to theorems 1.1 and 1.2, we get the following theorems.

Theorem 2.1 Let f"i =, and there exist two positive functions p(t) € C*(0,)

and ¢(v) € C(0,20) with the following properties:
p(t) =0, (r()p'(®) <0, ¢ =0,
_|"__'":'C 2 =y forsome =0 (2.2)

+& fpilpdeiyd
Then if
o plgle))a(rdr olglf by
ety T Zte<ti<opm gy ~ 2 foramy T>0 (23)
where R, (t) = ; :H} The equation (2.1) is oscillatory.

Proof : Suppose there exists a nonoscillatory solution of (2.1). without losing the
generality , assume that x(g(t)) = 0 for all sufficiently large t, t = T, from equation

(2.1) , we have
[r(£)x ()] = —a()f(x(g())) < O,
which implies that r(t)x (t)is non — increasing whenever t # 8, then
r(8, +)x (Ha:rj — (8, )x .[Ek] = _bkx[g[:gk:])
ﬂr(tjx'[tjhzgk = —bkx[g(ﬁ'kj) =0

This implies that r(t)x'(t) is non-increasing for all t = T. From the assumption

Td—:} = =, it follows that x'(t)= 0, i.e., X(t) is non-decreasing for t = T.

In fact, if X'(t*)<0 for some t*=T, then r(t)x'(t)=r(t*)x'(t*) for t=t*, and an integration
of the last inequality divided by r(t) gives
() —x(E)=r(t)x' () ;

which vields a contradiction in the limit as t — o, let t; be such that

t ds

3?"I5':I’
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g(t) =T for t = t,.it is easy to see that there is a constant A = 1 such that

x[g[:t]) EHRT[g(t]} t=t, (2.4)

If we define
alg(Ori= (6

f [x (g2 ]}E{RT (a( r}]}

w(t) =
Then it follows that
W[t:] l .'Jr’g't]' Igl r} }l T'[:tj.’l’ [:tj + l( Ig .'Jr’g t::' [r[t]x (tj]

{I'S' £)) }ﬁ'{RT (£)) }E-fRTI ()] }
Using (2.1), we have

W[t:] _ L _ PI:Q':E}] - ] T‘(tjx.[:tj +f{xlg .Elr_g r:':l ( fl[:fjf( [g[t:])))

I::x l._g'ir})}ﬁ[RT I._gtr}jl} (&) };ﬁ-fRTl git)) }
, t#8,.
Thus, we obtain

e algie)) | ey plgi(t))ale)
w(D)= L[xl:g'ir}]}ﬁ[RTl:g'ir}]_}] rx (0 =Gy T O

2w(D)lmq, = _plate) (5 (2(a(6)))]. (2.5)

F [:r |__g': th :l} E'[RT |._g': t) ]}

Clearly
w'(t] _ .:;g.:f}}g I:ﬂw:r,}x, (€ plzgl:t}'jji (e plg () )rit)x (e)F (x(gle))g ':f}ﬁ[fﬂ_gkﬂj}
fxlg'r} }Kﬁfﬁ‘f'g'r}]} |.rRT '.gkr}:'_} [f[:r I:gl:r}j}ﬁ[RTI:g':t}j}]
pla()r(Dx ()0 (&r (a(0)) e (0
[#(x(gt))o(rr (gt r})_}]
Since p. f.x, g and @ are non-decreasing, the third and fourth terms of the right hand
side are nonnegative and therefore,

!t ¢Ek'

W-(t] < e (g(e))g (Or(Dx (6 elgl))ale)
~

— . t+6 2.6
flx(g(e))o(rr(gt2)))  olrr(g(0)) 6 (26)

In view of
_I:_ w (sjds = W(tj - W(tij _Er:cﬂkcrﬂw

By integrating the inequality (2.6) on the interval [t,.t], we have

t plg(alg (Srisz (5 t plgls))als)
ffx'g's-} }E'{RT 9'33']} B "rr‘- E'[RT (g() :'}
byola(8:))nix(g(8;,))

f[x (g(8y) :I}E- [RT (al 5‘:;3':'_}

w(t) <=w(t) + f

_Er._e:El;{e:r

Since x(t) = ¢, for some ¢;, and (f) holds, we easily get

t p(g(s))g (Hr(Hx(s) .|t plglsh]als)
wit) <wl(t,) + - ¢ (ol
( j ( 1j .Jr f{xlg's} }E‘{RT|Q'3}]} ty E'E:Rﬂ._g'ﬁ:'j}
b;(pl.zg'ﬁ :':l
Sl LA So0 2.7
Zra_ez =t ol .:g.:gk}]ﬂ (27)
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Where ¢* =min{1,¢,}.By using the inequalities »(t)x'(t) < r(g(t))x'(g(t)) and
(r(t)p'(t))' < 0,(2.2) and (2.4), and applying Bonnet's theorem, the first integral on the

right hand side of the above inequality is estimated as follows:
t o(g(s))g(Drisdz 's} t p(g(s))g (rig(s))x (g(s))
< ds <
A ) P PNR)) Ll M Ay = Ay

r(g(t)p (g(e)) [f ——22x0D__ g5 ¢

ff (g(s) }ﬁfRT'Q'E} } B
Ar(g(t))e (9t ) [

x( ) A
x(ta)/4 fi :»I'E":»}

Thus ,the first integral on the right hand side of (2.7) remains bounded above as t — =c.
Letting ¢t — = in (2.7) we have

wlt) = lim —2ar e _
e W(E) = t=+m f{xlg' £)) }EijT'Q'f}j}

Which contradicts the fact that x'(t) = 0 for t = t,. this completes the proof of the
theorem.

—a,

Theorem 2.2 Let _I”ri < and lim,_, = Ii = 0. and that there exists a positive
function o(t) € C*(0,20) with the foIIowmg properties:
ag'(t) <0, (r(t)e'(t)) = 0,
0 at _
“r glthrie) - % (2.8]
+& dy
f+Df}}=:x for some § =0 (2.9)
if
[Fe(Da®)dt + X, g < o(6)by = =, (2.10)

Then ,the equation (2.1) is oscillatory.

Proof: Let x(t) be a nonoscillatory solution such that x(g(t)) = 0 fort =t¢,. It

follows that »(t)x (t) is non-increasing for t =, and so x (t) is eventually of
constant sign.

Define _
_ olrledx ()
W[r:] - f':l’[g":t:l_:l:l .
Clearly,
w'(t) = LEE:}:})}] (020 + s r(@x (O], t#6,  (211)

In view of (2.1), we obtain from (2.11) that
w(©) = [y rOx 0 + 770 (~a0f (x(6()). %6

|~:,rl__gl r}

Thus, we have

w'(£) = [Wﬂﬂ;.}] r(B)x () —o(Dalt), t=86,

Aw(D)li=g, = —bx— oy (2.12)
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It follows that

v = - e ]
Suppose that x () = 0 it is clear that the second term on the right hand side of the
above inequality is nonnegative and the first term is non-positive. Therefore,

w'(t) = —a(t)a(t)
Integrating the above inequality, we get
wi(t) < w(ty) — Et <o < AW — J.-r g(s)a(s)ds
byel8 Ihixlgl8, )

W[t:] = W(tlj - [Er._ﬂtﬂ;{ir flx::'l__g'lﬂ :'] +_r ﬂ(s:]ﬂ.[.'i‘:]d.’i‘]

Now, as x(t) = 0 and x'(t) = 0, we can make sure that there is a ¢; such that
x(t) = ¢, forall t = t,.By using this fact we have

w(e) Sw(t) = X p, 500 + [[ o(Da(dds],  (219)

Where ¢* = min{l,c,}, where —; =, Letting t—ow in (2.14), we obtain a
contradiction. So we must have x'(t) = 0. in this case, consider
t rislx '3}:7!3} ot elslris)x ls}[f!xlgls}:l}] _
W(tj - W(tlj + ..rr flxxl__g':?]'j} ..r [flxlgls}]}] ds — .Jr H[:S:]ﬂ.(E:]ElT.S
byl E;{}h [x '-.9'~E?f::':|}
Flx(atey)))

—a(t)alt),t # 8, (2.13)

Z:-._-=: <t

¥

It follows that if lim_, 22 2 0,then there exists 5 such that? =5 SO

% fix)
w(t) =
t rilx (se (=) gt ol =) r':S}-T.':S}[fltI ':Q':S:' j}] et B
wO L) TR ey 2 ¢ Lo@eoe
Er._d:ﬂ;ﬁ:rbkﬂ(gkj]- (2.15)

Where ¢* = min{l,¢;,¢,}. the first integral on the right hand side of the above

inequality is bounded from above in a similar way as in the previous theorem. In view
of (2.15) we see that there exists a t, = t, so that

" E'S}?’"S‘}I'E}[fl.rIIQ"S} }]

[rleta)]

w() + [

or
[f (x(g() }]
wi(t) -I-f —f{ @) w(s)ds = —1
or _
e r(z(a@))]
1+ -rr_ f[x[g,:s}]}

for t = t,. multiplying both sides of (2.16) by
e (e [=le))]
f[-‘r':g':s:']} 1+ "rt'- f [:r ':g':s})}

w(s)ds < —w(t) (2.16)

-1

w(s)dsy =0
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We get .
[lxle)] _ s [ele@)] e [rl=(at)]
T W) © w(®) ele@) [1+,|’L_ flx(g(2)) WEEMSI '
by Integrating from t, to t, we have
—logf (x(g(D)], = logu(@Ii,,
Where u(t) =1+ fr [f{x ik 31]}}] w(s)ds
Therefore, - _
Hlxlate)) _ e [r(x(a(2)))]
l m i 1+_r f{ | 3} } (Ejl‘i’i‘l (2.1?]
From (2.16) we may write _
e [r(=(at2))
onf + £ g o] < ol

and from (2.17)
lﬂgf{x[g(tzj)} —log f (x[g(t])) = —logw(t)

or
log f (x(9(t)) < —log[w(t)f(x(g(O )],
or
log f (x(g(t))) = —loglr(H)a(®)x ()],
or
f(x(a(t)) = —a(®Or(©)x'(0),
i (cls6) _
Flx(gies)
clerit) — x (tj

Integrating from ¢, te t ,we get
x(8) —x(t) = —f (x(9(t))) [

Which is given lim,_,, x(t) = —==, which is contradiction. This proves the theorem.

f :73:'?" (= "

3. Examples
Example 3.1 Consider the impulsive delay differential equation
(%x“(t})f+ti:x(t—1"] =0, £
A Ex“(r]] L %x(i —T)=0, (3.1)
Ak = 0

Here , Wehave
a() =z.9(®) =t=T.f() =y.b; == .6, =,0() =y.p(t) = R (1),

L]

r(t) = ?,h(x] =x
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o gt
Clearly, " 5=
[“F <o,

¥
[*Fdt+ Iz =on.

L

|~

B

Since all conditions of Theorem 2.1 are satisfied; (3.1) is oscillatory.
We note that if the equation is not subject to impulse condition, then since
[FFdt <

The equation
Gx’[t}) +ix(t-T)=0

has a nonoscillatory solution by Theorem 1.1.

Example 3.2: Consider the impulsive delay differential equation

[t:x"(t])r—I-%x[t—T] =0, t# i
ﬂt:x“(t:]lt:i - ‘H'I'Ex[:i - Tj =0, (32]
Ax(D),, =0

So that
a) =2.9(0=t-T.f(») =yb =Vi.6, =ic(t) =3, r(t) =t h(x) =x

Clearly
[m 5 <o,
Tl
oo dt
[*E=o
t

¥

and

paf =

= oo,

[7Fdt+ 2

t

By Theorem 2.2, (3.2) is oscillatory.
We note that if the equation is not subject to impulse condition, then since

[FFdt<w
the equation (t2x'(1)) + %x[t —T)=0
is nonoscillatory by Theorem 1.2.
Conclusions

In this paper, we are concerned with the problem of oscillation of solutions of
impulsive delay differential equations. In view of the known results obtained for delay
differential equations with impulses, we derived new oscillation criteria for delay
differential equations with impulses. In particular, sufficient conditions are to be
obtained under which all solutions of a certain impulsive differential equation oscillate.
A definition of oscillation is given. The impulsive differential equations are adequate
mathematical models for the description of evolution processes characterized by the
combination of a continuous and jumps change of their state.
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