sπ-Weakly Regular Rings

Raida D. Mahmood

Abdullah M. Abdul-Jabbar

raida.1961@uomosul.edu.iq abdullah.abdulgabbar@su.edu.krd College of Computer sciences and Mathematics College of Sciences University of Mosul University of Salahaddin

Received on: 17/05/2006 Accepted on: 16/08/2006

ABSTRACT

The purpose of this paper is to study a new class of rings R in which, for each $a \in R$, $a^n \in a^n R$ $a^{2n} R$, for some positive integer n. Such rings are called $s\pi$ -weakly regular rings and give some of their basic properties as well as the relation between $s\pi$ -weakly regular rings, strongly π -regular rings and division rings.

Keywords: $s\pi$ -weakly regular rings, strongly π -regular rings and division rings.

الحلقات المنتظمة بضعف من النمط Sπ

د. رائدة داؤد محمود كلية داؤد محمود كلية الحبار كلية علوم الحاسوب والرياضيات كلية العلوم جامعة الموصل جامعة الموصل تاريخ الاستلام: 2006/08/16

الملخص

R , $a \in R$ لكل $R \in R$ البحث هو دراسة صنف جديد من الحلقات التي تكون لكل $R \in R$ لبعض قيم R الصحيحة الموجبة. ويطلق على هكذا حلقات اسم حلقات منتظمة ضعيفة من النمط $R \in R$ وكذلك نعطي بعض الخواص الأساسية لهذه الحلقات ثم نجد العلاقة بين الحلقات المنتظمة الضعيفة من النمط $R \in R$ و الحلقات المنتظمة بقوة من النمط $R \in R$ مع حلقات القسمة.

الكلمات المفتاحية: حلقات منتظمة من النمط π 8، حلقات منتظمة قوية من النمط π 8، حلقات القسمة.

1. Introduction

Throughout this paper, R is an associative ring with identity. A ring R is said to be right (left) s-weakly regular if for each $a \in R$, $a \in aRa^2R$ ($a \in Ra^2Ra$). This concept was introduced by V. Gupta [5] and W. B. Vasantha Kandasamy [9]. Recall that:

(1) An ideal I of a ring R is a right pure, if for every $a \in I$, there exists $b \in I$ such that a = ab. (2) R is called reduced if R has no nonzero nilpotent element. (3) For any element a in R, the right annihilator of a is

r(a) = $\{x \in R: ax = 0\}$ and likewise for the left annihilator $\ell(a)$. (4) According to Cohn [3], a ring R is called reversible if ab = 0 implies ba = 0 for a, $b \in R$.. It is easy to see that R is reversible if and only if right (left) annihilator of a in R is a two-sided ideal [3]. (5) Following [4], a ring R is a right (left) weakly π -regular if $a^n \in a^n R a^n R (a^n \in R a^n R a^n)$, for every $a \in R$ and a positive integer n.

2. sπ-Weakly Regular Rings

In this section we introduce a new generalization of s-weakly regular rings which is called $s\pi$ -weakly regular, and is denoted by $s\pi WR$ -rings. We give some of its basic properties, as well as a connection between s-weakly regular rings and $s\pi WR$ -rings.

Definition 2.1:

An element b of a ring R is said to be $s\pi$ -weakly regular if there exists a positive integer n and c, $d \in R$ such that $b^n = b^n c b^{2n} d$.

A ring R is said to be right(left) $s\pi$ -weakly regular, if for each $a \in R$, there exists a positive integer n, n = n(a), depending on such that

$$a^{n} \in a^{n} R a^{2n} R (a^{n} \in R a^{2n} R a^{n}).$$

A ring R is called $s\pi$ -weakly regular if it is both right and left $s\pi$ -weakly regular.

Remark:

From now on, $s\pi WR$ -rings mean right $s\pi$ -weakly regular rings unless other stated.

Example (1):

Let
$$R = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in R \text{ and } a, b \neq 0 \right\}$$
, where **R** is the

set of all real numbers. Then, $\ R$ is $s\pi WR\text{-rings},$ since for any positive integer n

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}^{n} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}^{n} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a^{2} & 0 \\ 0 & b^{2} \end{pmatrix}^{n} \begin{pmatrix} \frac{1}{a^{2n}} & 0 \\ 0 & \frac{1}{b^{2n}} \end{pmatrix}$$

Obviously every s-weakly regular ring is $s\pi WR$ -rings, however the converse is not true in general as the following example shows.

Example (2):

Let \mathbb{Z}_4 be the ring of integers modulo 4. Then, \mathbb{Z}_4 is $s\pi WR$ -rings, but it is not s-weakly regular.

We now consider a necessary and sufficient condition for $s\pi WR$ -rings to be s-weakly regular.

Theorem 2.2:

Let R be a ring. If $r(a^n) \subseteq r(a)$ and $a^n R = aR$, for every $a \in R$ and a positive integer n. Then, every $s\pi WR$ -rings is s-weakly regular.

Proof:

Let R be $s\pi WR$ -ring. Then, for every $a \in R$, there exists a positive integer n such that $a^n = a^n b a^{2n} c$, for some b, $c \in R$. But, $a^{2n} c = a^n (a^n c) \in a^n R = aR$ and $a^n c \in a^n R = aR$. Therefore, $a^{2n} c = a^2 d$, for some $d \in R$. Now, we obtain $a^n = a^n b a^2 d$. This implies that $a^n (1-b a^2 d) = 0$ and hence $1-b a^2 d \in r(a^n) \subseteq r(a)$. Therefore, $1-b a^2 d \in r(a)$. Whence it follows that $a = ab a^2 d$ and hence R is s-weakly regular. \blacklozenge

Theorem 2.3:

Let R be a right duo, $s\pi WR$ -ring, then for all $a \in R$, there exists a positive integer n such that the principal ideal a^nR is idempotent.

Proof:

Assume that R is $s\pi WR$ -ring. Let I be a right ideal of R such that $I = a^nR$ with $a \in R$, and a positive integer n, clearly $I^2 \subseteq I$. On the other hand, since $I = a^nR$, $1 \in R$ and $a^n \in I$. But R is $s\pi WR$ -ring, then $a^n = a^n$ b a^{2n} c, for some b, $c \in R$ and R is a right duo ring, then b $a^{2n} = a^{2n}x$, for some $x \in R$, so $a^n = a^n$ $a^{2n}xc$. If we set y = xc, then $a^n = a^n$ $a^{2n}y$. Now, $a^n \in I$ and $a^n = a^n$ $a^{2n}y = a^n$ a^n $z \in I^2$ ($a^{2n}y = a^n$ $a^ny = a^nz$). Therefore, $I \subseteq I^2$. Hence $I^2 = I$.

Proposition 2.4:

If R is a ring in which $a^n = a^{3n}$, for every $a \in R$, then R is $s\pi WR$ -ring.

Proof:

It is obvious; since R is a ring with identity as for every $a \in R$ and a positive integer n, we have $a^n \in a^n R$ $a^{2n} R$ $(a^n = a^n 1 a^{2n} 1)$.

Theorem 2.5:

Let R be a ring without divisors of zero. The ring R is $s\pi WR$ -ring if and only if $a^{2n} = 1$ or $b a^{2n} c = 1$ or $a^{2n} c = 1$, for every $a \in R$ and a positive integer n.

Proof:

Given R is a ring with identity; which has no proper divisors of zero. Now, let us assume that R is $s\pi WR$ -ring; to prove $a^{2n} = 1$ or b a^{2n} c = 1, for every $a \in R$ and a positive integer n. Given R is $s\pi WR$ -ring, hence $a^n \in a^n R$ $a^{2n} R$ for every $a \in R$ and a positive integer n. Thus, $a^n = a^n b$ $a^{2n} c$, for every $a \in R$; if b = c = 1, then we have $a^n = a^{3n}$. This implies that $a^n (1-a^{2n}) = 0$, but R has no zero divisors; hence $a^{2n} = 1$. If $b \ne 1$, $c \ne 1$; then $a^n = a^n b$ $a^{2n} c$ implies that $a^n (1-b^{2n} c) = 0$, since R has no zero divisors, then b $a^{2n} c = 1$. If b = 1 and $c \ne 1$, then $a^n = a^n a^{2n} c$ implies that $a^n (1-a^{2n} c) = 0$, then $a^{2n} c = 1$.

Conversely, if $a^{2n} = 1$, for every $a \in R$, then $1 - a^{2n} = 0$ implies that $a^n = a^{3n}$ and $a^n = a^n 1$ $a^{2n} 1$. Therefore, R is $s\pi WR$ -ring. Now, if 1 - b a^{2n} c = 0 or a^{2n} c = 1, we get immediately R to be $s\pi WR$ -ring using the fact that R has no zero divisors. \blacklozenge

We recall the following result of [7].

Lemma 2.6:

Let R be a reduced ring. Then, for every $a \in R$ and a positive integer n,

- (1) $r(a^n) = \ell(a^n)$
- (2) $r(a^n) \subseteq r(a)$
- (3) ℓ (aⁿ) $\subseteq \ell$ (a)

Theorem 2.7:

Let R be a reduced ring and let $I = R a^{2n} R$. Then, R is $s\pi WR$ -ring if and only if $r(a^n)$ is a direct summand for every $a \in R$ and a positive integer n. **Proof:**

Assume that R is $s\pi WR$ -ring, then for every $a \in R$, there exists a positive integer n such that $a^n = a^n t_1$ $a^{2n} t_2$, for some t_1 , $t_2 \in R$. So, $(1-t_1 a^{2n} t_2) \in r(a^n)$. Therefore, $1 = t_1 a^{2n} t_2 + (1-t_1 a^{2n} t_2)$. Hence, $R = R a^{2n} R + r(a^n)$. Now, let $b \in R a^{2n} R \cap r(a^n)$ implies $a^n b = 0$ and $a^n b t = 0$, for all $t \in R$, so $bt \in r(a^n) = \ell(a^n) = \ell(a^{2n})$. Then, bt $a^{2n} = 0$ and $bt a^{2n} c = 0$ implies $b(t a^{2n} c) = b^2 = 0$. Since R is reduced, then b = 0. Therefore, $R a^{2n} R \cap r(a^n) = 0$. Thus, $r(a^n)$ is a direct summand.

Conversely, assume that $r(a^n)$ is a direct summand for every $a \in R$ and positive integer n. Then, $R a^{2n} R + r(a^n) = R$ and $1 = t_1 a^{2n} t_2 + d$, with t_1, t_2

 \in R and d \in r(aⁿ). Multiplying by aⁿ we obtain, aⁿ = aⁿ t₁ a²ⁿ t₂ + aⁿ d, so aⁿ = aⁿ t₁ a²ⁿ t₂. Whence R is s π WR-ring. \blacklozenge

Lemma 2.8:

If R is a semi-prime reversible ring, then R is reduced.

Proof:

See [6, Lemma 2.7]. ◆

Proposition 2.9:

If R is a semi-prime reversible ring and every maximal right ideal of R is a right annihilator, then R is $s\pi WR$ -ring.

Proof:

Let $a \in R$, we shall prove that $R \ a^{2n} R + r(a^n) = R$, for some positive integer n. If not, there exists a maximal right ideal M of R containing R $a^{2n} R + r(a^n)$. If M = r(b), for some $0 \ne b \in R$, we have $b \in \ell$ (R $a^{2n} R + r(a^n)$) $\subseteq \ell$ (a^n) [8]. Since R is semi-prime and reversible ring, then by Lemma 2.8, R is reduced. Therefore, by Lemma 2.6(1), $b \in r(a^n)$, which implies that $b \in M = r(b)$, then $b^2 = 0$ and hence b = 0, a contradiction. Therefore, R $a^{2n} R + r(a^n) = R$. In particular, c $a^{2n} d + x = 1$, for some c, $d \in R$ and $x \in r(a^n)$, then $a^n = a^n c a^{2n} d$. Whence R is $s\pi WR$ -ring. \blacklozenge

3. The Relation Between $s\pi WR$ -rings and Other Rings

In this section, we consider the connection between $s\pi WR$ -rings, strongly π -regular rings and division rings.

We start this section with the following definition.

Definition 3.1:

A ring R is called strongly π -regular [1] if for every $a \in R$, there exists a positive integer n, depending on a and an element $b \in R$ such that $a^n = a^{n+1}b$. Or equivalently R is strongly π -regular if and only if $a^n R = a^{2n} R$ [8]. It is easy to see that R is strongly π -regular if and only if $R a^n = R a^{2n}$.

Recall that R is weakly right duo (briefly, WRD) [2] if for any $a \in R$, there exists a positive integer n such that $a^n R = R a^n R$.

Theorem 3.2:

Let R be WRD. Then, R is strongly π -regular if and only if R is $s\pi WR$ -ring.

Proof:

Assume that R is strongly π -regular, then for every $a \in R$, there exists a positive integer n such that $a^n R = a^{2n} R$. Now,

$$a^{n} R = a^{2n} R$$
 (R is strongly π -regular)
 $= a^{n} a^{n} R$
 $= a^{n} (R a^{n} R)$ (R is WRD; $a^{n} R = R a^{n} R$)
 $= a^{n} R a^{n} R$
 $= a^{n} R(a^{2n} R)$ (R is strongly π -regular; $a^{n} R = a^{2n} R$)
 $= a^{n} R a^{2n} R$

Therefore, R is $s\pi WR$ -ring.

Conversely, assume that R is $s\pi WR$ -ring. Then, $a^m R = a^m R$ $a^{2m} R$, for some positive integer m. Sine R is WRD, then $a^n R = R$ $a^n R$, for some positive integer n. Now,

$$a^{2n}R = a^n a^n R$$
 $= a^n R a^n R$
 $= (R a^n R) a^n R$
 $= R a^n a^n R$
 $= R a^{2n} R$

So, $a^{kn}R = R a^{kn}R$, for some positive integer $a^{kn}R = a^{mn}a^m R$
 $= a^m (a^m R a^{2m}R) (R is s\pi WR-ring)$
 $= a^{2m}R a^{2m}R$

In particular, $a^{km}R = a^{km}R a^{km}R$...(2)

Now,
 $a^{mn}R a^{mn}R = a^{mn}(R a^{mn}R)$
 $= a^{mn}(a^{mn}R)$
 $= a^{mn}(a^{mn}R)$
 $= a^{mn}R a^{mn}R = a^{mn}R (a^{mn}R)$
 $= a^{mn}R a^{mn}R a^{mn}R$
 $= a^{mn}R (a^{mn}R)$

Therefore, $a^{2mn} R = a^{mn} R$, set mn = l. Thus, $a^{2l} R = a^{l} R$. So, R is strongly π -regular. \blacklozenge

Corollary 3.3:

Let R be a WRD and $s\pi WR$ -ring. Then, R is π -regular.

Theorem 3.4:

Let R be a WRD ring. If R is $s\pi WR$ -ring with $r(a^n)=0$, for every $a\in R$ and a positive integer n. Then, R is a division ring.

Proof:

Let R be s π WR-ring. Then, by Theorem 3.2, R is strongly π -regular. Therefore, $a^n R = a^{2n} R$, for every $a \in R$ and a positive integer n. Then, $a^n = a^{2n} b$, for some $b \in R$ and hence 1- $a^n b \in r(a^n) = 0$ implies that $1 = a^n b \in a^n R$. Thus, $a^n R = R$ (right invertible). Now, since $a^n x = 1$, we have $a^n x a^n = a^n$, which implies that $(1-x a^n) \in r(a^n) = 0$. Therefore, 1- $x a^n = 0$, whence $x a^n = 1$, so $x a^n = 1$. Whence $x a^n = 1$ is a division ring.

Proposition 3.5:

Let R be a commutative ring. If x is not nilpotent and right s π -weakly regular element, then x^{2n} is invertible in R.

Proof:

Assume that x is a right $s\pi$ -weakly regular element, there exists b, c $\in \mathbb{R}$ and a positive integer n such that $x^n = x^n$ b x^{2n} c. Then, x^n (1- b x^{2n} c) = 0. Since x is not nilpotent element, then $x^n \neq 0$. Therefore, 1- b x^{2n} c = 0 ($x^n \neq 0$). So, $1 = b x^{2n}$ c implies that x^{2n} is invertible.

Theorem 3.6:

Let R be a reduced ring with every essential right ideal is pure. Then, R is $s\pi WR$ -ring.

Proof:

Let $a \in R$ and I = R $a^{2n}R + r(a^n)$. We claim that I is an essential right ideal of R. Suppose this is not true, there exists a nonzero ideal K of R such that $I \cap K = (0)$. Then, $(R \ a^{2n}R) \ K \subseteq IK \subseteq I \cap K = (0)$. Since $a^{2n}R \subseteq R$ $a^{2n}R$, then $a^{2n}R \cap K = (0)$. But, $(a^{2n}R) \ K \subseteq a^{2n}R \cap K = (0)$ implies K = (0). This contradiction proves that I is an essential right ideal, that is I is pure. Since $a \in I$, there exists $b \in I$ such that a = ab. In particular, $b = c \ a^{2n} \ d + h$, for some $c, d \in R$ and $h \in r(a^n)$. Therefore, $a^n = a^n \ b = a^n \ c \ a^{2n} \ d$. Whence R is $s\pi WR$ -ring. \blacklozenge

<u>REFERENCES</u>

- [1] Azumaya, G. (1954) "Strongly π-regular rings", J. Fac. Sci. Hokkaida Univ. vol. 13, 34-39.
- [2] Chen, J. L. and Ding N. Q. (1999) "On general principally injective rings", *Comm. Algebra*, 27(5), 2097-2116.
- [3] Cohn, P. M. (1999) "Reversible rings", *Bull. London Math.* Soc., 31, 641-648.
- [4] Gupta, V. (1977) "Weakly π -regular rings and group rings", *Math. J. Okayama Univ.* 19, 123-127.
- [5] Gupta, V. (1984) "A generalization of strongly regular rings", *Acta. Math. Hung.*, vol. 43 (1-2), 57-61.
- [6] Kim, N. K. and Lee Y. (2003) "Extensions of reversible rings", *Journal of Pure and Applied Algebra* 185, 207-223.
- [7] Mahmood, A. S. (1990) "On von Neumann regular rings", M. Sc. Thesis, Mosu University.
- [8] Mohammed, R. M. (1996) "On π -regular rings", M. Sc. Thesis, Mosul University.
- [9] Vasantha Kandasamy, W. B. (1993) "s-weakly regular group rings", *Arch. Math. (BRNO)*, 39-41.