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ABSTRACT

The mechanism of thin liquid films on solid surfaces is fundamental
to a wide variety of phenomena such as surface coatings in paint. A
mathematical model is constructed to describe the two dimensions of steady
thin liquid films flow on an inclined plane with the use of lubrication
approximation, we have applied Navier-Stokes equations in two
dimensional coordinates for flow of incompressible fluid with the specified
boundary conditions, and the solution of the film thickness equation has
been drawn for flow for several inclination angles which modify the shape
of the emerging patterns and also we derived the third order differential
equations %, p g 0 d%h_go,0050) dh oCay 3 8 that govern such
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flow. Finally the equations have been solved analytlcally.
Keywords: Navier-Stokes equations, continuity equation, Lubrication
approximation, Integral momentum balance, Differential equations.
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1. Introduction:

Curtain coating, in its precision model is a parameter coating process
that has been used to manufacture single layer and hot fuel element surfaces
in nuclear reactors thin films form a crucial element in many other
applications such as industrial coating processes. A thin sheet of viscous
liquid flowing between two vertical guide wires is an integral process called
curtain coating. Experimentally the general behavior of liquid sheets in the
context of curtain coating studied by Brown (1961) [1]. In the model curtain
coating that would be investigated in this study is the thin liquid films flow
at region on the inclined slide lip where the liquid changes its direction,
curtain flow region beyond the lip where the falling liquid experiences
uniaxial extensional deformation by gravity force, and take away region
where liquid attains fully developed plug flow with the substrate speed
(2004) [5]. The dynamic of the thin layer which flows steadily between two
vertical guide wires was investigated but with zero shear stress at their
bounding surfaces where the gravity has no significant effect on the liquid
film Faraidun (2005) [4]. Cryse (1987) [2] obtained an analytic solution to a
falling liquid curtain but with negligible effect of surface curvature, Diez
(2002) [3] studied the linear stability analysis for flow of two
incompressible viscous flow on an inclined channel. The objective of the
present analysis is to apply the Navier-Stokes equation to a falling liquid
curtain coating and present the derivation of the differential equation that
governs the flow of the liquid curtain flow on an inclined solid and to obtain
a solution of this equation which is valid for thin liquid film.

2. The Mathematical model :
2.1 Governing Equations:

To consider the two- dimensional inclined thin liquid films describe
the flow of a slide flow, the Cartesian coordinates x and y , and the flow is
predominantly in the two directions. Figure (2.1.1) shows the model to flow
geometries of the slide flow and the curtain flow .

Letu(x,y), v(x,y) be the corresponding velocity vector component

in x and y directions, respectively .
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Figure (2.1.1): Flow geometries of a free surface- liquid film curtain
flow

Normally in thin liquid films, the film thickness is much smaller
than the width, and therefore we assume two-dimensional incompressible
flow.

The steady two dimensional incompressible fluid flows governed by
the following equations of motion and dimensionless in the slide flow of the
curtain coating flow:

Equation of continuity:
The continuity equation for the flow of an incompressible fluid in
two dimensions has the form

UL N _o (2.1.1)
ox oy
Navier-Stoke’s equations [6] have the following form:
in x-direction:
ou au op o°u o )

Uu—+VvV—)=——+ + +gsin(@ ... 2.1.2
plU— ay) p ”[axz GyZ} gsin() (2.1.2)
in y-direction:

N vy op . |02 0%
u vy Y Y Y _geos() 0 ... 2.1.3

where 4 is the coefficient of viscosity of liquid, andU is component
velocity, the density p is assumed to be constant throughout the process
and g is a gravity.
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Lety = h(x) represent the thickness of the liquid film at a point x
The body force vector

f =sin(@)i—cos(9) j

The stress boundary condition at free surface, the Cartesian
components of the unit normal vector N are given by:

n=in,+ jn,
where
2 -1/2
__oh oh
and e (2.1.4)
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2
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The curvature of the liquid film is given by:
-3

2 2\ 2
K — O _ G_Q[LL[@_“] ] ......... (2.1.5)
OX; OX OX

: : . oh .
and since we restrict attention to the case when = is very small, then the
X

curvature (2.1.5) can be simplified since the term h'?(x) is very small over
the domain x under consideration, the curvature becomes:
d?h
K=h"xX)=— . 2.1.6
(X) o (2.1.6)
The no slip boundary condition iswhen u=0,v=0 at y=0
The dimensionless parameters are as follows:

L. ) B o ( 3y )3
for continuity equation V.U =0 where U =ui+vj , ho_[pgsin(ﬁ)j ’

3
a =% is stokes number, the Capillary number is Cazahﬂ , the Reynolds
0

number is Re =% and calculate forces in term of stress and substitute into
Hu

the equations f =isin(8) — jcos(d) where force is normal to the thin film

and shear component are acting on the inclined plane, with a thin films, h is
film thickness and h, fully developed film thickness flowing down the slide
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[5], u is a liquid viscosity, p is a liquid density, g volumetric flow, i and j
tangentional and normal stress at the slide respectively and & is slide
inclination angle from the horizontal line.

Thus results in the following boundary conditions:
From Material derivative, when F(x,t) = y—h(x) we have

E:uﬁwﬁzo e (2.1.7)
Dt  ox oy
which givesv=u% aty=h(x .. (2.1.8)

The continuity equation (2.1.1) can be integrated over the film
thickness, have 0 < y < h and the liquid film is symmetric, we have:

h h h
ou ov ou ov
(—+—)dy=0 — |—dy+|—dy=0
! oxX oy lax !;(?y

— Z_Uh +Vv(x,h(x)) —v(x,0) =0

X
since the liquid film is symmetric, so v(x,0) =0
- Z—uh+v(x,h(x)) =0 — d(hu)=0

X

Integrate with respect to x, obtainV.=hu ... (2.1.9)

From [4] where V is a constant representing the volumetric mass
flow, it can be assumed that:
v=1—»hu=2 . (2.1.10)
The governing equations in the slide and curtain flow of (2.1.2) and (2.1.3)
can be simplified by satisfying all boundary conditions and dimensionless
parameters so the Naviers equations of momentum becomes
x-direction

2

p M ML PO singo) e (2.210)
OX oy Rel ox

y-direction

~® _ ycos(g) =0 (21.12)
Y e

from the normal stress [ 5], we have

p+£=0 at y=h e (2.1.13)

Ca

Integrate the y-direction momentum equation over the film thickness
0<y<h ,we have

103



Faraidun K. Hama Salh

h h h
| (_ %5 _ acos(H)jdy - ! _ %de _ ! acos(O)dy =0

0

— p=-acos(dh (2.1.14)

Also integrate the x-direction momentum equation over the film
thickness, have O0<y<h and substitute (2.1.14), the normal stress

boundary condition and by the lubrication approximation to expand h in
power series assuming h, =L is so small and L is a length decompose the

velocity U and the unknown h as

u(x, y) =uy(X) + el (X, ¥) + U, (X, ¥) + eovereee (2.1.15)
and
h=h(x,y,&) =h, +eh (X, Y) + &N, (X, ) + oo o, (2.1.16)

here & is related to h'. The functions u,(x) and h are unknown at this
point and will be derived later in the analysis

T[ui—i+ —j _-[Re( +—+asm(¢9)de .......... (2.1.17)

0

Now we integrate the momentum equation over the film thickness in
the same manners. The integrals of the non-linear inertia terms in the x-
component of the momentum equation (2.1.11) are

" au " 1 1 2 1 1 2 1
fu—dy = I(uou o HeU U’ +EULU'  +eu U’ +e°u U’
OX 5
+£%u,u' +£%u,u’, +..) dy
=U,U', h+O(¢)
To the first order, we get

h
ou
u—dy=u,u', h
}[ o y=UgU,

Omitting the subscripts, we have
h

jua—udyzuu'h .......... (2.1.18)
OX

0
Since thin liquid films are symmetric so the second term of (2.1.11)

can be written as

h

fv®dy-van (2.1.19)
o oY
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Also after some simplifications we obtain

j —3h—u i (2.1.20)
OX

Now substitute aII equations (2.1.10), (2.1.13), 2.1.14), (2.1.19) and (2.1.20)
in the equation (2.1.17) to obtain

2

Re(uu'h+u2h')_—h% jgy—dymhsm(e)

Ca ox
_lpdKk_ ha—u—ahcos(e)h’Jrahsm(G)
Ca dx ox®

dzh

— , We have to note here that both of uand hare
X

where K =h"(x) =
functions for x and thus we have

2
Re(ud—uh+ Zdhjz—hﬂ +-3n 9V cos@) M+ ansin(o)
X dx) Ca dx® dx dx

since —>hu=1 —u =% which gives

3 2
— é h :x? +3h hoidzz - hcos(@)% + ahsin(8) =0
now use the lubrication approximation for the linearzing film thickness as
(2.1.16) with hy+&h,, where & represents tiny perturbation from h,, we
obtain
d2(hy+ety)
(hy +ehy)2dx?

a(hy +%)COS(0)W+a(hO +ehy)sin(6) =0

43
é(h0+ghl)%+3(ho+ahl)

or
3 2
id 21 +3i2d 21 —aCOS(@)ﬂ+g5in(9)+aﬂ3in(0) =0
Ca dx hy dx dx & h,
or
3 2
d h1 +3ﬂq id h1 /uq 08(9) ﬂaisin(g):_ﬂgsin(g)

dx®*  oh, h? dx’ oh0 oh, h, oh, &

1
2 3
substitute h, = [ir and a = 'Og;ho we obtain
£gsin(o) 49
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3
ah ”gsm(a)d hl o L L (2.1.21)
dx3 sin( @) dx ho £

This is the third order differential equations and solving (2.1.21)
analytically, the solution of this linearzed equation is the combination of
three exponential functions obtains from the algebraic cubic characteristic
equation, by comparing the equation (2.1.21) we see that it is more general
than [5]. Equation (2.1.21) has a fundamental solution of the form

h(x)=e™
substitute in (2.1. 21) to obtain, for the homogenous part

(m*+£ sm(@)m —3Ca cos(&) m+3Cai)emX =0
sin(6) ho
since e™ =0
= m?® +sine)m? 3CaC°S(9)m+3Cai=0 .......... (2.1.22)
2 sin(0) ho

it has been proved that exponents have three roots of m one negative real
and one complex conjugate pair whose real part is positive, changes by the
value of Capillary numbers and the inclinations angle for any liquid to be
used.

The roots m in (2.1.22) represents a balance among viscosity,
density, inertia, Capillary numbers and inclination angle.
Some time the solution curves of equation (2.1.21) in (x,h,) plane effects of

process conditions on the curtain profile. The following figures how inertia
or Capillary numbers affects the film profile by the different value of the
inclination angles and Capillary numbers. In the case gravity force is
comparable to viscous shear in slide flow region and viscous tensile force
and inertia force in the curtain flow region, and some of the solution curves
are drown and it shows that, thickness of the liquid film increases when the
inclination angle decreases while the velocity of liquid increases as the
inclination angle increases.

We can depict how to find the roots of equation (2.1.22) also find
particular solution of (2.1.21) after that we can found the solutions by using
the Brown’s experiment [1], and drown the solution curves by maltab
program [7] for difference liquid, we consider the values of
o=72, u=0.01, g=980,p=1and ¢ =0.001, in the following figure.

106



Curtain Coating flow...

y=-35.1041+3.6594*exp(-9.686*x)+exp(0.0305*x)*17.2437*c0s(0.6635*)
+14.379*sin(0.6635*x)

y=-32.8+4, 76631 exp(-11.8346*X)+exp(0.0236*)*18.56462*C0s(0.6858*)
+18.6632*5in(0.6858*)
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Figure (2.1.3) solution curve in (x,h,) plane for Ca =0.05 ,60 = 60
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y=-39.4001+1.0101%€xp(-6.9225*x)+exp(0.585*x)*-0.0177+C0s (0. 7393*X)
+0.0317*sin(0.7393*%)

y=-35.1+0.58118*€xp(-9.6257"X)+exp(0.0006"x)*-9. 263305 (0.0942*X)+
43.5788*sin(0.0942*x)

Figure (2.1.5) solution curve in (x,h,)plane for Ca =0.001 ,6 =45

108



Curtain Coating flow...

y=-32.812+5.52681"xp(-11. /863*X)*+xp(0.0004"x)*1514.192*C0s(0.088L*X)
+3247.9%in(0.0881*%)

y=-89.8204+0.10876%€xp(-6.8054*X)+exp(0.0005"x)"85.92/4+C05 (0. 0334*X)+
36.95066*sin(0.0334*x)

Figure (2.1.7) solution curve in (x, h,) plane for Ca =0.001 ,6 =30

Conclusion:

The theoretical and Mathematical models for curtain coating flow
developed in this paper reproduces many of the features of this process that
have been observed in experiments. The approximate governing equations
for both slide and curtain flow have been successfully derived by thin film
and integral the Navier’s stocks equations, the equation has been solved
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analytically and used the Brown’s experiment to obtain a solution of third
order differential equation and the results by using the simplified models
qualitatively agreeing with full theory and experimental observations. We
show that how process conditions such as inertia, surface tension, density
and inclination angle of the slide and some solutions curves are drawn and
it shows that the thickness of the liquid film increases when the inclination
angle decreases.

110



Curtain Coating flow...

[1]
[2]

[3]

[4]
[5]

[6]

[7]

REFERENCES

Brown, D.R. (1961) “A study of the behavior of thin sheet of
moving liquid”, Journal of Fluid Mechanics, Vol. 10, PP.297-35.

Cryse, K.A. (1987) “Mechanics of a free surface liquid film flow”,
J. Appl. Mech., Vol. 54, PP. 951.

Diez, J.A. and Kondic, L. (2002) “Computing three dimensional thin
film  flow including contact line”, J. Comput. Phys., 183(1),
PP.274-306.

Faraidun, K. H. Salh. (2005) “Viscous flow in thin liquid films”,
M.Sc. Thesis, University of Sulaimani..

Hyun Wook Jung, Joo .S.L.; Jae C. H.; See J. K.and L. E. Scriven
(2004) “Simplified modeling of slide-fed curtain coating flow”,
Korea-Australia Rheology Vol. 16, No. 4, PP. 227-233.

Stokes, G.G. (1945) “On the theories of the internal friction of fluid
motion and the equilibrium and motion of elastic solids”,
Transactions of the Cambridge Philosophical Society,Vol.8,
PP.287.

William, J. Palm 111 (2001) Introduction to Matlab for Engineers,
TA345.P35, Library of Congress Cataloging, New York.

111



