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ABSTRACT

In this paper, we consider the drainage of a vertical thin liquid film
and we study the case of instability in gravity driven flow of a vertical thin
films. Throughout this work, we assumed that the fluid thickness is constant
far behind the front and we neglect the thickness of the film at the beginning
of the motion. The equation of the film thickness is obtained analytically,
using the similarity method by which we can isolate the explicit time
dependence and then the shape of the film will depend on one variable only.

Keywords: Governing Equations , Similarity method.
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Introduction:

We expressed here some of the theoretical aspects of the instability
development in a vertical thin liquid films in two dimensional coordinate
system. There are different types of phenomena that can occur, such as
drainage, details of rupture, non—Newtonian surface properties [2] and
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moving contract lines in thin films [1]. These phenomena can help to
describe the physical processes that occur in our real world.

Kondic and Diez [7] have studied the case of contact line instability of thin
liquid films on an inclined plane. [3]have studied the global models for
moving contact lines. Huppert [4] considered the flow and instability of a
viscous current down a slope. It is obvious that gravity has a significant
effect on the flow of this films but also here we present some other forces
that also have an important effect on the flow such as (viscous, surface
tension) and for different types of fluids. Different fluid-solid combinations
have different wetting properties that influence the shape of the patterns [5].
The flow of thin films is relevant to a number of different fields such as
engineering, biology and chemicals [6]. These flows can be driven by
gravitational forces [8], studied the contact line instability of thin films
flows with constant flux configuration, which presents theoretical,
computational and experimental aspects of the instability development in
such flows.

Governing Equations:
Let q:q(u,w)denotes the fluid velocity, where u and w are the

velocity components in x and z directions respectively. Let Z =h(X,t) be

the equation of the vertical thin liquid films as shown in Figure (1) and the
flow is in x direction.

Figure (1): Sketch of the flow in two—dimensional geometry, where the
capillary ridge is just behind the flow front

The continuity equation is given by:
ou ow
L

e (1)
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The Navier-Stokes equations in X and Y directions respectively for
a vertical thin liquid film is give by:

(a_U_HJa_U_’_Wa_UJ__E_F @ @Zu + g (2)
Pa "o a) o Mo T | -
And

..(3)

—H—tW— |[=—— Y —5 +—
ot OX oz oz ox: oz
Where p, 1 are the density, viscosity of fluid and P the pressure.
Since the Reynolds member is the very small and so the inertia terms
in the Navier-Stokes equation can be neglected and thus equations (2) and
(3) become

ﬁ{mv ow mq__ap [ﬁw yw]

oP o°u 0%

ERCArI e @
and

@— 82_W_|_62W (5)

0z H x> oz°

The boundary conditions to be imposed are as follows:
The no-slip condition gives

at z=0, u=0 ...(6)
The shear stress condition on the surface vanishes, that is:
at z=h ,a—u:O ..(7)
0z

Also the pressure form the Laplace-Young condition states that at z=h,
we have

P=—ok+P ...(8)
Where K is the curvature of the surface of the film, o is the surface tension
and P, is the atmospheric pressure in the air phase.

We introduce the following non-dimensional variables as follow:

Xx=LX, z=HzZ, u=U0T, w=eUW, Pz%lS , e=%<<1,

h=Hh.
o’u .
We can neglect the term PV since
X
ou_ 1 9% _du_ 1 o

2 L2 ox: ozt H? oz’
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and so equations (4) and (5) become respectively

oP o%u

&=ﬂ¥+/?g ..(9)
and

@a_l:zo ...(10)

Equation (10) ensures that the pressure is a function of X and t only.
Now by using the non-dimensional variables, equations (1) and (9) in non-
dimensional form becomes.

ou ow

—+—=0 ...(11)
oX oz

and

oP 1 0% L2

oX € oz yr.8;

The boundary conditions (6), (7) and (8) in non dimensional form
become

At z =0, u=0 ..(13)
- - ou
o (14)
— & oh?
P=— + P ...(15
Caox? ° (15)

Where the Bond number g and the capillary number (Ca) are
defined as:

2
p= pot , and Ca:ﬂ
(o) O
Equation (9) in non-dimensional form gives
op_1ou p
oXx €& 07° Ca
Integrating equation (16) with respect to Z, we get
oP_ 1ou B_ . [
—ZI=——+"—7+k/(X,t ..(17
X € o Ca (%) {1n
Form the boundary condition (14), we have
Ph—Lhik(x)
OX Ca
or

...(16)
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P p
k(X,t)=—h—-—"—h ..(18
(xt)=—h-" (18)
substituting (18) into (17), we get
P =\ 1 aou B[ =
—I\Z-h)]=— —+=1Z-h ...(19
A Al 09
integrating equation (19) with respect to Z we have
lf(z-ﬁ)zzimi(Z—H)ﬂk (%,t) (20)
2 X e’ 2Ca 2
Using the boundary condition (13), and from equation (20), we have
- 1-2(0P p
k,(X,t)==h | — —-— .21
: (%) 2 (ax CaJ @l
Equations (20) and (21) and after some simplifications, give
_ A
g=|P_L1Z i .(22)
ox Ca) 2

The average velocity over the film thickness is given by
1f_ -
Uu==|U0dz ...(23
1 hl (23)
Equations (22) and (23), give i
2/ D =3 o
5 -SF L L
h{ox Ca) 6 2 .

or
272/ A

0= d i—ﬁ ...(24)
3 |ox Ca

From the conservation of mass and since the free surface is a stream line,

then the derivative following the motion Dh must be vanishes, thus

Dh 6h _oh _ oh
—_—=—+ Ul - +WwW - =
Dt ot OX 0z

Since h isa function of X and t only, equation (25), then become
a—h+Ua—E]=O ...(26)
ot X

Now equations (24) and (26), give
@_552[@_&}@5_0

0 ...(25)

— —= ...(27)
ot 3 oX Ca)oXx
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The curvature of the surface is given by

- 272
k=g 1+ a—t_]
oX oX

Since for thin liquid films of small slope, that is since @ IS SO

OX
small, the curvature can be approximated to give
-
-2
oX

and thus the boundary condition (15) gives

_ et
P _ —ia—_? ..(28)
X Ca ox
substituting equation (28) into (27), we get
oh eh'(¢oh pgoh
o _ — - = ...(29)
ot 3 (Caox® Ca)oX

equation (29) is the governing equation of the thin liquid film.
Similarity method:

We concentrated on equation (29) since it represents the flow of
a vertical film down a substrate. We have assumed through this work that
the film thickness is constant far behind the front and this assumption is true
since the fluid thins out there and so we apply the similarity method to see
how this thinning process evolves in time.
3
Far behind the front (Z—)_(?] is very small and thus we can neglect

and so equation (29) reduces to give
oh 62 ﬂHZG_h -0

— — ...(30)

ot 3Ca X

for self-similar solution, we assume that

h(x,t)=h,()H (7) .31

where 7 is the self similar variable measures the distance to the front and

X

n=— ,0<n<1 ...(32)

X (1)

where X, (t) is the front position as shown in figure (1), this method is to

isolate the explicit time dependence and then the shape of the film will
depend on the variable 7 only.
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Now let

h.(t)= At”
and ...(33)

X (t)=At’
where £ and 6 are the self similar exponents.
from (31) and (32), equation (30) gives
H(njd)x,  dH | peti dh_, - (34)

h (d% /dt) ' dy  3Caldx, /dt)dn

Since the total volume of the fluid is constant, so the volume per unit

width (volume flow rate) is also constant, thus

1
U=hx, Jﬁ(n)dn = constant
0

1 —
Which gives (since also .[H (7)dn = constant)
0
dx
dh f ...(35)

From (33) and (35), and since each of the terms in equation (34) is
independent explicitly on t, we have

1
5:— = —
p 3
Thus equation (34) gives
o ' 2 2 Ay
HH]dH_,bAe szH 0
dnp CaA, dn

or
dlyH)-2A S Hab =0 ..(36)
CaA,
Integrating equation (36), we get
TH-PAS ¢ .(37)
3CaA,

where C is a constant of integration since at 7 =0, we have H =0, then
from equation (37) we have C =0, and thus (37) gives

= 1 (3CaAn %
H(n)= ...(38
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l_
Since U = hofoJ.H(n)dn, s0 (38) gives
0

3Ca; ;
u=A? =" |n2d
A, ﬂezln n
Integrating, we get
1
38 . 2 )2
_ 0 ..(39
& (4caE j (39)

From (33), we have
1

X, :(ﬁeztUZT ...(40)
4Ca

Choose the constant A :%, equation (38), gives

{(3Ca2/3/462ﬁ77];

H(z)=3 ...(41)
0-3—
Also from (32) and (40)
1
(3 puct) 3
=X| —— ...(42
7 { 4Ca j (42)
from (41) and (4.2), we get after simplification,
1
H(%)=3 2 g1 s ..(43)
€

From the transformation (31), equation (42) gives

h(x,t) = /t?’zf‘; .(44)

equation (44) represent the thickness of the film. Now the thickness at X

is then given by
1
- 9uCa |3
hix;,t)= ...(45
(%,.t) (Zezﬂt] 45)

equation (45) are used to determine the fluid thickness behind the capillary
ridge.From (40), we have
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4x: Ca
t=
32 il
and so equation (45), gives

H(Xf):;)TU ...(46)

Which gives the fluid thickness at X .

Some of the solution curves are presented in figures (2), (3)
and (4).

Ca=0.0

-1,5%

Figure (2): The thickness of the film for different capillary numbers
Ca=0.01,0.02, 0.03 for fixed time t =2 and Bond number = 0.15 .

1se £ =01

-1.5L

Figure (3): The thickness of the film for different Bond number
£ =0.1,0.3,0.5 and for fixed time t =2 and capillary number Ca= 0.01.
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1.5¢ t=6
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t=4
1+ =2
0.5F
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X
-0.5F
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-1.50

Figure (4): The thickness of the film for different time t =2,4,6 and for
fixed Bond number B =0.25 and capillary number Ca = 0.01.

Conclusion:

We use the similarity method to solve differential equations for the
drainage of a vertical liquid film and this method is very useful since the
non-linear partial differential equations that governs such flow can be
simplified to a single ordinary differential equations. The solution curves of
the differential equation shows that the thickness of a liquid film increases
as the time decrease and this usual. Furthermore, for different liquids such
as glycerin and silicon the solution curves shows that the glycerin oil film is
less than that of silicon oil film and the reason for this is the difference in
the ratio of the bond and capillary numbers.
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