
Raf. J. of Comp. & Math’s. , Vol. 4, No. 2, 2007

 43

An Implementation of an Initial Scale in Solving Binary Knapsack

Problem Using a Genetic Algorithm

Abbas Y. Al-Bayati Nawar N. Qubat

profabbasalbayati@yahoo.com

College of Computer sciences and Mathematics

University of Mosul/Iraq

Received on: 17/10/2006 Accepted on: 24/12/2006

ABSTRACT

 In this paper, we used a new operation in a Genetic Algorithm for

solving the binary Knapsack problem depending on it’s LP Relaxation

solution after eliminating the fractional part of the non-binary values. The

benefit is to make a filter to the initial random population from the farness

of the optimal solution and unsuitable chromosomes. This good property

will be fixed automatically in all generations in the Genetic Algorithm until

reaching the optimal binary solution.
Keywords: Genetic Algorithm, binary Knapsack problem, LP Relaxation

solution.

 ذات القياس الابتدائي الجينية لحل مسألة الحقيبة الثنائيةخدام عملية جديدة في الخوارزمية است

 نوار نجم قوبات عباس يونس البياتي

 جامعة الموصل ، كلية علوم الحاسبات والرياضيات
 24/12/2006: تاريخ قبول البحث 17/10/2006: تاريخ استلام البحث

 الملخص
فييه اييلا البحييس خييم اسيية جام عملييية ججرييجة فييه ال وال مييية الحقيييية لحييل م يي لة الح قبيية

الثيائية بالاعةماد على الحيل ال ييه المةرا يه لبيا بعيج ليلء الحيري مل يري ميي اللييم يقير الثيائيية
ومييييي والفائيييجة ايييه لعميييل خيلييييية للمحةمييي العليييوائه ايولييييه ميييي الحليييو البعقيييجة عييييي الحيييل ايمثيييل

ال روموسومات يقر المفقجة اله الصفة الحقجة سية و ااتةية خل ائييا فيه لأيل ايجييا فيه ال وال ميية
 ايمثلالحقيية إلى لقي الوصو إلى الحل الثيائه

 الحل ال يه المةرا ه، م لة الح قبة الثيائية، ال وال مية الحقييةالكلمات المفتاحية:

1. Introduction to Genetic Algorithm:

A Genetic Algorithm (GA) was first introducted by John Holland

for the formal investigation of the mechanisims of natural adaptation but the

algorithm has been since modified to solve computational search problems,

GA has been used to solve the NP-hard combinatorial problems effectively

such as Knapsack Problem.[2]

GA is a heuristic search algorithm for the solution of optimization

problems in which starting from a random initial guess solution, better

Abbas Y. Al-Bayati and Nawar N. Qubat

 44

descendants are tried in an attempt to find one that is the best under some

criteria and conditions.[5]

GA is a computer algorithm that searches for good solutions to a

problem from among a large number of possible solutions. It begins with a

set of candidate solutions (chromosomes) called population. A new

population is created from solutions of an old population in hope of getting

a better population. Solutions which are chosen to the new solutions

(offspring) are selected according to their fitness. The more suitable

solutions are the bigger chances they have to produce.

The chromosomes in GAs represent the space of candidate solutions.

possible chromosomes encoding are binary, permutation, value, and tree

encodings [1]. For the Knapsack Problem we use binary encoding, where

every chromosome is a string of bits “0” or “1”.[4]

Start

Randomly generate a population of N

chromosomes

Evaluate the fitness of all chromosomes

Select the parents chromosomes from a population according

to their fitness

Perform crossover on two chromosomes selected

Perform mutation on the chromosomes obtained

Replace these for the least fit chromosomes of existing

population

Is the

problem

solved?

Stop

Yes

No

An implementation of …

 45

Figure (1): Flowchart of the General Genetic Algorithm [3]

2. Basic operations for Genetic Algorithm:

The basic operations for Genetic Algorithm are, see figure (1), and

buttom some outlines of those operations.

Population: A population of possible solutions is randomly created. As

stated before, this will be a population of random sets of 1’s and 0’s.

Weighting more 1’s or more 0’s is problem-specific.

Fitness: In order to decide which solutions or chromosomes are better, the

idea of fitness is introduced. Each possible solution has a fitness calculated

by a fitness function. This fitness function must take into account what the

actual problem is asking for and derive some sort of formula to decide how

close each chromosome is to solving the problem. The form of the fitness

function we used in this paper is)
1

)(/)((
=

n

j
jxfjxf ,where)(xf is the objective

function.

Selection: The selection operation will find very fit chromosomes to be

used as parents of the next generation. Also, since not only the fittest of

chromosomes should be able to reproduce, there must be some randomness

involved in parents selection .Here are some kinds of selection operation.

(i) Roulette-wheel selection:

Parents are selected according to their fitness. The better

chromosomes are the more chances to be selected they have. Imagine a

roulette wheel where all chromosomes are placed in the population

occupying space according to their fitness function. Then marble is thrown

there and it selects the chromosome. A chromosome with bigger fitness will

be selected for more times [1].

(ii) Linear rank selection:

In the beginning, the potentially good individuals sometimes fill the

population too fast which can lead to premature convergence into local

maxima. On the other hand, refinement in the end phase can be slow since

the individuals have similar fitness values. These problems can be overcome

Abbas Y. Al-Bayati and Nawar N. Qubat

 46

by taking the rank of the fitness values as the basis for selection instead of

the values themselves.

(iii) Tournament selection:

In this scheme, a small group of individuals is sampled from the

population and the individual with best fitness is chosen for reproduction.

This selection scheme is also applicable when the fitness function is given

in implicit form, i.e. when we only have a comparison relation which

determines which of the two given individuals is better.[2]

Another idea often used is Elitism. This means that the best

chromosomes of a generation automatically used to the next generation.

This is especially useful to assure that, at worst, the next generation will

have a solution as good as the last generation [7].

Crossover: When referring to reproduction in genetic algorithms, the word

crossover is used. If you consider that reproduction is really a “crossing

over” of two parent’s genes into a child, this makes perfect sense.

Crossover is preformed by taking two parents chromosomes solutions and

swapping a certain number of their bits.see figure (2).

One-point crossover: One crossover is selected, binary string from

beginning of chromosome to the crossover point is copied from one parent

and the rest is copied from the second parent:

Parent Chromosome 1: 0 0 0 1 1 0 1 1 0 0 1 0

Parent Chromosome 2: 0 1 0 0 0 1 1 1 0 1 1 1

Child Chromosome 1: 0 0 0 1 1 0 1 1 0 1 1 1

Child Chromosome 2: 0 1 0 0 0 1 1 1 0 0 1 0

Two-point crossover: Two crossover point are selected, binary string from

beginning of chromosome to the first crossover point is copied from one

parent, the part from the first to the second point is copied from the second

parent and the rest is copied from the first parent:

Parent Chromosome 1: 0 0 0 1 1 0 1 1 0 0 1 0

Parent Chromosome 2: 0 1 0 0 0 1 1 1 0 1 1 1

Child Chromosome 1: 0 0 0 0 0 1 1 1 0 0 1 0

Child Chromosome 2: 0 1 0 1 1 0 1 1 0 1 1 1

Uniform crossover: Bits are randomly copied from the first or from the

second parent:

Parent Chromosome 1: 0 0 0 1 1 0 1 1 0 0 1 0

An implementation of …

 47

Parent Chromosome 2: 0 1 0 0 0 1 1 1 0 1 1 1

Child Chromosome 1: 0 1 0 1 0 0 1 1 0 1 1 0

Child Chromosome 2: 0 0 0 0 1 1 1 1 0 0 1 1

Arithmetic crossover: Some arithmetic operations are performed to make a

new child:

Parent Chromosome 1: 0 0 0 1 1 0 1 1 0 0 1 0

Parent Chromosome 2: 0 1 0 0 0 1 1 1 0 1 1 1

Child Chromosome 1: 0 0 0 0 0 0 1 1 0 0 1 0 (AND)

Child Chromosome 2: 0 1 0 1 1 1 1 1 0 1 1 1 (OR)

Figure (2): Flowchart of general crossover operation [3]

Mutation: Mutation is another genetic operation that introduces more

randomness to a population. An example of mutation in nature would be

albino animals. These animals have an altered genetic make-up that

changes their fitness in their environment. GA mutation works the same

way. Mutation changes the new child by flipping bits from 1 to 0 or 0 to

1.[7], see figure (3):

Start

Randomly choose a crossover point

Perform any type of crossover operation

Stop

Start

Randomly choose a mutation point

Perform bit inversion at this point

Stop

Abbas Y. Al-Bayati and Nawar N. Qubat

 48

Figure (3): Flowchart of mutation operation [3]

3. Binary Knapsack problem:

The Binary Knapsack Problem is one of the most important model in

combinatorial optimization, having numerous real-life applications as well

as being an important subproblem in several solution algorithms for more

complex problems.

Assume that n items are given, each item having a nonnegative

integer profit jp and weight jw , for nj ,...,2,1= . The problem is to select a

subset of the items, so that their overall profit is maximized without using

the overall weight to exceed a given capacity C . Formally we may define

the problem as:

Maximize 
=

=
n

j

jj xpz
1

 ……………….……….(1),

subject to 
=


n

j

jj Cxw
1

 …….…………….…(2),

where njx j ,...,2,1},1,0{ = ……………(3)

 0C , integer

 1 If item j is selected

where the binary variable jx =

0 Otherwise

The optimal solution is denoted
*x and the corresponding solution value

*z .[6]

4. Linear Program Relaxation of Binary Knapsack Problem:

Solving the linear program of Knapsack is simply by filling the

Knapsack with the most efficient items according to:

1-Decreasing jj wp until the first item },...,2,1{ ns does not fit into the

Knapsack.

2-The weight jw of the first item },...,2,1{ nm does not fit into the

Knapsack.

In this case a suitable fractional of items is chosen so that all the

remaining capacity is used. The items will be denoted by the split item. The

An implementation of …

 49

solution becomes 1=jx for 1,...,2,1 −= mj and)(
1

1


−

=

−=
m

j

js wCx / mw , the

corresponding solution value will be:

)(*)(
1

1

1

1

ss

m

j

j

m

j

jLP wpwCpz 
−

=

−

=

−+= …(4)

The solution value LPz to the linear problem is an upper bound on

the solution value to the original Knapsack Problem. This means that

LPzz * for the optimal solution value *z . Any feasible solution is, on the

other hand, denoted a lower bound z . Obviously, we have *zz  .[6]

5. A Binary Knapsack Problems:

Problem (1):

A climber is preparing for an expedition to Mount Optimization.

His equipment consists of 4 items, where each item 4,...,1, =jj has a profit

jp and a weight jw (according to the table bottom). The climber knows

that he will be able to carry items of total weight at most (14) kg. He would

like to pack his knapsack in such a way that he gets the largest possible

profit without exceeding the weight limit.

Items j 1 2 3 4

Profit jp 16 22 12 8

Weight jw 5 7 4 3

Solution:

The Binary Knapsack Problem form will be:

Maximize 4321 8122216 xxxxz +++=

Subject to 143475 4321 +++ xxxx

Where 4,3,2,1},1,0{ = jx j

Simply the first item which does not fit into the knapsack according to

jj wp is 3 (i.e. 3=s) and the first item which does not fit into the

knapsack according to their weight jw is 3 (i.e. 3=m) therefore by eq. (4):

)(*)(33

2

1

2

1

wpwCpz
j

j

j

jLP 
==

−+=

 =16+22+(14-5-7)(12/4)=38+2*(12/4)=38+6=44 the optimal linear value.

Abbas Y. Al-Bayati and Nawar N. Qubat

 50

Also, the variables values are 5.04/)1214(,1,1 321 =−=== xxx and

04 =x .

Problem (2):

A company is considering six investments. Investment 1, 2, 3, 4,5

and 6 will yield $40000, $80000, $10000, $10000, $4000 and $20000

respectively. Each investment requires a certain capital at present time:

Investment 1, $40000; investment 2, $50000; investment 3,

$30000; ;investment 4, $20000; investment 5, $10000 and investment 6,

$40000. At present, $100000 in total is available. Formulate an IP to

maximize the total yield.

Solution:

For each investment, the choice is either invest or not. This leads us to

define for 6,5,4,3,2,1=j :

 1; If investment j is made

jx =

 0; Otherwise

Therefore, the Binary Knapsack Problem form will be:

Max 654321 20000400010000100003000040000 xxxxxxz +++++=

Subject to

100000400001000020000300005000040000 654321 +++++ xxxxxx

Where 6,5,4,3,2,1},1,0{ = jx j

Now, the first item which does not fit into the knapsack according to

jj wp is 6 (i.e. 6=s) and the first item which does not fit into the

knapsack according to their weight jw is 3 (i.e. 3=m) , by eq. (4):

)(*)(66

2

1

2

1

wpwCpz
j

j

j

jLP 
==

−+=

 =40000+30000+(100000-40000-50000)*(20000/40000)=70000+5000 =75000

 Also, the variables values are 0,1,1 54321 ===== xxxxx and

25.040000/)5000040000100000(6 =−−=x .

6. Some known methods for solving BKP:

(i) Branch and Bound method: Branch and Bound (BB) is a well-known

approach and general optimization technique which is used especially for

NP-hard problems. BB depends on the LP Relaxation solution of the

An implementation of …

 51

problem and works by branching or partioning it into many smaller subsets

(nodes) such that:

 1jx and  0jx ……………..(5)

and this branching operation continues on the feasible solution until

reaching to the optimal solution.

(ii) Dynamic Programming: Dynamic Programming (DP) is a

mathematical optimzation technique used for making a series of interrelated

decisions. Usally, a multi-stage decision process is transformed into a series

of single-stage decision process.

P[cj,]= max (P[cj ,1−], jp +[jwcj −− ,1])

For nj ,...,1= and Cc 0

And P[c,0]=0 for Cc 0 ………(6)

P[cj,]= - for 0c

DP starts with a small portion of the problem and finds the optimal solution

for this smaller problem. It then qradually enlarges the problem, finding the

current optimal solution from the previous one, until the original problem is

solved in its entirety.

For more detials about BB & DP see [8] & [9], respectively.

7. Genetic Algorithm with LP Relaxation:

 Here we are trying to put a new operation in Genetic Algorithm

depending on the LP Relaxation solution after elimination the fractional part

from the non-binary values and fixing the value of the variable which has

the biggest profit in the objective function, this operation works only in the

first of the Genetic Algorithm exactly before the fitness step and in the

initial random population and automatically the result of this operation is

fixed in the other created generations in future under condition that this

solution exists in the initial population. We called this algorithm LPG

Algorithm and the following is its outlines.

Outlines of the new suggested LPG Algorithm:

Step 1:[Initial Population]: Population of possible solutions is randomly

 created.

Step 2:[Filtering]: Fix the chromosomes in step1 which have the value of

 the variable with the largest profit and delete the others which do not

have this value.

Step 3:[Fitness]: Evaluate the fitness (function value) of each chromosome

 in the population.

Abbas Y. Al-Bayati and Nawar N. Qubat

 52

Step 4:[New population]: Create a new population by repeating following

 steps until the new population is complete.

(a):[Selection]:Select the parents chromosomes from a population

according to their fitness (the better fitness=the bigger chance to be

selected).

 (b):[Crossover]: Crossover operation is to create a new children

 (offspring) from the parents, If no crossover was performed,

 children are exact copy of parents.

(c):[Mutation]: Mutation operator is performed by selection of

random bits of the chromosome and replacing the value of the bit

from “0” to “1” or vice versa.

 (d):[Accepting]: Place new children in a new population.

Step 5:[Replace]: Use new generated population for further run of

 algorithm .

Step 6:[Problem Solved?]: If the end condition is satisfied (like the number

 of generations or the generated maximum solution is repeated), stop,

 and return the best solution in current population else go to step 3.

8. Numerical Results using LPG Algorithm:

In Problem (1): The LP Relaxation solution after cutting the fractional part

from the non-binary values will be: (1, 1, 0, 0) which will exist in the initial

population.

 Now, Since 2x has the largest profit (222 =p) therefore we fix only

chromosomes in the initial random population with this value (i.e. bit2 =1)

and delete the others, this is called filtering.

The initial random population will be as follows with size=4:

No. Chromosome Solution Fitness

1 1 1 0 0 38 0.27

2 0 1 0 1 30 0.21

3 1 0 1 1 36 0.26

4 0 1 1 0 34 0.24

 By filtering the population from the chromosomes without (bit2 =1)

we get a new population with size=3 which is less than the initial random

population size and we continue under this size, such that:

Generation 1

No. Chromosome Solution Fitness

An implementation of …

 53

1 1 1 0 0 38 0.37

2 0 1 0 1 30 0.29

3 0 1 1 0 34 0.33

Maximum Solution is 38

 By doing crossover operation between the chromosomes in

generation 1 we get a new chromosome which builds the generation 2, such

that:

Chromosome 1: 1 1 0 0 1 1 0 1 with solution = 46

Chromosome 2: 0 1 0 1 0 1 0 0 with solution = 22

Chromosome 1: 1 1 0 0 1 1 1 0 with solution = 50

Chromosome 3: 0 1 1 0 0 1 0 0 with solution = 22

Chromosome 2: 0 1 0 1 0 1 0 0 with solution = 22

Chromosome 3: 0 1 1 0 0 1 1 1 with solution = 42

And by doing mutation operation on the chromosome (0 1 0 0) to the new

one (0 1 0 1) we get the next generation such that:

Generation 2

No. Chromosome Solution Fitness

1 0 1 0 0 22 0.23

2 0 1 1 1 42 0.44

3 0 1 0 1 30 0.31

Maximum Solution is 42

Note: The reason of not taking the chromosomes: (1 1 0 1) and (1 1 1 0)

is because their solutions are infeasible.

Again, by doing crossover operation on generation 2 we get a new

generation such that:

Chromosome 1: 0 1 0 0 0 1 0 1 with solution = 30

Chromosome 2: 0 1 1 1 0 1 1 0 with solution = 34

Chromosome 1: 0 1 0 0 0 1 0 1 with solution = 30

Chromosome 3: 0 1 0 1 0 1 1 0 with solution = 22

Chromosome 2: 0 1 1 1 0 1 0 1 with solution = 30

Chromosome 3: 0 1 0 1 0 1 1 1 with solution = 42

Generation 3

Abbas Y. Al-Bayati and Nawar N. Qubat

 54

No. Chromosome Solution Fitness

1 0 1 1 0 34 0.32

2 0 1 0 1 30 0.28

3 0 1 1 1 42 039

Maximum Solution is 42

 From the generations 2 and 3 we got the same maximum solution 42

and this is the optimal solution for our problem and this is the stop criteria.

In Problem (2): The LP Relaxation solution after cutting the fractional part

from the non-binary values will be: (1, 1, 0, 0, 0, 0) which will exist in the

initial population.

 Since 1x has the largest coefficient in the objective function therefore

we fix only chromosomes in the initial random population with this value

(i.e. bit1 =1) and delete the others.The initial random population will be as

follows with size=5:

No. Chromosome Solution Fitness

1 1 0 0 0 0 1 60000 0.20

2 0 1 0 1 1 0 44000 0.15

3 1 0 0 0 1 1 64000 0.21

4 1 1 0 0 0 0 70000 0.23

5 0 1 0 0 1 1 54000 0.18

 The new population after the filtering will become:

Generation 1

No. Chromosome Solution Fitness

1 1 0 0 0 0 1 60000 0.30

2 1 0 0 0 1 1 64000 0.32

3 1 1 0 0 0 0 70000 0.36

Maximum Solution is 70000

Doing crossover operation between the chromosomes in generation 1 we get

a new generation 2, such that:

Chromosome 1: 1 0 0 0 0 1 1 0 0 0 1 1 with solution = 64000

Chromosome 2: 1 0 0 0 1 1 1 0 0 0 0 1 with solution = 60000

Chromosome 1: 1 0 0 0 0 1 1 0 0 0 0 0 with solution = 40000

Chromosome 3: 1 1 0 0 0 0 1 1 0 0 0 1 with solution = 90000

Chromosome 2: 1 0 0 0 1 1 1 0 0 0 0 0 with solution = 40000

An implementation of …

 55

Chromosome 3: 1 1 0 0 0 0 1 1 0 0 1 1 with solution = 74000

 By doing mutation on the chromosome (1 1 0 0 1 1) to the new one

(1 1 0 0 1 0) we get the next generation such that:

Generation 2

No. Chromosome Solution Fitness

1 1 0 0 0 1 1 64000 0.32

2 1 0 0 0 0 1 60000 0.30

3 1 1 0 0 1 0 74000 0.37

Maximum Solution is 74000

Again, by doing crossover operation on generation 2 we get a new

generation such that:

Chromosome 1: 1 0 0 0 1 1 1 0 0 0 0 1 with solution = 60000

Chromosome 2: 1 0 0 0 0 1 1 0 0 0 1 1 with solution = 64000

Chromosome 1: 1 0 0 0 1 1 1 0 0 0 1 0 with solution = 44000

Chromosome 3: 1 1 0 0 1 0 1 1 0 0 1 1 with solution = 94000

Chromosome 2: 1 0 0 0 0 1 1 0 0 0 1 0 with solution = 44000

Chromosome 3: 1 1 0 0 1 0 1 1 0 0 0 1 with solution = 90000

Generation 3

No. Chromosome Solution Fitness

1 1 0 0 0 0 1 60000 0.35

2 1 0 0 0 1 1 64000 0.38

3 1 0 0 0 1 0 44000 0.26

Maximum Solution is 64000

 We observe that the solution of generation 3 is worse than the

solution of generation 2, therefore, we stop the process, and hence the

optimal solution is 74000.

9. Numerical Discussion:

 The new genetic algorithm using filtering property in Problem 1 and

Problem 2 makes finite reduction for the initial population size such that for

problem 1 the initial population size is reduced from 4 chromosomes to 3

Abbas Y. Al-Bayati and Nawar N. Qubat

 56

and for problem 2 the initial population size is reduced form 5 chromosomes

to 3, and this makes reducing the number of generations at least or equal the

number of the generations under the general genetic algorithm.

10. Conclusion:

 We have shown that how the genetic algorithm under filtering

property can be used to find a good solution for the Binary Knapsack

Problem. By using filtering the initial randomly population from the farness

and unsuitable chromosomes by choosing only possible chromosomes under

the LP Relaxation solution of the problem and this property will be fixed

automatically in all generations until reaching the optimal binary solution.

 This property makes the Genetic Algorithms more powerful for

solving the binary problems and even for problems with a big size of

generations. This will be done by reducing this size and by remaining the

chromosomes with largest profit which guarantee the existness of the

optimal solution by the benefit of the LP Relaxation of these problems.

An implementation of …

 57

REFERENCES

[1] Achrekar, H.; Gandhi, J. and Lakeshri, S. (2002) “Genetic

Algorithms” , Student members, IEEE-VESIT, India.

[2] Bodenhofer, U., (2002) Genetic Algorithms: Theory and

Applications, 2nd Edition, Johannes Kepler University, A-4040

Linz, Austria.

[3] Goldberg, D. E. (1989) Genetic Algorithms in Search,

Optimization and Machine Learning, The 0/1 Knapsack

Problem, Addison-Wesley Pub. Co., University of Illinois at

Urbana-Champaign, ISBN: 0201157675.

[4] Hristakeva, M. and Shrestha, D.(2003) “Solving the 0-1 Knapsack

Problem with genetic Algorithms”, MICS, Proceedings, Techniqual

reports, Simpson College, Indianola, Iowa No.(4).

[5] Nieminen, K.; Ruuth, S. and Maros, I. (2003) “Genetic algorithm for

finding a good first integer solution for MILP”, Systems Analysis

Laboratory Helsinki University of Technology Istv an Maros

Department of Computing Imperial College, London Department of

Computing, Imperial College ISSN 1469—4174.

[6] Pisinger, D. (2003) “A toolbox for solving knapsack problem”,

DIKU, European Journal of Operational Research, University of

Copenhagen, Denmark No.(88), Vol. (10), pp 122–145.

[7] Sastry, K. and Goldberg, D. and Kendall, G. (2005) Genetic

Algorithms, chapter 4, in Search Methodologies: Introductory

Tutorials in Optimization and Decision Support Techniques,

Springer, pp 97-125.

[8] Terlaky, T. (2004) “Discrete Optimization..Branch and Bound

Methods”, Dept. of Computing and Software, McMaster University,

Hamilton, Canada, Vol. (21), No.(6), pp. 207-236.

[9] Terlaky, T. (2004) “Discrete Optimization.. Dynamic

Programming”, Dept. of Computing and Software, McMaster

University, Hamilton, Canada, Vol. (21), No.(7), pp. 175-180.

