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ABSTRACT

A non-linear prey-predator system solved numerically by Galerkin
method, and we compare these results with the results of Pius Peter
Nyaanga[6] who used finite difference methods, we found that Galerkin
finite elements method is faster than finite difference method to reach
equilibrium state where the density for the prey u(x,t) and the predator

v(X,t) are equals for all the values for Xand t, also we found that

Galerkin method converges towards the steady state solutions faster than
finite difference method with less steps in time.

Keywords: prey-predator system, Galerkin method, finite difference
methods.
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1. Introduction:
The finite element method is one of the most flexible tools available
for solving engneering problems of the kind involved in analyzing the
deformation of solids, the transfer of heat, the flow of fluids, or electrical

problems, it can be applied to systems with virtually any geometric
configuration or boundary conditions.[1]
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The finite element method has developed simultaneously with the
increasing use of high-speed electronic digital computers and with the
growing emphasis on numerical methods for engineering analysis. Although
the method was originally developed for structural analysis, the general
nature of the theory on which it is based has also made possible its
successful application for solutions of problems in other fields of
engineering[3].

A basic model for studying the interraction of species in population
biology is the prey-predator model, the prey-predator model is a planar
system representing the behavior of a population of prey, as fish, and a
population of predators, as sharks[6].

Du and Lou [4] studied some uniqueness and exact multiplicity
results for a predator-prey model, they consider positive solutions of a
predator-prey model with diffusion and under homogeneous dirichlet
boundary conditions,it turns out that a certain parameter in this model plays
a very important role.

Tyutyunov et.al [2] studied directed movement of predators and the
emergence of density-dependence in predator-prey models. Numerical
analysis shows that, on the spatially aggregated scale, the average predator
density adversely affects the individual consumption, leading to a non-linear
predator-dependent trophic function.

Meng and Wang [5] studied asymptotic behavior of a predator-prey
diffusion system with time delays. They found that the global asymptotic
convergence is established by the upper-lower solutions and iteration
method in terms of the rate constants of the reaction function independent of
the time delays and the effect of diffusion.

In this paper, we will study the numerical solution for prey-predator
system by Galerkin method and we will compare these results with the
results of [6].

2.Mathematical model:
A basic model for studying the interraction of species in population
biology is the prey-predator model, the prey-predator model is [6]:

2
au:D12L21+ocu(1—u)—kluv ..(1)
X

ot

ov o%v

§:D26X72_Hv+k2uv '(2)
where u=u(x,t) represents the number of fish (prey), v=v(x,t) is the

number of sharks (predator),
(Dl) is diffusion coefficient of the prey,
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(a) is the rate of growth of the prey,

(Dz) is diffusion coefficient of the predator,

(,u) is positive constant and represents the death rate of the predator,

k,,K, are positive constants and they represent the rate of interraction

between the prey and the predator which facilitates the killing of prey by

predator.

With initial conditions:

u(x,0) = f(x) xeloL] 4 ..3)
v(x,0) = g(x) x e[0,L]

here

0<f(x) forall x [0, L]

0<g(x) forall x€[0, L]

and Neumann boundary conditions:

ou

a—X_O atx=0and x=L 1 e
QX: atx=0and x=L

OX

3.Numerical solution:

Galerkin’s method has been discussed by several authors[8]. It is a
means of obtaining an approximate solution to a differential equation. It
does this by requiring that the error between the approximate solution and
the exact solution be orthogonal to the functions used in the approximation.
If we start with a differential equation Lu—f =0 (L is a differential operator)
and approximate the solution by u” = > N,u; then the solution Lu" —f=¢

where ¢ is a residual or error. Our desire is to make & as small as possible.
One way of accomplishing this objective is to require the integral [N;edx =0
R

for each basis function N.. This integral mathematically states that the
basic function must be orthogonal to the error over the region R [7].
Let U and V_ have the normal finite element form:

f_Sy®
usu =>U
e=1
. E
vav =Y v®
e=1

where the interpolation function are [1]:
u® =N®u; + NPy,

.5

v =NEv; +NOy,
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where N® and Nge) are pyramid functions:
N{® :%(ai +b;x) such that a; =x; and b, =—1
and

Nge) :%(aj+bjx) such that a; =-x; and bj -1

and the derivative for (5) is:
du® dN;  dN;
= u; + u

dx dx ' dx ! .(6)
dx dx dx !

Also integral over the element must involve the integrals of the pyramid
functions[1]:

L L 2

thus

Ju®dx :EL(ui +uj)
! 2

1 ...(3)
[v®dx = —L(vi +vj)
L 2
it has been shown that the general integration formula is [1]:

13!

ij‘N?dx:O"—B'L ..(9)
L (o0 +B+1)
Galerkin method uses the approximating functions as weighting functions:
W, =N + N ...(10)

4.Element residuals:
The element residuals Ri,Rj associated with the nodes i,j are [1]:

R® =— [w®r®dx

L(e)
R® =~ [ WOy
J 10 J
where Ri(e) is contribution of element (e) to residual in equation (1) for

node (i), and RJ.(e’ is contribution of element (e) to residual in equation (1)
for node (j).
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For the equation (2), the element residuals O, ,Oj associated with

the nodes i,j are:
0 = - [W®0®dx

I L(e) |
0 =— [ Wo®dx

] j

L

Galerkin’s method [8] is employed for the finite element formulation in
space and time, after substituting the approximation U™ (x,t) and v (x,t),

the error for equation (1) and (2) are:
2um +1 2. m [ m+1

E@ E o°u u —um (e)
r(x,t):eélr :eél [0 D 2 +@1-0)D; R ]mum(lum)klumvm] ()

At

62 m+l

0 6D 1-6)D
Z ezl [ 2 6x ( ) axz
E is the total number of elements.

for the (ith) node in element (e) in the equation (11), the residual is:

RO =[R L+ (R 1

I Ispace I dtime

82 m Vm+1 —y"
At

j_ !J.V m+l m ] (12)

where

2,.m

(e)
azum+1 o°u m m m,,m
[ gleJ;ce =" ,[ [ |:9D1 ox2 (1 G)D ax2 +au (1—U )_ ku™v ‘D dx (13)

(e)
© . 1 um+1_um
[Ri]time - L(.[))[N|l: ( At j:|] dx (14)

also for the (jth) node in element (e) in the equation (11), the residual is:
R = [R ](e)

[ (e)
space J Jtime

where
azumﬂ 2,,m

(e)
o°u
[Rj]i;lce:_L£)[Ni|:9Dl o +(1_9)D1 3 "’Oﬁum(l—um)—klumva dx -(15)

OX

m+1 m ©
S S

for the (ith) node in element (e) in the equation (12), the residual is:
0 [0 [0/

space time
© o2yt RV . © 17
[Oi]space :_L"[’ Ni|:eD26X2+(1_e) o2 _HV +k VY m:| dx ( )
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(e)
© _ | fv™t—vm
[0, ], = L(L)(N[ [ ~ m dx (18)

also for the (jth) node in element (e) in the equation (11), the residual is:
O(e) [o ](e)

[ (e)
space i Jtime

where

(e)
o, =~ [no0, 2" a0, 2V ku™ ™ (| dx o .(19)
I dspace _LI[) j 2 o’ "‘( - ) 2 o —uv™ +k,u X ..

o2 :—j{ { (le—;vmm(e)dx ...(20)

Now, we use the integrating by parts and use the neumann boundary
conditions(4), the equation (13) becomes:

(e)
. dN; ou™t dN; au™ m mom
[R ]gp;ce J|: ox (1_6) dx  ox ( (]'_u )_ klu v ):| dx

.(22)
from equations (5),(6) and (7), we get:

0,1 yma [ gp. 2] s 5,7
[R ]space |:6D L i| L |:(1 9) L :| Ui

b;b )
{ D, L} Nu +Njuf )] )dx+a(j)[Ni(Niui’"+Nju}“)2de
LE

+ky [N(Nu,m+Nu XNV N ax

and by usmg equatlon (9), the above equation becomes:

bb; | e
[R ]Space |:9D1 bf|j| m+l |:6D1 i :| m+1 [(1 e) bfli| uim
bb. 1® L19 Tol 19 Tl v]®
{(1—6)D1 II_J} UT{GSU{“} {6@} +{4(uim)} +
(e) (e) (e) ()
+ cX—Lu{“ur-n + G—L(u;“)z - kl—"u{“v{" + &u{“v?‘
6 ' 12 4 12

(e) (e)
{kll'umvm} {kll_u}“vﬂ (22)

12
from the time term (14) in the (ith) node, we get:
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i =g ({5

(e)
:_LL(Ni[_i(NiUPH+Nju?+1)+i(Niuim +Nju;“)D dx

= {6—:[(2%“*1 + u}“*l)—G—:t(Zu{“ + u}“)}(e)

finally this becomes:

(e) (e) (e) (e)
L L L L
R 1® z[ } umﬂ{_} um_[_} um_[_} um (23
[ i Jtime 3AL ! BAL ! 3At : 6At ! ( )

Similarly, the equation (15) for the (jth) node in element (e) becomes:

(e) (e) (e)
b.b, bib. b.b,
o —{eolt'} u{““{eol'l_‘} u}“”{(l—G)Dl L} ul"

Jlspace

b.b.]® (e) (e) &)
{(1—9)D1‘L’} u}“—{a;u{“} —{Og'u?“} {(;Iz'(uim)z} +
(e)
+[QLU{“UT} J{QL(UE“
6 4

(e) (e)
+[k1l'u}“vi’“} {kll'ugnv}“} .(24)
12 4

by the same way as in residual (ith), we get:

m+l o m ©
[RJ o :__[ N; _[u - J dx
ime o At
(e) (e) (e) (e)
:l:L:l ui””l +|:L:| u;“*l _I:L:| uim _‘:L:| u;" (25)
BAL 3At 6At 3At

this completes all of the residuals of the equation (11).

For equation (12) and by the same mannar we have:

(e)

dN; av™ dN; ov™ .

[oi]g;;m: (jieoz dx' — +(1-0)D, dx' ~ +Ni(uvm—k2u'“ 1v”‘)} dx  .(26)
LE

by using the equations (5),(6),(7) and (9) , we get:
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bib; 1 b, 19 . b,b,
[O ]space_{eDZ L:| |:6D2 L :| ml |:(1 e)D L} Vim

b.b.1® O] (e) (e)
1-0)p,—L| v+ “L + —LVT = &u{””v{“
L 3 6 4
(@ (€ (€)
{" 2 m+1va -[—"ZLqumr - —"ZLu}"*lvE”}e 27)

Y 2
the time term (18) in the (ith) node is:

ool [

(e) (e) (e) (e)
L L L L
z[ﬁ} "‘M{@} "Tﬂ{ﬁ} "‘m_[@} vy 29)

also for the (jth) node in element (e), the equation (19) becomes:

bib; 19 . bib; 19 . bib,
[O :Is:ace _|:6D2 Ti| m ' |:6D2 :| m ' |:<1 e)DZ :l V:'n
b.b.1® ) (&) (e)
{(1—9)D2# vy {“Lv } +[M—LVT} —{&u{””v{“}

6 3 12

(e) (e) (e)
k,L k,L k,L
{ 1o u vy —[—122 uj—“*lvim} —[—Z u?‘*lv;”} .(29)

by the same way as in residual (ith), we get:

© Vm+l _ Vm ©
G
(®) (e) (®) (®)
= [L} v?“l + [L} V?“l _{L} v _[L} v;-“ .(30)
BAt 3At BAt 3At

5.Element matrices:

It is convenient to organize the residauls in element matrix form
because a set of simultaneous nodal equations must be solved at each time
step. Then the normal assembly procedure can be used. The terms involving
nodal values at time step (m+1) are unknown and appear in the element

matrix. All other terms are known and go in the element column [1].
They have the form:

n) e
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the particular components can now be evaluated.
The element residuals are written as:

= +
Rj Rj space Rj time

substituting the equation (22) and (24) for the space residual yields:
(e) (®)

(¢) bib;  bib; bib;  bib;
H R S N A
=0D (- )
R] space 1% % UETH'l 1% % u;n
L L L L
©
k k,L kL . kL
ok ok m, ok m fabyn Kby _OLLJF(LLUTHLV{“JFLVT |
4+ 3 6 12 6 12 12 12 i
_%%umkll‘mﬁm _O‘Llel'-erkliLmkliLvm u
) 3 6 ' 477 12" 47

and the time residuals (23) and (25) gives:

L L L L 1@
R.1® — — u™ 5o oo gm
i _| 3At  6At o] 3At BAt [ (32)
R. | L L ym+ L L um "
I time - - J — - J
6At  3At BAt 3At
each has a set of terms evaluated at time step (m+1) and another at time step

(m).

combining the terms at time step m+1 gives the element matrix:

[B]® ¢ 2 N i N i (33)
L) -1 1 Juf| (eat) [1 2juf™| ™

also the element column is:

(€) m] () ©r, m
(e)__ _ & 1 - UI L 2 1 UI
"= e)(Lj L JLT_{GAJ [1 2] L;‘“] 39
L

also we can write the equations (27),(28),(29) and (30) as:
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B i

where

[B](e)=9[&j(e) P +(LJ(G) i ..(35)
L) [-1 1| (eat) [1 2fvi™

also the element column is:

@rqe —1ve @rz2 1790y
[C](e) =—(1-0) D, " L
L -1 1]V} BAL 1 2| |v
HI— k2|— m+1 k2|— m+1 HI— kzl— m+1 k2|— m+1—(e) "'(36)
L It U e | el U v
_| 3 4 12 6 12 12 i
M_L_kz_l—umﬂ_&umﬂ H_L_ﬁumﬂ_&umﬂ ij
i j i j
6 12 12 3 12 4 J
assembling the global matrices for the equations (33) and (34), we get:

=3 73
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VDl LT) [ml Lr)
+— -t 0 0 0
L 3At L 6At
{éDl LT) [26131 ZLT) [GDl LT)
-—=t+— —+— -—=+ 0 0
L 6At L 3At L 6At
(e) (€) (e)
.
o [ PR [
L 6At L 3At L 6At
o L (€) o L §)
SRR C X
L L 6At L 3at '™
41
il
a\,.)l
= ~@7)
4n-11
L % |
where

(e)
~(1-0)D, 2L oL aL al k,L k,L
R R S S A

— (e)
N @ 9)D1+L+OL_L_OL_LU2~, leV{”—levg]
L 6At 6 12 12 12
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o (@=0D L ol ol KbLon kL o)
2 L BAt 6 12 * 12 * 12 ? !

L (e)
A9, 2L ol abyn ol Kbyn Kbop)Typ
L 6At 3 6 4 12 4
L (&)
(200D 2L ol ok n ok n kibon Kb on )T
L 6At 3 6 4 4 12
B (e)
(@ 9)D1+L+0‘_L_O‘_Lugl_ﬁv2m—&vg“ ug
L 6At 6 12 12 12

n-1 n-2

(@)
a =|——=+ +———Up ,———V , ——— u
(=11 ( L 6At 6 12 "7 12 "% 12

(e)
-@1-6)b, 2L oL oL , oL , kL . kL 5
| ——+—+——-——Up,—— Uy ———V, , ———V
( L 6at 3 6 "2 4 "' 12 "% g4 "
(e)
~1-0)D;, 2L oL oL n ol m kL n kL o\
| — 4 ———up - Uy ———V ———V u
( L 6at 3 6 " 4 "' g4 " 12" -t

At Py n

L 6At 6 12 " 12 "' 12 "
_ ©
anlz(—(l e)D1+L+OL_L_OLLum &Vm leVnmj um

(e)
+((1_6)D1 L OL_L al—um_&vm kll—VmJe um

n-1

L 6At 6 12 "' 12 "' 12
(e)
(—(1—6)D1+£+0L_L_OL_L m oL o kL ., kL nmjeum

i A n

u p— _— p—
L At 3 6 "' 4 " 12 "t 4

assembling the global matrices for the equations (35) and (36) we get:
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o, L1” [, L]
L 3t L 6At

o0, L% [0,
-t ey
L oAt L

) [ e L1
At L 6At

0 0 PWMLT’ngﬂ@PmZ
L o6at L 3t L
()
0 0 0 PDQL} {9%
L L 6At L
]
b21
b31
= .(39)
b(n—l)l
_bnl_
where
—(1- (e)
by, = (1-0)D, 2L _u_L+k2Lu{n+1+k2Lung v
L 6At 3 4 12
(00D, Lopl Kol KoL )
L 6At 6 12 ' 12 ° 2
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——Uu
L BAt 6 12 * 2 !

(e)
b21=((1_e)D2 + L _H_L_F&umﬂ_*_kzl— erlje ym
12
~(@-0D, 2L pb KL g kol mﬂj(e’vm

+ ——Uu
L 6At 3 12 * 4 ? 2
M1 (e)
+ C 6)D2+2L —&+&ug‘”+ﬁu’3’”1 vy
L 6At 3 4 12
(@00, L pl Kol koL ma)?
L 6At 6 12 ° 12 3 3

@1-0)D, L puL k,L k,L
b = P g g e |
—(1- (e)
J{ s Le)D2 +§ALt_M_3L+ k122Lu?+21+ kZLu“mll Vi
(e)
—(1-e)D, 2L uL kL k,L
TP g e e

— (e)
+ (1 e)DZ +L—H—L+k2LUnm_+ll+ kzLugw-l Vnm
L 6At 6 12 4

(e)
bm:(w_,_L_“_L_,_ﬁ m+1+& m+1je ym

u u
L 6At 6 12 "t 12 " -
+(—(1—9)D2 +g_&+@umﬂ+kz_Lumﬂj@Vm
L 6At 3 12 "t o4 " n

we can solve the previous systems (37) and (38) by using the Gaussian
elimination method.

6.Numerical results:

In this section, we have solved the systems (37) and (38) with the
neumann boundary conditions [6]:
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6_u=0 atx=0and x=L

oX

on atx=0and x=L

oX

and initial condition [6]:

u(x,0)=f(x)=isin2(%nxj+§sin (inxj x e[0,L]
10 10 100 100
1 . (24 28 . (-5

V(X,0) =g(X) =—sin“| —nxX |+—sin“| —nX xe[0,L

x0)=909=15 [10” 100 [100”) clOL]

where step size L=0.05 and time step At=0.1,D, =D, =0.001, a =1,
k, =k, =1,0=0.5 and x =0.06.The results are given in table (1) and
fiqure (2).

When we take step size L=0.05 and time step At =0.1, D, = D, =0.001,
a=1k =k, =0,0=0.5 and 1 =0.01.The results are given in table
(2) and fiqure (2).
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Table (1). A comparison between the F.D.M. and Galerkin F.E.M. with the

initial condition: ¢,y _ g(x) = 1105in2(

24 28 . (-5
—TX [+——=SIN"| — X
10 100 100

j .

Finite difference Galerkin finite Finite difference Galerkin finite
method element method method element method
Dy =0.001, D, =0.001 | D; =0.001,D, =0.001 | D; =0.001, D, =0.001 Dy =0.001, D, =0.00

ky =Lk, =La=1 kp =Lky =La=1 kj =Lk, =La=1 ki =Lk, =La=1
1 =006,60=0 1 =0060=05 4 =006,0=0 4 =006,0=05
L =0.05 At = 0.1 L =0.05At=0.1 L =0.05, At = 0.1 L =0.05 At = 0.1

t=14.5 t=14.5 t=8 t=8
u(xt) u(x,t) v(Xx,t) v(Xx,t)

0.01727364 0.01695454 0.73037235 0.77554676
0.01708765 0.01677521 0.78649215 0.81768448
0.01662541 0.01632946 0.90756766 0.91319185
0.01612475 0.01584698 1.01406856 1.00260765
0.01583993 0.01557386 1.06219185 1.04482057
0.01590271 0.01563745 1.04067279 1.02619394
0.01624954 0.01597543 0.95552985 0.95602083
0.01666076 0.01637400 0.83812229 0.86014518
0.01688514 0.01658927 0.75844870 0.80048434
0.01677429 0.01647741 0.78238088 0.81935633
0.01635754 0.01606683 0.89132091 0.90468775
0.01582614 0.01554364 1.00784963 1.00161710
0.01543709 0.01515988 1.07730649 1.06259648
0.01538274 0.01510713 1.08208726 1.06755464
0.01569478 0.01542225 1.02331169 1.01715799
0.01623924 0.01598064 0.91868160 0.93018756
0.01680249 0.01657747 0.81536852 0.84587901
0.01720984 0.01704017 0.77568034 0.80700317
0.01740547 0.01730286 0.81304924 0.82317497
0.01745113 0.01740520 0.87418656 0.88141190
0.01745008 0.01742652 0.87151268 0.87991302
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Table (2). A comparison between the F.D.M. and Galerkin F.E.M. with the
initial condition: f(x):g(x)zlsinz(m J
10

— X

28 . (-5
+—SIN"| — X |*
100 100

10
Finite difference Galerkin finite Finite difference Galerkin finite
method element method method element method

D, =0.004,D, =0.001 | D, =0.001,D, =0.001 | D, =0.001,D, =0.001 | D, =0.001,D, = 0.001

k, =0k, =0, =1 k,=0k,=0,a=1 k, =0k, =0, =1 k, =0k, =0, =1

#=0.0L6=0 #=0.0L,60=05 ©=0.0L6=0 #=00L0=05

L =0.05At=0.1 L =0.05At=0.1 L=0.05At=0.1 L =0.05At=0.1

t=9.5 t=9.5 t=13.5 t=13.5
u(x,t) u(x,t) V(x,t) V(x,t)

0.99940894 0.99945457 0.04189622 0.04110720
0.99942310 0.99947123 0.04243666 0.04159035
0.99945826 0.99951240 0.04377318 0.04368605
0.99949645 0.99955657 0.04520580 0.04507065
0.99951882 0.99958132 0.04599873 0.04578861
0.99951566 0.99957533 0.04577925 0.04560786
0.99949131 0.99954407 0.04473965 0.04469978
0.99946153 0.99950661 0.04353281 0.04364617
0.99944485 0.99948520 0.04291766 0.04312346
0.99945266 0.99949328 0.04334606 0.04323447
0.99948332 0.99952845 0.04471343 0.04468572
0.99952344 0.99957422 0.04640577 0.04632790
0.99955527 0.99960918 0.04761370 0.04743364
0.9995658 0.99961824 0.04774012 0.04755889
0.9995528 0.99959954 0.04668071 0.04659355
0.99952469 0.99956406 0.04483322 0.04477505
0.99949472 0.99952862 0.04284876 0.04277671
0.99947379 0.99950634 0.04128434 0.04110823
0.99946514 0.99950015 0.04036425 0.04020614
0.99946458 0.99950323 0.03997844 0.03992289
0.99946542 0.99950576 0.03988856 0.03979043
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Figure (1). Comparison between the F.D.M. and Galerkin F.E.M. with the initial

condition: f(x)_g(x)_1sin2(24nxj+285in2(_57rXJ'
10 10 100 100

Where @ =1,D, = D, =0.001,k, =k, =1, £=0.06 and t=105
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1 Galerkin

Explicit  --------

0.7 i

populations
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Figure (2). Comparison between the F.D.M. and Galerkin F.E.M. with the initial
condition:

f(x) =9(x) =lsin2(24 nxj+285'n2(_5nxJ Where
10 10 100 100
a=1,D, =D, =0.001,k, =k, =0, 2=0.01 and t=21.5

7.Discussion:

The main conclusion, which we can draw from this result is that
Galerkin finite element method is faster than finite difference method to
reach the equilibrium state and to reach the steady state solutions with less
steps in time, from Fiqure (1) and table (1) it is obvious that Galerkin
method is faster than finite difference method to reach the equilibrium state
where the values for u(x,t) are equal for all the values (x) and (t), and v(x,t)
is also equal for all the values (x) and (t). Also Galerkin method is faster
than finite difference method to make the predator v(x,t) reach the steady
state solution (v=1), while the prey u(x,t) decreases to steady state (u=0) in

far time steps, given that the rate of interraction (k1 =Kk, :1) between the
two species and the rate of death (,u = 0.06) of the old predator, and the
rate of growth (a =1) of the prey.
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With an interraction (k, =k, =0) between the two species and the

rate of death (,u = 0.01) of the old predator, and the rate of growth (a :1)

of the prey, Galerkin method faster than finite difference method to reach
the prey u(x,t) and the predator v(x,t) to the equilibrium state and to make
the prey reach a steady state (u=1) and the predator to steady state (v=0) in
far time steps as shown in table (2) and figure (2).
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