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ABSTRACT
In this paper, we provide a solution to the system of non-integer
differential equation of order 0 < q < 1, by the technique of Laplace
transformation and with interest to property of Mittag-Leffler function, with
the help of the programming technique of Maple.
Keywords: Mittag-Leffler function, fractional differential equations,
Laplace transform, Maple package.
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1- Introduction:

Fractional order systems, or systems containing fractional
derivatives and integrals, have been studied by many in the engineering area
and also by mathematicians. It should be noted that there is a growing
number of physical systems whose behavior can be compactly described
using fractional system theory. Of specific interest to electrical engineers are
long lines (Heaviside, 1922), electrochemical processes (Ichise,
Nagayanagi, and Kojima, 1971; Sun, Onaral, and Tsao, 1984), and chaos

(Hartley, Lorenzo, and Qammar, 1995) for more details see [2]. System of
fractional differential equation can be written as follows:
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DX (1) =g x () =2y (t) + F (t)
. ()
DY(®) =gy ®)=bx ) +G t)

In [2], the author used Laplace transform to find the solution for the
Fundamental linear fractional order differential equation, where the notation
has been defined in Lorenzo and Hartely (1998) [3], it will be assumed for
clarity that the problem starts at t=0, it is also assumed that all initial
conditions are zeros. In this paper, we used this assumption to solve system
(1), so we suppose that all initial conditions are set to zero, and by
recoursing to properties of Mittage-Leffler function we formulate solutions
for the system (1) (as a special solution). Using the Maple language [4] for
calculating the value of solution for arbitrary g.

We set forth some definitions and theorems; see [5] and [7].

Definition 1.1: The function F(t) is said to be sectionally continuous over
the interval a <t < b if that interval can be divided into a finite number of
subintervals ¢ <t <d such that in each subinterval:

(1) F(t) is continuous in the open interval c < t<d

(if) F(t) approaches a limit as t approaches end point from within the
interval; that is, }1_)rcn F(t)and, }1_31 F(t) exist .

Definition 1.2: The function F(t) is said to be of exponential order as t—
if constants M and b and affixed t-value to exist such that | F(t)|< M exp(bt)
for t>to.

Definition 1.3: Function of class A is any function that is:
(i) Sectionally continuous over every finite interval in the range t > 0.
(if) Of exponential order as t— oo.

Theorem 1.4: If F(t) is a function of class A, L{F(t)} exists.

Note 1.5: It is important to realize that this theorem states only that for
L{F(t)} to exist, it is sufficient that F(t) be of class A. The condition is not
necessary, Classic example showing that function other than those of class
A do have Laplace transforms is F(t)= t°°. This function is not sectionally
continuous in every finite interval in the rang t >0, because F(t) — « as
t—0, but t° is integrable from 0 to any positive to. Also t%°— 0 as t— o s0
its of exponential order hence L{ t°°} exists.

Theorem 1.6: if F(t) a function of class A and if L{F(t)} = f(s), then
lim f(s)=0.
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Theorem 1.7: If L{f(s)}=F(t), ¢ > 0, and F(t) be assigned values for
—¢ <t <0, then L"}{exp(-cs)f(s)}=F(t-c)a(t-c), where a(t-c) is a step
function.

Remark 1.8: If F(t),F't),..,F"®(t) are continuous for t > 0 and of
exponential order as t — oo, and if F™(t) is of class A; then

L{F M (t)}=s"f (s)—nis”’l"‘F(k)(O)

L{I(:D F(t)}=sf (s)—nisq‘l"‘F(k)(O),
k=0

where n is an integer and n-1<q < n.

The reader can observe that there is no difference between the two
forms when all the initial conditions are zero; [1], [5].

To Compute the inverse Laplace transformation of f(s)g(s)
(L"H{f(s) g(s)}) we use the concepts of Convolution Theorem.

Theorem (Convolution Theorem) 1.9: If L"X{f(s)} = F(t), if L {g(s)}= G(t)
and if F(t) and G(t) are functions of class A; then

FOGE) = L{f(5)9(s)}= [G(B)F(t— A)dB ()

Of course, F and G are interchangeable in (2) because f and g in (2) are
symmetrically.
Mittag-Leffler function concepts 1.10:

The Mittag-Leffler function E,(z), named after its originator, the

Swedish mathematician Gosta Mittag-Leffler (1846-1927) [8], is defined by

00 z n
E.(z)= 3
1) nz::;l"(/in +1) ®)
where z is a complex variable and A > 0 (for A = 0 the radius of convergence

of equation (3) is finite, and one has by definition Eo(z)=(1—1)). The
A

Mittag-Leffler function is a generalization of the exponential function, to

which it reduces for A = 1, E;(z)=exp(z). For 0 < A < 1 it interpolates

between a pure exponential and a hyperbolic function E,(z) =(1—1). The
-z

generalized Mittag-Leffler function is

E,,@)=> L @)

n=0 l—‘(ﬂ'n +77) 1

137



Shaker M. Rashid and Yaseen T. Mustafa

Sothat E,,(z)=E,(z), in the simplest A, n > 0; [6].

2-Main result:

Theorem 2.1: If F(t) and G(t) are functions of class A, in fractional
differential system, satisfies the convolution theorem, then (1) has a solution
forO<q<1.

Proof: rewrite the system (1)

DX ) =dx M) =ay ¢)+F(t)

)
BY (t):g]y(t):bx t)+G(t)
Using Laplace transform we have
SIx(s) = ay(s) +f(s)

)
STy(s) = bx(s) +9(s)
With initial conditions all zeros. We have
S9x(s)- a y(s) = f(s)

an

-bx(s) +57y(s) = 9(s)

using crammer rule, we find that the solution of the algebraic system (I11)

f(s) -a
X(s) = g() s _ f(s)qu+ag(s) (V)
- s —ab
—b s¢
s f(s)
-b g(s)| s%(s)+Dbf(s)
S) = = \Y}
ye) s —ab s —ab V)
1 ab (ab)® (ab)® (ab)"
we can expand ab =t g ogm T Z S
st 1 (ab)? (ab)"
SO 2q_ab:ST+qu+ Ssq S STV Z q(2n+1) M(S)

Moreover 1:L{t“ 1} q>0
s I'(@)
Then

B N
s“—ab| Tr@) @) TGy = I'(2nq +q)
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and

Ll{ 1 }_ 2q -1 (ab)t4q -1 (ab)ZtSq -1 i (ab) t2nq
% _ab] T[(2q) T(da) = T(6a) = T(2nq +2q)
Return to equation (1V):

LH{x(s)} = L-l{f (s)s” }+aL‘1{ 2% (Sz)ab } , 50 by using convolution theorem

=N (t)

s% —ab S
we have
X ) =L {x @)} =] Ft-AM (B)df+a[ Gt -AN (B p

g1 (ab)" g7 pa (ab)" g*"
! ﬂ)[ﬁ Z1“(2nq )]dﬁ+ajG(t ﬂ)[ ZF(an+2q)Jd'B

F(t-p)5""(@)" 5™ Gt -p)p™ B (@b)"
X (t dp+a dg (V1)
©= g! I'(2ng +q) p an;! I'(2nq +2q) /
which can be solved after integration for f.

Now, similarly we can find solution of y(t) that is:

B L[s'96) | ) T6)
LHy(s)}=yt)=L { ab} +bL {m}
Y (t)=jG t-AM (ﬁ)dﬂ+bjF(t ~ BN (B)d A So

G (t—B)B" (@) B F(t—p)8" " (@)" VI
Y= Zﬁ! I'(2nq +q) A Zﬁ! I'(2nq +2q) as VI
Corollary 2.2: Locally solution of system (1) consists of implicitly Mittag-
leffler function.
Proof: To prove that we set K=2ng+2g-1, R =2ng+g-1, forn =0, 1, 2,...,

with0<qg<1.

Now the solution (V1) and (VII) have the new forms:
R—q+1 K-2q+1

X (t) = IEM(,B R)F(t—B)@b) dﬂ+aIE11(ﬂ K)G(t-p)@b) * dp
R—q+l K-2q+1

Y (t)= fEM(ﬂ R)G (t - B)(ab) * dﬂ+bIE11(ﬂ K)F(t-p)@) * dp

0 K
Where E, . (8,K)= s is a Mittag-leffler function for:
WpK)= 3
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(2m +2)

forL =8
L
n forL=2
K = m ) . .
f for L iseveninotherwise
w for L isodd

And E.,(8,R)= i B ; 1S a Mittag-leffler function for:

raa (R +1)
. (2mL_+3) if L iseven
@ if L is odd
Where | _1,and m=-4,-3,-2,...,10.
q

3-Example of application:
If we take F(t) = 1, G(t) =t and for a = b = 1. Then system (1)
become as follows:-

[q)x(t)zéx(t):y(t)ﬂ

DY(®)=qy®)=x(t)+t

and by our main result the solutions of the previous system depending on q

as follows:-
Value

of g The solution {X(t),Y (1)}
X (t) =24t +In(=1++t) = In(vk +2) +t +In(~1+t)
v ) =§t3’2 + 24+ IN(=144E) = In(E +1) + In(~1+t)

1/2

X (t) :%t:""‘ 4tV +2|n(—1+t1’“)—2|n(t1’4 +1)

+§t3’2+t + 24t +2In(=1+4)

Y(t)=;t7’4+gt5’4+%t3’4+4t”“+2In(—1+t“4)—2In(t1’4+1)

12t + In(—1+ J‘f)— In(Jf+1)+ In(-1+t)

1/4
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1/6

X (t) =gt5’6 +24t +6tYe +3In(—1+t1’6)—3ln(tl’6 +1)+%t5’3

23t g 4 Sy g +3In(—1+t1’3)
4 2

6 11/6 2 3/2 6 716 1/6 1/6 6 5/6
t)=—t""°+=t* 4+ =t """ =3In(t7° +1)+3In[-1+t7° |+ 24t +=t
yO=gt "3t 7 (£° 1)+ 3in( Jrof+g
+6t1’6+In(—1+t)+3t1’3+2In(—1+t1’3)—ln(1+tl’3+t2’3)+%t2’3

1/8

_8 7/8 8 5/8 8 3/8 1/8 1/8 1/8
X(t)—7t +§t +§t +8t +4In(—1+t )—4In(8t +1)

LAy 2 +gt5’4 +t +gt3’4+2J‘[_+4t1’4+4ln(—1+t1’4)

7 3
_ 8 11/8 8 9/8 8 718 1/8 8 15/8 8 13/8 1/8
y ()=t gt ot —4In(t"* +1)+ -t 15t +4In(-1+t"°)

9 15
8 a8 8. 58 quus , 4iaa AN 14 _
+§t +§t +8t +§t +2In( 1+t ) 2In(t +1)+2\/t—+ln( 1+\/f)

—In(Jf+1)+4t1’4+In(—1+t)

1/10

X(t):%thO_{_gthO_+_2\/t>+%t3/10+10t1/10+5|n(_l+tl/10)
_SIn(t1/10 +1)+§t9/5+§t8/5+§t7/5+§t5/5 +t+§t4/5+§t3/5
9 8 7 6 4 3
+§t2’5+5t1’5+5In(—1+t1’5)
2

y(t):%tlmo+@t9/w+$tm°—5ln(t“m +1)+2t3/2+10t13/1o+@t19/10

9 13 19
q o e110), 10 9700, 10 310 1110 _
+5In( 1+t )+17t + 3t + 2t +10t70 +In(~1+t)

—|n(—2t2/5 —t1/5+\/§t1/5—2)—|n(2tZ/5+t1’5+\/§t1/5+2)+%t4/5+gt3’5

5 2/5 1/5 1/5
+§t +4In(—1+t )+5t
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