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ABSTRACT 

          In this paper, we used a new operation in a Genetic Algorithm for 

solving the binary Knapsack problem depending on it’s LP Relaxation 

solution after eliminating the fractional part of the non-binary values. The 

benefit is to make a filter to the initial random population from the farness 

of the optimal solution and unsuitable chromosomes. This good property 

will be fixed automatically in all generations in the Genetic Algorithm until 

reaching the optimal binary solution.  
Keywords: Genetic Algorithm, binary Knapsack problem, LP Relaxation 

solution. 

 ذات القياس الابتدائي  الجينية لحل مسألة الحقيبة الثنائيةخدام عملية جديدة في الخوارزمية است
 

 نوار نجم قوبات    عباس يونس البياتي

 جامعة الموصل ، كلية علوم الحاسبات والرياضيات 
 24/12/2006: تاريخ قبول البحث                 17/10/2006: تاريخ استلام البحث

 الملخص
فييه اييلا البحييس خييم اسيية جام عملييية ججرييجة فييه ال وال مييية الحقيييية لحييل م يي لة الح قبيية             

الثيائية بالاعةماد على الحيل ال ييه المةرا يه لبيا بعيج ليلء الحيري مل  يري ميي اللييم يقير الثيائيية  
ومييييي  والفائيييجة ايييه لعميييل خيلييييية للمحةمييي  العليييوائه ايولييييه ميييي الحليييو  البعقيييجة عييييي الحيييل ايمثيييل

ال روموسومات يقر المفقجة  اله الصفة الحقجة سية و  ااتةية خل ائييا فيه لأيل ايجييا  فيه ال وال ميية 
  ايمثلالحقيية إلى لقي الوصو  إلى الحل الثيائه 

  الحل ال يه المةرا ه، م  لة الح قبة الثيائية، ال وال مية الحقييةالكلمات المفتاحية: 

1. Introduction to Genetic Algorithm:    

A Genetic Algorithm (GA) was first introducted by John Holland  

for the formal investigation of the mechanisims of natural adaptation but the 

algorithm has been since modified to solve computational search problems, 

GA has been used to solve the NP-hard combinatorial problems effectively 

such as Knapsack Problem.[2]    

GA is a heuristic search algorithm for the solution of optimization 

problems in which starting from a random initial guess solution, better 
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descendants are tried in an attempt to find one that is the best under some 

criteria and conditions.[5] 

GA is a computer algorithm that searches for good solutions to a 

problem from among a large number of possible solutions. It begins with a 

set of candidate solutions (chromosomes) called population. A new 

population is created from solutions of an old population in hope of getting 

a better population. Solutions which are chosen to the new solutions 

(offspring) are selected according to their fitness. The more suitable 

solutions are the bigger chances they have to produce. 

The chromosomes in GAs represent the space of candidate solutions. 

possible chromosomes encoding are binary, permutation, value, and tree 

encodings [1]. For the Knapsack Problem we use binary encoding, where 

every chromosome is a string of bits “0” or “1”.[4] 
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Figure (1): Flowchart of the General Genetic Algorithm [3] 

 

2. Basic operations for Genetic Algorithm: 

The basic operations for Genetic Algorithm are, see figure (1), and 

buttom some outlines of those operations.  
 

Population: A population of possible solutions is randomly created.  As 

stated before, this will be a population of random sets of 1’s and 0’s.  

Weighting more 1’s or more 0’s is problem-specific. 
 

Fitness: In order to decide which solutions or chromosomes are better, the 

idea of fitness is introduced.  Each possible solution has a fitness calculated 

by a fitness function. This fitness function must take into account what the 

actual problem is asking for and derive some sort of formula to decide how 

close each chromosome is to solving the problem. The form of the fitness 

function we used in this paper is )
1

)(/)(( 
=

n

j
jxfjxf ,where )(xf  is the objective 

function. 
 

Selection: The selection operation will find very fit chromosomes to be 

used as parents of the next generation.  Also, since not only the fittest of 

chromosomes should be able to reproduce, there must be some randomness 

involved in parents selection .Here are some kinds of selection operation. 
 

(i) Roulette-wheel selection: 

Parents are selected according to their fitness. The better 

chromosomes are the more chances to be selected they have. Imagine a 

roulette wheel where all chromosomes are placed in the population 

occupying space according to their fitness function. Then marble is thrown 

there and it selects the chromosome. A chromosome with bigger fitness will 

be selected for more times [1].   
 

(ii) Linear rank selection:  

In the beginning, the potentially good individuals sometimes fill the 

population too fast which can lead to premature convergence into local 

maxima. On the other hand, refinement in the end phase can be slow since 

the individuals have similar fitness values. These problems can be overcome 



Abbas Y. Al-Bayati and Nawar N. Qubat  
 

 

 46 

by taking the rank of the fitness values as the basis for selection instead of 

the values themselves. 
 

(iii) Tournament selection:  

In this scheme, a small group of individuals is sampled from the 

population and the individual with best fitness is chosen for reproduction. 

This selection scheme is also applicable when the fitness function is given 

in implicit form, i.e. when we only have a comparison relation which 

determines which of the two given individuals is better.[2] 

Another idea often used is Elitism. This means that the best 

chromosomes of a generation automatically used to the next generation.  

This is especially useful to assure that, at worst, the next generation will 

have a solution as good as the last generation [7]. 
 

Crossover: When referring to reproduction in genetic algorithms, the word 

crossover is used.  If you consider that reproduction is really a “crossing 

over” of two parent’s genes into a child, this makes perfect sense.  

Crossover is preformed by taking two parents chromosomes solutions and 

swapping a certain number of their bits.see figure (2). 
 

One-point crossover: One crossover is selected, binary string from 

beginning of chromosome to the crossover point is copied from one parent 

and the rest is copied from the second parent:  
 

Parent Chromosome 1:  0 0 0 1 1 0 1 1 0 0 1 0 

Parent Chromosome 2:  0 1 0 0 0 1 1 1 0 1 1 1 
 

Child Chromosome 1:    0 0 0 1 1 0 1 1 0 1 1 1 

Child Chromosome 2:    0 1 0 0 0 1 1 1 0 0 1 0 
 

Two-point crossover: Two crossover point are selected, binary string from 

beginning of chromosome to the first crossover point is copied from one 

parent, the part from the first to the second point is copied from the second 

parent and the rest is copied from the first parent: 
 

Parent Chromosome 1:  0 0 0 1 1 0 1 1 0 0 1 0 

Parent Chromosome 2:  0 1 0 0 0 1 1 1 0 1 1 1 
 

Child Chromosome 1:   0 0 0 0 0 1 1 1 0 0 1 0  

Child Chromosome 2:   0 1 0 1 1 0 1 1 0 1 1 1  
 

Uniform crossover: Bits are randomly copied from the first or from the 

second parent: 
 

Parent Chromosome 1:  0 0 0 1 1 0 1 1 0 0 1 0 
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Parent Chromosome 2:  0 1 0 0 0 1 1 1 0 1 1 1 
 

Child Chromosome 1:   0 1 0 1 0 0 1 1 0 1 1 0  

Child Chromosome 2:   0 0 0 0 1 1 1 1 0 0 1 1  
 

Arithmetic crossover: Some arithmetic operations are performed to make a 

new child: 
 

Parent Chromosome 1:  0 0 0 1 1 0 1 1 0 0 1 0 

Parent Chromosome 2:  0 1 0 0 0 1 1 1 0 1 1 1 
 

Child Chromosome 1:    0 0 0 0 0 0 1 1 0 0 1 0   (AND)  

Child Chromosome 2:    0 1 0 1 1 1 1 1 0 1 1 1   (OR) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (2): Flowchart of general crossover operation [3] 

 

Mutation: Mutation is another genetic operation that introduces more 

randomness to a population.  An example of mutation in nature would be 

albino animals.  These animals have an altered genetic make-up that 

changes their fitness in their environment.  GA mutation works the same 

way.  Mutation changes the new child by flipping bits from 1 to 0 or 0 to 

1.[7], see figure (3):   
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Figure (3): Flowchart of mutation operation [3] 

 

3. Binary Knapsack problem: 

The Binary Knapsack Problem is one of the most important model in 

combinatorial optimization, having numerous real-life applications as well 

as being an important subproblem in several solution algorithms for more 

complex problems. 

Assume that n  items are given, each item having a nonnegative 

integer profit jp  and weight jw , for nj ,...,2,1= . The problem is to select a 

subset of the items, so that their overall profit is maximized without using 

the overall weight to exceed a given capacity C . Formally we may define 

the problem as: 

Maximize  
=

=
n

j

jj xpz
1

  ……………….……….(1), 

subject to        
=


n

j

jj Cxw
1

 …….…………….…(2), 

where              njx j ,...,2,1},1,0{ =  ……………(3) 

                        0C , integer 
 

                                                      1     If item j  is selected 

where the binary variable jx = 

0 Otherwise 
 

The optimal solution is denoted 
*x  and the corresponding solution value 

*z .[6] 
 

4. Linear Program Relaxation of Binary Knapsack Problem: 

Solving the linear program of Knapsack is simply by filling the 

Knapsack with the most efficient items according to: 

1-Decreasing jj wp  until the first item },...,2,1{ ns does not fit into the 

Knapsack. 

2-The weight jw  of the first item },...,2,1{ nm does not fit into the 

Knapsack. 

In this case a suitable fractional of items is chosen so that all the 

remaining capacity is used. The items will be denoted by the split item. The 
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solution becomes 1=jx  for 1,...,2,1 −= mj  and )(
1

1


−

=

−=
m

j

js wCx / mw , the 

corresponding solution value will be: 

)(*)(
1

1

1

1

ss

m

j

j

m

j

jLP wpwCpz 
−

=

−

=

−+=       …(4) 

The solution value LPz  to the linear problem is an upper bound on 

the solution value to the original Knapsack Problem. This means that 

LPzz *  for the optimal solution value *z . Any feasible solution is, on the 

other hand, denoted a lower bound z . Obviously, we have *zz  .[6] 

 

5. A Binary Knapsack Problems: 
 

Problem (1):      

A climber is preparing  for an expedition to Mount Optimization. 

His equipment consists of 4 items, where each item 4,...,1, =jj  has a profit 

jp  and a weight jw  (according to the table bottom). The climber knows 

that he will be able to carry items of total weight at most (14) kg. He would 

like to pack his knapsack in such a way that he gets the largest possible 

profit without exceeding the weight limit. 

 

Items j  1 2 3 4 

Profit jp  16 22 12 8 

Weight jw  5 7 4 3 

Solution:  

The Binary Knapsack Problem form will be: 

Maximize    4321 8122216 xxxxz +++=  

Subject to           143475 4321 +++ xxxx  

Where                 4,3,2,1},1,0{ = jx j  

Simply the first item which does not fit into the knapsack according to 

jj wp   is 3 (i.e. 3=s ) and the first item which does not fit into the 

knapsack according to their weight jw  is 3 (i.e. 3=m ) therefore by eq. (4): 

)(*)( 33

2

1

2

1

wpwCpz
j

j

j

jLP 
==

−+=  

      =16+22+(14-5-7)(12/4)=38+2*(12/4)=38+6=44 the optimal linear value. 
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Also, the variables values are 5.04/)1214(,1,1 321 =−=== xxx  and 

04 =x . 

 

Problem (2): 

A company is considering six investments. Investment 1, 2, 3, 4,5 

and 6 will yield $40000, $80000, $10000, $10000, $4000 and $20000 

respectively. Each investment requires a certain capital at present time: 

Investment 1, $40000; investment 2, $50000; investment 3, 

$30000; ;investment 4, $20000; investment 5, $10000 and investment 6, 

$40000. At present, $100000 in total is available. Formulate an IP to 

maximize the total yield. 

 

Solution:  

For each investment, the choice is either invest or not. This leads us to 

define for 6,5,4,3,2,1=j : 

            1; If investment j  is made 

jx =     

            0; Otherwise 

Therefore, the Binary Knapsack Problem form will be: 

Max 654321 20000400010000100003000040000 xxxxxxz +++++=  

Subject to 

100000400001000020000300005000040000 654321 +++++ xxxxxx  

Where      6,5,4,3,2,1},1,0{ = jx j  
 

Now, the first item which does not fit into the knapsack according to 

jj wp   is 6 (i.e. 6=s ) and the first item which does not fit into the 

knapsack according to their weight jw  is 3 (i.e. 3=m ) , by eq. (4): 

)(*)( 66

2

1

2

1

wpwCpz
j

j

j

jLP 
==

−+=  

  =40000+30000+(100000-40000-50000)*(20000/40000)=70000+5000 =75000 

  Also, the variables values are 0,1,1 54321 ===== xxxxx  and 

25.040000/)5000040000100000(6 =−−=x . 

 

6. Some known methods for solving BKP: 
 

(i) Branch and Bound method: Branch and Bound (BB) is a well-known 

approach and general optimization technique which is used especially for 

NP-hard problems. BB depends on the LP Relaxation solution of the 
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problem and works by branching or partioning it into many smaller subsets 

(nodes) such that: 

 1jx    and   0jx       ……………..(5) 

and this branching operation continues on the feasible solution until 

reaching to the optimal solution. 
      

(ii) Dynamic Programming: Dynamic Programming (DP) is a 

mathematical optimzation technique used for making a series of interrelated 

decisions. Usally, a multi-stage decision process is transformed into a series 

of single-stage decision process.  

P[ cj, ]= max (P[ cj ,1− ], jp +[ jwcj −− ,1 ]) 

For nj ,...,1=  and Cc 0  

And P[ c,0 ]=0   for Cc 0                   ………(6) 

P[ cj, ]= -    for 0c  
 

DP starts with a small portion of the problem and finds the optimal solution 

for this smaller problem. It then qradually enlarges the problem, finding the 

current optimal solution from the previous one, until the original problem is 

solved in its entirety. 

For more detials about BB & DP see [8] & [9], respectively. 
 

7. Genetic Algorithm with LP Relaxation: 

 Here we are trying to put a new operation in Genetic Algorithm 

depending on the LP Relaxation solution after elimination the fractional part 

from the non-binary values and fixing the value of the variable which has 

the biggest profit in the objective function, this operation works only in the 

first of the Genetic Algorithm exactly before the fitness step and in the 

initial random population and automatically the result of this operation is 

fixed in the other created generations in future under condition that this 

solution exists in the initial population. We called this algorithm LPG 

Algorithm and the following is its outlines.  
 

Outlines of the new suggested LPG Algorithm: 

Step 1:[Initial Population]: Population of possible solutions is randomly 

 created. 
 

Step 2:[Filtering]: Fix the chromosomes in step1 which have the value of 

 the variable with the largest profit and delete the others which do not  

have this value.  
 

Step 3:[Fitness]: Evaluate the fitness (function value) of each chromosome 

 in the population.             
 



Abbas Y. Al-Bayati and Nawar N. Qubat  
 

 

 52 

Step 4:[New population]: Create a new population by repeating following 

 steps until the new population is complete.                        
 

(a):[Selection]:Select the parents chromosomes from a population   

according to their fitness (the better fitness=the bigger chance to be 

selected).                                
  

 (b):[Crossover]: Crossover operation is to create a new children 

 (offspring) from the parents, If no crossover was performed, 

 children are exact copy of parents.              

(c):[Mutation]: Mutation operator is performed by selection of 

random bits of the chromosome and replacing the value of the bit 

from “0” to “1” or vice versa. 
  

 (d):[Accepting]: Place new children in a new population.     
 

Step 5:[Replace]: Use new generated population for further run of 

 algorithm . 
 

Step 6:[Problem Solved?]: If the end condition is satisfied (like the number 

 of generations or the generated maximum solution is repeated), stop, 

 and return the best solution in current population else go to step 3.  

 

8. Numerical Results using LPG Algorithm: 

In Problem (1): The LP Relaxation solution after cutting the fractional part 

from the non-binary values will be: (1, 1, 0, 0) which will exist in the initial 

population.           

            Now, Since 2x  has the largest profit ( 222 =p ) therefore we fix only 

chromosomes in the initial random population with this value (i.e. bit2 =1) 

and delete the others, this is called filtering. 

The initial random population will be as follows with size=4: 

 

No. Chromosome Solution Fitness 

1 1  1  0  0 38 0.27 

2 0  1  0  1 30 0.21 

3 1  0  1  1 36 0.26 

4 0  1  1  0 34 0.24 

 

 By filtering the population from the chromosomes without (bit2 =1) 

we get a new population with size=3 which is less than the initial random 

population size and we continue under this size, such that: 

 

Generation 1 

No. Chromosome Solution Fitness 
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1 1  1  0  0 38 0.37 

2 0  1  0  1 30 0.29 

3 0  1  1  0 34 0.33 

Maximum Solution is 38 

 

 By doing crossover operation between the chromosomes in 

generation 1 we get a new chromosome which builds the generation 2, such 

that: 
 

Chromosome 1:     1 1 0  0         1 1 0 1     with solution = 46 

Chromosome 2:     0 1 0  1         0 1 0 0     with solution = 22 
 

Chromosome 1:    1 1 0 0           1 1 1 0     with solution = 50 

Chromosome 3:    0 1 1 0           0 1 0 0     with solution = 22 
 

Chromosome 2:    0 1 0 1           0 1 0 0    with solution = 22 

Chromosome 3:    0 1 1 0           0 1 1 1    with solution = 42 
 

And by doing mutation operation on the chromosome ( 0 1 0 0 ) to the new 

one ( 0 1 0 1 ) we get the next generation such that: 
 

Generation 2 

No. Chromosome Solution Fitness 

1 0  1  0  0 22 0.23 

2 0  1  1  1 42 0.44 

3 0  1  0  1 30 0.31 

Maximum Solution is 42 
 

Note: The reason of not taking the chromosomes: ( 1 1 0 1 ) and ( 1 1 1 0 ) 

is because their solutions are infeasible. 
 

Again, by doing crossover operation on generation 2 we get a new 

generation such that: 
  

Chromosome 1:     0 1 0  0         0 1 0 1    with solution = 30 

Chromosome 2:     0 1 1  1         0 1 1 0    with solution = 34 
 

Chromosome 1:    0 1 0  0          0 1 0 1    with solution = 30 

Chromosome 3:    0 1 0  1          0 1 1 0    with solution = 22 
 

Chromosome 2:    0 1  1 1          0 1 0 1    with solution = 30 

Chromosome 3:    0 1  0 1          0 1 1 1    with solution = 42 
 

Generation 3 
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No. Chromosome Solution Fitness 

1 0  1  1  0 34 0.32 

2 0  1  0  1 30 0.28 

3 0  1  1  1 42 039 

Maximum Solution is 42 
 

 From the generations 2 and 3 we got the same maximum solution 42 

and this is the optimal solution for our problem and this is the stop criteria. 
 

In Problem (2): The LP Relaxation solution after cutting the fractional part 

from the non-binary values will be: (1, 1, 0, 0, 0, 0) which will exist in the 

initial population.           

 Since 1x has the largest coefficient in the objective function therefore 

we fix only chromosomes in the initial random population with this value 

(i.e. bit1 =1) and delete the others.The initial random population will be as 

follows with size=5: 
 

No. Chromosome Solution Fitness 

1 1  0  0  0  0 1 60000 0.20 

2 0  1  0  1  1 0 44000 0.15 

3 1  0  0  0  1  1 64000 0.21 

4 1  1  0  0  0  0 70000 0.23 

5 0  1  0  0  1  1 54000 0.18 
 

 The new population after the filtering will become: 
 

Generation 1 

No. Chromosome Solution Fitness 

1 1  0  0  0  0 1 60000 0.30 

2       1  0  0  0  1  1 64000  0.32 

3 1  1  0  0  0  0 70000 0.36 

Maximum Solution is 70000 
 

Doing crossover operation between the chromosomes in generation 1 we get 

a new generation 2, such that: 
 

Chromosome 1:     1 0 0 0 0 1      1 0 0 0 1 1   with solution = 64000     

Chromosome 2:     1 0 0 0 1 1      1 0 0 0 0 1   with solution = 60000 
 

Chromosome 1:    1 0 0 0 0 1       1 0 0 0 0 0   with solution = 40000 

Chromosome 3:    1 1 0 0 0 0       1 1 0 0 0 1   with solution = 90000 
 

Chromosome 2:    1 0 0 0 1 1       1 0 0 0 0 0   with solution = 40000  
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Chromosome 3:    1 1 0 0 0 0       1 1 0 0 1 1   with solution = 74000 
 

 By doing mutation on the chromosome ( 1 1 0 0 1 1 ) to the new one  

( 1 1 0 0 1 0 ) we get the next generation such that: 

 

 

 

 

 

Generation 2 

No. Chromosome Solution Fitness 

1 1  0  0  0 1  1 64000 0.32 

2 1  0  0  0  0  1 60000 0.30 

3 1  1  0  0  1  0 74000 0.37 

Maximum Solution is 74000 

 

Again, by doing crossover operation on generation 2 we get a new 

generation such that: 
  

Chromosome 1:     1 0 0 0 1 1        1 0 0 0 0 1    with solution = 60000 

Chromosome 2:     1 0 0 0 0 1        1 0 0 0 1 1    with solution = 64000 
 

Chromosome 1:    1 0 0 0 1 1         1 0 0 0 1 0    with solution = 44000 

Chromosome 3:    1 1 0 0 1 0         1 1 0 0 1 1    with solution = 94000 
 

Chromosome 2:    1 0 0 0 0 1         1 0 0 0 1 0   with solution = 44000 

Chromosome 3:    1 1 0 0 1 0         1 1 0 0 0 1   with solution = 90000 
 

Generation 3 

No. Chromosome Solution Fitness 

1 1  0  0  0 0  1 60000 0.35 

2 1  0  0  0  1  1 64000 0.38 

3 1  0  0  0  1  0 44000 0.26 

Maximum Solution is 64000 
 

 We observe that the solution of generation 3 is worse than the 

solution of generation 2, therefore, we stop the process, and hence the 

optimal solution is 74000. 
 

9. Numerical Discussion: 

 The new genetic algorithm using filtering property in Problem 1 and 

Problem 2 makes finite reduction for the initial population size such that for 

problem 1 the initial population size is reduced from 4 chromosomes to 3 
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and for problem 2 the initial population size is reduced form 5 chromosomes 

to 3, and this makes reducing the number of generations at least or equal the 

number of the generations under the general genetic algorithm.  
 

10. Conclusion: 

 We have shown that how the genetic algorithm under filtering 

property can be used to find a good solution for the Binary Knapsack 

Problem. By using filtering the initial randomly population from the farness 

and unsuitable chromosomes by choosing only possible chromosomes under 

the LP Relaxation solution of the problem and this property will be fixed 

automatically in all generations until reaching the optimal binary solution. 

 This property makes the Genetic Algorithms more powerful for 

solving the binary problems and even for problems with a big size of  

generations. This will be done by reducing this size and by remaining the 

chromosomes with largest profit which guarantee the existness of the 

optimal solution by the benefit of the LP Relaxation of these problems. 
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