On MP-Rings

Raida D. Mahmood

Azhar M. Hajo

raida.1961@uomosul.edu.iq

azhar.mohammed911@gmail.com

Department of Mathematics College of Computer Science and Mathematics University of Mosul, Mosul, Iraq

Received on: 28/11/2018 Accepted on: 23/06/2019

ABSTRACT

An ideal I of a ring R is said to be right (left) Pure if for every $\in I$, there is $b \in I$ such that a = ab (a = ba res). A ring R is said to be right (left) MP-ring, if every maximal right (left) ideal of R is a left (right) pure. In this paper have been studied some new properties of MP-rings, there connections with strongly regular rings.

Some of the main result of the present work are as follows:

- 1- Let R be aright MP-ring, r(a) is a W-ideal for all $a \in R$ then
 - a- Every essential ideal is a direct summand.
 - b- R is strongly regular ring.
- 2- Let R be aright MP-ring. If R is right almost abelian left NBF ring, then R is strongly regular.

Keywords: MP-ring, strongly regular, W-ideal, NBF-ring.

حول الحلقات من النمط-MP

أزهر محمد حاجق

رائدة داؤد محمود

قسم الرياضيات كلية علوم الحاسوب والرياضيات جامعة الموصل، الموصل، العراق

تاريخ قبول البحث: ٢٠١٩/٠٦/٢٣

تاريخ استلام البحث: ١١/٢٨/١١/٨٠

الملخص

 $(a=b\in I$ يوجد $a\in I$ يوجد $a\in I$ يقال لِلمثالي في الحلقة $a\in I$ ، بأنه نقي أَيمن (أَيسر)، إِذَا كَانَ لِكِل $a\in I$ يوجد $a\in I$ يقال لِلحلقة $a\in I$ على النمط $a\in I$ يُمنى (يُسرى)، إِذَا كَانَ كَل مِثَالِي أَعظمي أَيمن (أَيسر) نقي a=ab أَيسر (أَيمن). في هذا البحث درس بعض الخواص الجديدة لِهذه الحلقات وعلاقتها مع الحلقات المنتظمة بِقوة. ومِن أَيسر (النتائج التي حَصلنا عليها:

: فَإِن $a \in R$ لِكُلُ W حلقة مِن النمطMP يُمنى و r(a) مِثالي مِن النمط R فَإِن $a \in R$ فَإِن

- a) كُل مِثالي أَساسي هو مُركبة جمع مُباشر
 - R (b حلقة مُنتظمة بقوة
- 2- لِتَكُنْ R حلقة مِن النمط-MP يُمنى. إِذا كانت مِن النمط-NBF يُسرى وأَبيلية تقريبً يمنى فَإِن R حلقة مُنتظمة بقوة.

الكلمات المفتاحية: حلقة من النمط-MP، منتظمة بقوة، مثالي من النمط-W، حلقة من النمط-NBF

1. المقدمة

2. الحلقات من النمط-MP

ندرس في هذا البند الحلقات مِن النمط-MP وبعضاً مِن خواصها الأساسية وعلاقتها مع الحلقات المُنتظمة بقوة. الآن سَنقوم بإعطاء تعريف الحلقات مِن النمط-MP .

تعريف(2.1): [5]

يُقال لِلحلقة R بِأَنها حلقة من النمط-MP يُمنى (يُسرى)، إذا كان كل مِثالي أَعظمي أَيمن (أَيسر) نقياً أَيسر (أَيمن).

مثال: – لِتكن Z_2 حلقة الأَعداد الصحيحة معيار Z_2 ولتكن Z_2 : $A,b,c\in Z_2$ فَإِن $R=\left\{\begin{bmatrix} a & b \\ c & 0 \end{bmatrix} : a,b,c\in Z_2\right\}$ ولتكن $I=\left\{\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$ النمط-MP يمني.

قضية $a \in R$ لكل $a \in R$ لكل الكل $a \in R$ فَإِن كُل عنصر في R له قضية (2.2) قضية (2.2) لكل عنصر في النمط-MP يُمنى و معكوس أَيمن.

كُل حلقة مُنتظمة بِقوة تكون حلقة مِن النمط-MP لكن العكس غير صحيح.

في المصدر [5] أعطيت المُبرهنة الآتية:

مبرهنة (2.3): الحلقة R مُنتظمة بِقوة إِذا وفقط إِذا كانت R مُختزلة ومِن النمط-MP يُمنى .■

تعريف: (2.4): [10]

إذا كان ($Weak\ ideal$) إذا كان R في الحلقة R في الحلقة R في الحلقة R في الحلق R في الحلق R في الحلق R في الحديث إنَّ أن الحديث إنَّ أن الحديث إنْ الحديث إنْ الحديث إنْ الحديث إنْ الحديث إنْ الحديث إنْ الحديث إن الحدي

المبرهنة الآتية تُعطى أحد الشروط للحلقة مِن النمط- MP يُمنى لِلحصول على الحلقة المنتظمة بِقوة.

مبرهنة (2.5): لِتكن R حلقة مِن النمط-MP يُمنى و r(a) مِثالي مِن النمط-R فَإِن R حلقة مُنتظمة بقوة.

البرهان:- نَفْتَرِض أَن $b \in R$ ، بِحيث إِنَّ $b \in R$. لِيكن $b \in R$. لِيكن $b \in R$. إِذِن $b \in R$ لِهذا فَإِنَّ $b \in R$. يعن أَن $b \in R$ و يصبح لدينا $b \in R$ ومن هنا نحصل $b \in R$. بما أَن $b \in R$ و يصبح لدينا $b \in R$ ومن هنا نحصل $b \in R$. بما أَن $b \in R$ و يصبح لدينا $b \in R$ ومن هنا نحصل $b \in R$. بما أَن $a \in R$ الحلقة $a \in R$ لإذلك يوجد مِثالي أَعظمي أَيمن $a \in R$ في الحلقة $a \in R$ يحيث إِنَّ $a \in R$ في الحلقة $a \in R$ وهكذا فَإِنَّ $a \in R$ النمط- $a \in R$ وهكذا فَإِنَّ $a \in R$ وهكذا فَإِنَّ $a \in R$ ووهذا يؤدي إلى أَن $a \in R$ وهذا تناقض . لإذلك يكون $a \in R$ وعليه فَإِنَّ $a \in R$ وولا المتخدام المبرهنة (2.3) فَإِنَّ $a \in R$ هي حلقة مُنتظمة بقوة .

يُقال للحلقة R بأنها حلقة موحدة (Uniform ring) إذا كان كُل مِثالي غير صفري في R أَساسياً. [4]

قضية مساعدة (2.6): [4] إذا كانت R حلقة مُختزلة فَإِنَّ

 $a \in R$ لكل r(a) = l(a) -1

 $a \in R$ لکُل $aR \cap r(a) = 0$ -2

 $a \in R$ لكل R هو مِثالي مِن النمط-M في R لكل R لكل R هو مِثالي مِن النمط-R في R لكل R كل R فإنَّ R هي حلقة مقسومة يمنى إذا كانت R حلقة موحدة.

 $aR\subseteq M$ أَنَ a=a وهذا يؤرض أَنَ $aR\ne R$ و وأَنَ $aR\ne R$. إِذِن يوجد مِثالي أعظمي أيمن a=ba وهذا يؤدي إلى a=ba وهذا يؤدي إلى a=a وانّ a=a حيث إنّ a=a حيث إنّ a=a وانّ a=a وانّ a=a وانّ a=a واناتالي فإنّ ووجود معكوس أيمن أي إن من القضية وهذا تناقض . إذن من القضية وهنوم وهن

 $a \in \mathbb{R}$ لِكِل W- لِتِكن R حلقة مِن النمط- M يُمنى بِحيث إِنَّ r(a) هو مِثالي مِن النمط- R لِكِل R فَإِن كُل مِثالَى أَساسَى هو مُرَكَّبة جمع مُباشر.

R البرهان: - مِن المبرهنة (2.5) نحصل على R مُختزلة . لِكي نُبرهن أَن R هو مُركبة جمع مباشر في R البرهان: - مِن المبرهنة R نخرض أَن R بحيث إنّ R بحيث إنّ R بحيث إنّ R نفرض أَن R بخرض أَن R بخره برالي أغظمي أيمن R بخره برالي أغظمي أيمن R بخره برالي أغزل R بخره أَن R بنا أَن R هو مِثالي نقي أَيسر لِذلك فَإِنَّ R وهذا تناقض لِذلك فَإِنْ R الله R وهذا تناقض لِذلك فَإِنْ R الله R الأن بِما أَن R R الله R (2.6) وضية مساعدة R (2.6) لذلك فَإِنْ R الله R الله ومرابع الموقع الموقع

قضية (2.9): إذا كانت R حلقة عكوسة مِن النمط- MP يمنى فَإِنَّ R هي مُنتظمة بِضعف يُمنى.

البرهان: – سَوف نُبَرُهِنُ RaR + r(a) = R ، لكل $RaR + r(a) \neq R$ أَنْ يَوجد $RaR + r(a) \neq R$ إِذِن يوجد مِثالِي أَعظمي أَيمن R في R بِحيث إِنَّ $RaR + r(a) \subseteq M$. بِما أَن $RaR + r(a) \subseteq R$ إِذِن النمط R أَمْ عَظمي أَيمن R في R وهذا يؤدي إِلَى أَنَّ R أَنَّ R ومِن ثَمَّ فَإِنَّ R هي حلقة مُنتظمة بِضعف R ومِن ثَمَّ فَإِنَّ R وهذا تناقض . لِذلك فَإِنَّ R مختزلة إذا كانت R حلقة من النمط R مختزلة إذا كانت R حلقة من النمط R مختزلة إذا كانت R حلقة من النمط R وعكوسة .

البرهان : ليكن $a \in R$ بحيث إنَّ $a^2 = 0$. إذا كان $a \neq 0$ يوجد مثالي أيمن أعظم $a \in R$ بحيث إنَّ $a \in R$ يوجد مثالي أيمن أعظم $a \in R$ بحيث إنَّ $a \in R$ لنك فإنَّ $a \in R$ لنك $a \in R$ لنك $a \in R$ لنك $a \in R$ وهذا تناقض لذلك $a \in R$ وهذا تناقض لذلك $a \in R$ مختزلة.

تعریف (2.11): الحلقة R تُسمى أَبيلية تقریبا يُمنى (almost abelian ring) إِذَا كَان ea=0 تُحقق ea=0 لِكِل ea=0 و $e\in E(R)$ و $e\in E(R)$ مجموعة العناصر المتحايدة). [9] مِن الواضح أَن الحلقة أَبيلية هي أَبيلية تقريباً يُمنى العكس غير صحيح. [10]

، يَعْرِيفُ: (2.12) بَانَهُا مِنِ النَّمَطُ-Nilpotent Free Bearing) $oxed{NBF}$ يُعْنِي النَّمْطُ ae=0 يُعْرِيثُ إِذَا كَانَ لِكُلِّ ae=0 , $a\in N(R)$ و ab=0 , $a\in N(R)$ يُعْرِينُ إِذَا كَانَ لِكُلِّ $e\in E(R)$, ab=0 ، $a\in R(R)$ و ab=b

الآن نستخدم شرطاً آخر لكي تكون الحلقة – MP منتظمة بقوة.

مبرهنة: (2.13) : لِتَكُنْ R حلقة مِن النمطMP يُمنى . إِذَا كانت R مِن النمطMP يُسرى وأبيلية تقريباً فَإنها حلقة مُنتظمة بِقوة.

 $a \in aR \subseteq 0$ إِذَا كَان $a \in a \in R$ غير مُخترَلة . لِهذَا يوجد $a \in R$ بِحَيثُ إِنَّ $aR + l(Ra) \subseteq M$ بِحيثُ إِنَّ $aR + l(Ra) \subseteq M$ بِحيثُ إِنَّ $aR + l(Ra) \ne R$ بِما أَن $aR + l(Ra) \ne R$ بيوجد مِثَالي أَعظمي أَيمن $a \in aR = 1$. و بِما أَن $a \in aR = 1$ بيعض $a \in aR = 1$ هي حلقة مِن النمطa = ba بيمنى a = ba بيمنى a = ba بيمنى a = ba و $a \in aR$ أَذِ إِنَّ $a \in aR$ و $a \in aR$ و بيمنى $a \in aR$ أَذِ إِنَّ $a \in aR$ و $a \in aR$ أَذِ إِنَّ $a \in aR$ و $a \in aR$ أَذِ إِنَّ $a \in aR$ و $a \in aR$ أَذِ إِنَّ $a \in aR$ و $a \in aR$ و $a \in aR$ الإلك قَانِ $a \in aR$ وهذا تناقض لِذِلك قَانِ $a \in aR$ الإلك قَانِ $a \in aR$ وهذا تناقض لِذِلك قَانِ $a \in aR$ الإلك قَانَ $a \in aR$ ومن $a \in aR$ الإلك قَانَ $a \in aR$ ومن $a \in aR$ الإلك قَانَ $a \in aR$ الإلك الإلك قَانَ $a \in aR$ الإلك الك الإلك الإلك الإلك الإلك الإلك الك الإلك الإلك الإل

هنا نحصل على ca = acca و a = acca = acca و a = acca و a = acca و نحصل على a = acca = acca و a = acca و acca = acca نحصل على a = acca = acca و acca = acca = acca نحصل على a = acca = acca و acca = acca = acca نحصل على a = acca = ac

تعریف (nil-injective) nil-injective) nil-injective) R على الحلقة R على الحلقة R على الحلقة R على الحلقة $f:R \to M$ و أي تشاكل $g:AR \to M$ يمكن توسيعه الى $g:AR \to M$ أو بعبارة مكافئة . $g:AR \to M$ على الخامة $g:AR \to M$ يقال لِلحلقة $g:AR \to M$ يقال لِلحلقة $g:AR \to M$ بيقال لِلحلة $g:AR \to M$ بيقال للحلة $g:AR \to M$ بيقال للحلة $g:AR \to M$ بيقال للحلة $g:AR \to M$ بيقال للحلة ويقال لل

قبل الإنتهاء مِن هذا البند نوجد شرط الحلقات الغامرة التي تكون من النمط-nil تقريباً يمنى لكي تكون منتظمة بقوة.

قضية مساعدة (2.15):[5]:[5] ذا كانت R حلقة مِن النمط-MP يُمنى فَإِنَّ [5]:[5]:[5]

قضية مساعدة (2.16) إذا كانت R حلقة غامرة يمنى من النمطN فإنَّ R حلقة مختزلة إذا وفقط إذا كانت من النمطNI و NI NI و NI

مبرهنة (2.17) : ليكن N(R) مثالي في الحلقة R, فإنَّ العبارتين الآتيتين متكافأتان:

حلقة منتظمة بقوة R-1

. يمنى MP - علقة غامرة من النمط-nil يمنى و من النمط R -2

 $2 \leftarrow 1 \Rightarrow 1$ البرهان: من الواضح

مو مثالي و R حلقة غامرة من النمطnil, فإنَّ فباستخدام القضيتين المساعدتين R فإنَّ فباستخدام المبرهنة (2.13) و (2.15) نحصل على أن R منتظمة بقوة.

المصادر

- [1] Abdullah, N. K. (2015), "Strongly pure ideals and strongly pure submodules", K. Un. J./Scientific studies Vol. 10, 12-28.
- [2] AL-Ezeh H.(1988); "The pure spectrum of PF-ring", comm.Math Univer. S. p. Vol. 37, No.2, 179 18.
- [3] AL-Ezeh, H.(1989); "pure ideals in commutative reduced Gelf and rings with unity" . Arch . Math . Vol . 53 ,266 269 .
- [4] Cohn , P-M . (1999) , "Reversible rings" , Boll . London Math . Soc ., 31 , 641 -648 .
- [5] Mahmood , R.D. (2000) , "On pure ideals and pure sub modules" , Ph . D., Thesis , Mosul university .
- [6] Mahmood , R.D. and Mahmood , A.B.(2007), "On rings whose maximal essential ideals are pure" Raf.J.of Comp.and Math.Vol.4,No.1,57-62
- [7] Mahmood,R.D.and Mahmood,A.B.(2008),"MaximaL Generalization Of Pure Ideals" Raf .J.of Comp.and Math .Vol . 5 ,No.1,21-27. "
- [8] Wei , J . C . and Chen , J . H. (2007); "Nil-injective rings" , Int . Electron . J-of Algebra , Vol .2 1-21.
- [9] Wei , J.C, (2013) , "Almost abelian rings" , Commun . in Math ., VOL 21, NO .1,15-30 .
- [10] Zhow , H . (2007) , "Left SF-rings and regular rings" Comm . In Algebra , Vol . 35 , NO . 12 , 3842-3850.