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ABSTRACT 

In this paper, we consider the drainage of a vertical thin liquid film 

and we study the case of instability in gravity driven flow of a vertical thin 

films. Throughout this work, we assumed that the fluid thickness is constant 

far behind the front and we neglect the thickness of the film at the beginning 

of the motion. The equation of the film thickness is obtained analytically, 

using the similarity method by which we can isolate the explicit time 

dependence and then the shape of the film will depend on one variable only.  

Keywords: Governing Equations , Similarity method. 

 غشاء السائل الرقيق العمودينمذجة تصريف ال

 . عبدالاحدجوزيف ج

 كلية التربية

 جامعة دهوك

 11/4/2010: قبولتاريخ ال                                    13/9/2009تاريخ الاستلام: 

 الملخص

في هذا البحث تطرقنا الى جريان غشاء رقيق رأسي، ودرسنا الحالة التي يكون  للجاذبية            
المقدمة وقد أهملنا    ثابت بعيدا عـن الغشاءالرئيسي في جريان هذا الغشاء. افترضنا أن سمك الدور 

السمك عند بداية الحركة. تم الحصول على معادلة سمك الغشاء وقد تم  حل هذه المعادلة تحليلياً اذ  
شاء يعتمد استخدمت طريقة التشابه لفصل المتغير المعتمد على الزمن ضمنيا وبهذا يكون شكل الغ

 على متغير واحد فقط. 
 ، طريقة التشابه. سمكلمعادلات الالكلمات المفتاحية: 

 

 

Introduction:  

We expressed here some of the theoretical aspects of the instability 

development in a vertical thin liquid films in two dimensional coordinate 

system. There are different types of phenomena that can occur, such as 

drainage, details of rupture, non–Newtonian surface properties [2] and 
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moving contract lines in thin films [1]. These phenomena can help to 

describe the physical processes that occur in our real world.  

 Kondic and Diez [7] have studied the case of contact line instability of thin 

liquid films on an inclined plane. [3]have studied the global models for 

moving contact lines. Huppert [4] considered the flow and instability of a 

viscous current down a slope. It is obvious that gravity has a significant 

effect on the flow of this films but also here we present some other forces 

that also have an important effect on the flow such as (viscous, surface 

tension) and for different types of fluids. Different fluid-solid combinations 

have different wetting properties that influence the shape of the patterns [5]. 

The flow of thin films is relevant to a number of different fields such as 

engineering, biology and chemicals [6]. These flows can be driven by 

gravitational forces [8], studied the contact line instability of thin films 

flows with constant flux configuration, which presents theoretical, 

computational and experimental aspects of the instability development in 

such flows.               

Governing Equations:  

Let ( )wuqq ,= denotes the fluid velocity, where u and w are the 

velocity components in x and z directions respectively. Let ( )txhz ,=  be 

the equation of the vertical thin liquid films as shown in Figure (1) and the 

flow is in x direction.   

 

  

 

 

 

 

 

 

 

 

 

 

 
 

Figure (1): Sketch of the flow in two–dimensional geometry, where the 

capillary ridge is just behind the flow front 
 

The continuity equation is given by: 
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The Navier-Stokes equations in x  and y  directions respectively for 

a vertical thin liquid film is give by:  
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Where  ,  are the density, viscosity of fluid and P  the pressure. 

Since the Reynolds member is the very small and so the inertia terms 

in the Navier-Stokes equation can be neglected and thus equations (2) and 

(3) become  
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The boundary conditions to be imposed are as follows: 

The no-slip condition gives  

at   0=z   ,   0=u        …(6) 

The shear stress condition on the surface vanishes, that is:  

at   hz =   , 0=




z

u
       …(7) 

Also the pressure form the Laplace-Young condition states that at hz = , 

we have  

PkP +−=           …(8) 

Where k  is the curvature of the surface of the film,   is the surface tension 

and P is the atmospheric pressure in the air phase.  

We introduce the following non-dimensional variables as follow:  
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and  so equations (4) and (5) become respectively   
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and  
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Equation (10) ensures that the pressure is a function of x  and t  only.  

Now by using the non-dimensional variables, equations (1) and (9) in non-

dimensional form becomes. 
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The boundary conditions (6), (7) and (8) in non dimensional form 

become 

At  00 == u,z       …(13) 
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Where the Bond number   and the capillary number ( )Ca  are  

defined as: 
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 Equation (9) in non-dimensional form gives  
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Integrating equation (16) with respect  to z , we get 
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Form the boundary condition (14), we have  
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 substituting (18) into (17), we get  
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integrating equation (19) with respect to z  we have  
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Using the boundary condition (13), and from equation (20), we have  

( ) 







−




=

Cax

P
ht,xk

2

2
2

1
      …(21) 

Equations (20) and (21) and after some simplifications, give  
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The average velocity over the film thickness is given by  
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Equations (22) and (23), give 
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From the conservation of mass and since the free surface is a stream line, 

then the derivative following the motion 
Dt
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Since h  is a function of x  and t  only, equation (25), then become  
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The curvature of the surface is given by  
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substituting equation (28) into (27), we get  
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equation (29) is the governing equation of the thin liquid film.  

Similarity method:  

We concentrated on equation (29) since it represents the flow of  

a vertical film down a substrate. We have assumed through this work that 

the film thickness is constant far behind the front and this assumption is true 

since the fluid thins out there and so we apply the similarity method to see 

how this thinning process evolves in time.  
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for self-similar solution, we assume that  

( ) ( ) ( )Hthtxh =,         …(31) 

where   is the self similar variable measures the distance to the front and  

)t(x

x

f

=   , 10        …(32) 

where )t(x f  is the front position as shown in figure (1), this method is to 

isolate the explicit time dependence and then the shape of the film will 

depend on the variable   only.  
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Now let  
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where   and   are the self similar exponents.  

from (31) and (32), equation (30) gives  
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Since the total volume of the fluid is constant, so the volume per unit 

width (volume flow rate) is also constant, thus  
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From (33) and (35), and since each of the terms in equation (34) is 
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Integrating equation (36), we get  
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where C  is a constant of integration since at 0= , we have 0=H , then 

from equation (37) we have 0=C , and thus (37) gives  
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Since ( )=
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Also from (32) and (40) 
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from (41) and (4.2), we get after simplification,  
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From the transformation (31), equation (42) gives  
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equation (44) represent the thickness of the film. Now the thickness at fx  

is then given by  
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equation (45) are used to determine the fluid thickness behind the capillary 

ridge.From (40), we have  
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Ca = 0. 03 
Ca = 0.02 

Ca = 0. 01 
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and so equation (45), gives  
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Which gives the fluid thickness at fx . 

Some of the solution curves are presented in figures (2), (3)  

and (4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2): The thickness of the film for different capillary numbers  

Ca = 0.01 , 0.02 ,  0.03 for fixed time 2=t  and Bond number = 0.15 . 
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Figure (3): The thickness of the film for different Bond number 

503010 .,.,.=  and for fixed time 2=t  and capillary number Ca= 0.01. 
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                                                                                                   t= 6  

                                                                                                     

           t= 4  

                                                                                                   t= 2 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (4): The thickness of the film for different time 642 ,,t =  and for 

fixed Bond number 250.B =  and capillary number Ca = 0.01. 

Conclusion: 

We use the similarity method to solve differential equations for the 

drainage of a vertical liquid film and this method is very useful since the 

non–linear partial differential equations that governs such flow can be 

simplified to a single ordinary differential equations. The solution curves of 

the differential equation shows that the thickness of a liquid film increases 

as the time decrease and this usual. Furthermore, for different  liquids such 

as glycerin and silicon the solution curves shows that the glycerin oil film is 

less than that of silicon oil film and the reason for this is the difference in 

the ratio of the bond and capillary numbers.         

h 

x 
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