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ABSTRACT
In this paper we have applied the Differential Transform Method
(DTM) for solving eighth-order boundary value problems. The analytical
and numerical results of the equations have been obtained in terms of
convergent series with the easily computable components. Three examples
are considered for the numerical illustrate and implementation of this
method. Numerical Comparisons with respect to the analytical solutions
have been considered . It is observed that the method is an alternative and
efficient for finding the approximate solutions of the boundary values
problems.
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1. Introduction

In this paper, we considered the general eighth-order boundary value
problems of the type

YO+ fQy()=9g(x),  xelab] (1)
with boundary conditions
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y@=a;, yP@=24, y?@=¢, y¥@=0,

yb)=a,, YYO)=5,, yP ()=, yP () =0,
Wherea; , f;,&; ando;, 1=12 are the finite real constants while the
functions f (x) and g(x) are continuous on [a,b].

A class of characteristic-value problems of higher order (as higher as
twenty four) is known to arise in hydrodynamic and hydro magnetic
stability problems. When an infinite horizontal layer of fluid is heated from
below and is subject to the action of rotation, instability sets in. When this
instability is as ordinary convection the ordinary differential equation is
sixth order, when the instability sets in as over stability, it is modeled by an
eighth order ordinary differential equation with appropriate boundary value
conditions (see Chandrasekhar [6]). The boundary value problems of higher
order have been investigated because of both of their mathematical
importance and the potential for applications in hydrodynamic and hydro
magnetic stability. Agarwal [1] presented the theorems which listed the
conditions for the existence and uniqueness of solutions of eighth-order
BVPs problems. Scott and Watts [21] developed a numerical method for the
solution of linear BVPs using a combination of superposition and
orthonormalization. Scott and Watts [20] described several computer codes
that were developed using the superposition and orthonomalization
technique and invariant imbedding. Twizell et al. [5] developed numerical
methods for eighth, tenth and twelfth order Eigen value problems arising in
thermal instability Problems. Boutayeb and Twizell [4] developed finite
difference methods for the solution of eighth-order BVPs. Siddiqi and
Twizell [19] presented the solution of eighth-order BVPs using octic spline.
Siddigi and Akram [17,18] presented the solutions of eighth-order linear
special case BVPs using nonic spline and nonpolynomial nonic spline
respectively. Inc and Evans [9] presented the solutions of eighth-order BVPs
using Adomian decomposition method.

Liu and Wu [13] presented differential quadrature solutions of eighth-order
differential equations. Siddiqi, Akram and Zaheer [16] presented the
solutions of eighth-order BVPs using Variational Iteration Technique.

In this paper, we employed differential transform method to solve
Eq.(1) with boundary conditions (2).The concept of differential transform
was first introduced by Zhou [22], in a study about electric circuit analysis.
It is a semi numerical-analytic-technique that formulizes Taylor series in a
totally different manner. With this method, the given differential equation
and related boundary conditions are transformed into a recurrence equation
that finally leads to the solution of a system of algebraic equations as
coefficients of a power series solution. This method is useful to obtain exact

.2
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and approximate solutions of linear and nonlinear differential equations .no
need to linearization or discretization, large computational work and round-
off errors are avoided. It has been used to solve effectively, easily and
accurately a large class of linear and nonlinear problems with
approximations. The method is well addressed in [2, 3, 7, 10, 11, 14, 22].

2. Differential Transformation Method (DTM).

In order to solve the boundary value problems (1) - (2) by (DTM), its
basic definitions are stated briefly in this section as follows:
Definition 2.1 [8, 15] If f(x) is analytic in domainD, Let x = X, represent
any point within domain D, thus the differential transformation of f(x) is
given by

k
F(k)=%{ddiéx)} ...(3)

Where f (x) is the original function and F (k) is the transformed function.

Definition 2.2 [8, 15] If f(x) can be represented by Taylor’s series, then it
can be represented as

=1 (d*f(x -

f)=> = E ) (X=X%) =D F(K(X—%)" ...(4
k=0 k! dX X=Xg k=0

Eq. (4) is known as inverse transformation of F (k).

In real application the function f (x) is expressed by finite series and Eq. (4)

can be written as

f(x):Zn:F(k)(x—xo)" ..(5)
k=0

Eq. (5) implies that Z F(k)(x— xo)k is negligibly small.

k=n+1
From Eq. (3) and (4), it is easily proven that the transformation function
have basic mathematics operations shown in Table 1 [15].
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Table 1.The fundamental operations of differential transformations method

Original function Transformed function

y(x) =u(x) £ v(x) Y (k) =U(k)£V (k)

y(x) = au(x) Y (k) =aU (k)

v =450 v =y )

y(X) = u(x).v(x) Y(K) = Zu IV (k=1
Kn_1 k3 k2

Y0 = (U (X)) Y (K) = Z 3. ZZU (kU1 (k, —ky)

Kn_1=0kn_2=0 ko= Okl

n—l(kn—l - n—2 )U n (k - kn—l)

Y =" Y(0) = 5(k—m) = {t e
y(X) = exp(AX) ="t

y(x) = sin(wx + ) Y(K) - W%sin(%” +a)

y(x) = cos(wx + ) Y(K) - W%cos(%” +a)

3. Applications and Numerical Results.

Example 1 Consider the following linear boundary value problem
y®(x) = y(x) —48* —16xe* , xe[0]] ...(6)
with boundary conditions
y(0) =0, y?©0 =1, y?@©)=0, y®@0)=-3

..(7)
y =0, y9@)=-e yP0)=-4e, yO@)=-9
The exact solution of the problem [16] is:
y(X) = x(1— x)e* ..(8)
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Solution:
Taking the differential transform of both sides of Eq. (6), we obtain

Y (k+8) = L y
(k1) (k+2)(k +3)(k T 2)(k+5)(k+6)(k + 7)(k +8)

48 5(1-1)
(Y(k)_ﬁ_ 6,2; (k—I)!J

Using Egs. (4) and (7), the following transformed boundary conditions at
X, =0 can be obtained:

.09

Y(0)=0, Y1) =1 Y(2)=0, Y(3)=—%, iv(
k=0

ik(k—l)Y(k):—4e,ik(k—l)(k—Z)Y(k):—Qe
k=0 k=0 (10)

Utilizing the recurrence relation in EQ.(9) and the transformed boundary

conditions in Eq.(10),the following series solution up to O(x*") is obtained:
X3 . ; X8 X9 XlO
y(x)=X-——+Ax* +Bx> +Cx°® + Dx' — —— -
2 840 5760 45360

__ X +( A1 jx%(L
403200\ 19958400 4276800 51891840

_;)Xn{ c 1 jXM
48648600 121080960 605404800

16
+( D —~ : jx15+—+0(x”)
259459200 8172964800 9340531000

(11
and, according to Eq.(3),
A:y(4)(o) Y(4), B= y(S;(O) Y(5), C = y<6;(0) Y(6)
D= y”;I(O) Y(7). .(12)
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By taking n =16 the following system of equations can be obtained from

Eq. (10):

19958401A+ 51891841B N 121080961 N 259459201

19958400 51891840 121080960 259459200
108670165831

21794572800
6652801 , 19958401, 51891841 . 121080961

+ + + =
1663200 3991680 8648640 17297280
—(e 83582810233 j

1634592960

1814401 , 6652801 _ 19958401 . 51891841
A+ B+ C+ D=

151200 332640 665280 1235520

(g - 119926894%

3891888000
362881 , 1814401_ 6652801 . 19958401
A+ B+ C+ D=
15120 30240 55440 95040
B (Qe B 436660650720)

124540416000
.(13)
From Eq.(13), A,B,CandD are evaluated numerically as
A=-0.33333333316155, B =-0.1250000005%789 (14)

C =-0.03333333272519, D =-0.00694444466725
Then Eq.(11) becomes
y(x) = x—0.5x> —0.33333333316155x"* —0.12500000055789x"°

—0.03333333272519x° — 0.00694444466725x " —0.00119047619048x°
—0.00017361111111x° —0.00002204585538x" — 2.48015873x10° x**
—2.5052108x10 ' x™ —2.296443x10°x"® —1.92709%x10°x*
~1.4912x107°x™ —1.071x107" x™® + O(x™"). ...(15)
Tables 2 bellow exhibits the numerical results and the errors obtained by

using the differential transform method (DTM) with comparison to the exact
solution.
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Table 2: The series solution and error estimation of DTM compared
with exact solution.

X Exact solution Series solution *Errors
0.0 0.00000000000000 0.00000000000000 0.00
0.1 | 0.09946538262681 0.09946538262682 -1.00E-14
0.2 | 0.19542444130563 0.19542444130576 -1.30E-13
0.3 0.28347034959096 0.28347034959139 -4.30E-13
0.4 | 0.35803792743390 0.35803792743472 -8.20E-13
0.5 | 0.41218031767503 0.41218031767610 -1.07E-12
0.6 | 0.43730851209372 0.43730851209474 -1.02E-12
0.7 | 0.42288806856880 0.42288806856948 -6.80E-13
0.8 | 0.35608654855879 0.35608654855906 -2.70E-13

*Error=Exact solution-Series solution

From the above table, we can conclude that the errors can be reduced further
and higher accuracy can be obtained by evaluating more components of

y(x).
Example 2 For x<[01], the following nonlinear eighth-order boundary
value problem are considered

y®P(x)=e7y*(x) .(16)
with boundary conditions
y(0)=1, yP(©0) =1, y?(0)=1, y¥(0)=1

...(17)
yO=e, YO =e y?@Q=e, Y9 =e
The analytical solution for this problem [16] is:
y(x)=¢" ..(18)

Solution:

Taking the differential transform of both sides of Eqg. (16), we obtain the
following recurrence relation:

Y(k+8)= L

(k+1)(k+2)(k+3)(k+4)(k+5)(k+6)(k+7)(k+8)

(Z TR )J -(19)
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The boundary conditions in Eq. (17) can be transformed at X, =0 as
follows:

Y(0)=1, Y(1)=1, Y(Z):%, Y(3):%, Zn:Y(k):e, Zn:kY(k):e

Zn:k(k—l)Y(k):e,Zn:k(k—l)(k—Z)Y(k):e. .(20)

Utilizing the recurrence relation in EQ.(19) and the transformed boundary

conditions in Eq.(20), the following series solution up to O(x**) is obtained

2 3 8 9
X

y(x)=1+x+X—+X—+Ax4+Bx5+Cx6+Dx7+ +
2 6 40320 362880

x® xH ( A 1 j 12 ( B
+ + + - X 4| ——
3628800 39916800 19979200 479001600 25945920

-t jx” +O(x*). (21)
6227020800

Taking n =13 and using Egs. (19) and (20), we can obtain the following
system of equations:

9979201 25945921 16605562258
A+ B+C+D=e———«F —.

9979200 25945920 6227020800
3326401A+ 9979201B L BC+7D e 1197612359.
831600 1995840 479001600 22)
907201A+ 3326401B 4+ 30C +42D —e— 79898048'

75600 166320 39916800
181441A+ 907201B +120C + 210D = e— 3664879.

7560 15120 3628800

We get from the above system:
A=0.04166666560318, B =0.00833333687487

...(23
C =0.00138888490941, D =0.00019841421213 (23)

Then the series solution becomes
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y(x)=1+x+0.5x° +0.16666666666667x> + 0.04166666560318x"
+0.00833333687487x° + 0.00138888490941x°
+0.00019841421213x" + 2.480158730x107° x® + 2.75573192x10°x°
+2.7557319x107" x™ +2.505211x10 % x™ + 2.08768x10° x*
+1.6059x107x™ +O(x™*). ..(24)

Table 3 bellow exhibits the numerical results and the errors obtained by
using the differential transform method (DTM) with comparison to the exact
solution.

Table 3: The series solution and error estimation of DTM compared
with exact solution

X Exact solution Series solution *Errors
0.0 1.00000000000000 1.00000000000000 0.00
0.1 1.10517091807565 1.10517091807557 8.00E-14
0.2 1.22140275816017 1.22140275815937 8.00E-13
0.3 1.34985880757600 1.34985880757342 2.58E-12
0.4 1.49182469764127 1.49182469763649 4.78E-12
0.5 1.64872127070013 1.64872127069398 6.15E-12
0.6 1.82211880039051 1.82211880038477 5.74E-12
0.7 2.01375270747048 2.01375270746676 3.72E-12
0.8 2.22554092849247 2.22554092849108 1.39E-12
0.9 2.45960311115695 2.45960311115680 .150E-13
1.0 2.71828182845905 2.71828182845905 0.00

*Error=Exact solution-Series solution

For this table it is obvious that the errors can be reduced further and higher

accuracy can be obtained by evaluating more components of y(x).

Example 3 Forx e[-11], let us consider the following boundary value

problem

y & (x)—y(x)=-8(2xcos(x)+7sin(x)) ...(25)
with the boundary conditions

y-)=y@®=0.

@1y = vO M) = 9

yo (=D =y (@) =2sin(1). 26)

y@(=1) =—y@ (@) =—4cos(l) — 2sin(2).

y® (=1) = y® (1) = 6 cos(1) — 6sin(l).
The analytical solution of the above problem [12] is:
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y(x)=(x*-1)sin(x). ..(27)
Solution:

By applying the fundamental mathematical operations performed by differ-
ential transform, the differential transform of Eq.(25) can be obtained as

Y(k+8)= L .
(K+1)(k+2)(k+3)(k+4)(k+5)(k+6)(k+7)(k+8)

Kk

(—1625(kl—1)C(k—kl)—568(k)+Y(k)J ...(28)
k=0

Where S(k) and C (k) correspond to the differential transformation of sin(x)

and cos(x) at x, =0, respectively, which can be easily obtained from the

definition of differential transform in Eq. (3) as follows:

(k1) K
1 2 -2z
s=] 0 i k=odn =] g T ke g
0 , if k =even 0 , ifk=odd

The boundary conditions in Eq. (26) can be transformed at x, =0 as

iv (K)(=D* =0, iv (k) =0, Z KY (k)(-)** = 2sin(1), Zn:kY(k) = 2sin(1),
k=0 k=0 k=0 k=0

Zn; k(k —1)Y (k)(~1)*2 = —4cos(1) — 2sin(L), Z k(k —1)Y (k) = 4 cos(L) + 2sin(),
k=0 k=0
i k(k —1)(k —2)Y (k)(~1)*3 = 6 cos(1) - 6sin(L),

=
|
o

K(k —1)(k — 2)Y(K)(=1)** = 6cos(1) - 6sin(1),

M-

k

K(k —1)(k —2)Y(k) = 6cos(1) - 6sin(1). ..(30)

S
o

where, n is a sufficiently large integer. By using the inverse transformation
rule in Eq. (4), for n=9we get
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y(x)= A + AX+AX +AX+AX +AXT+ AXS+ A X+ 402020x8

N S x? +0(x™). .(31)
5040 362880

where ,

Ay =y(0)=Y(0), A =yP(0)=YQ), A =y?0)/2=Y(2),

A, =y@(0)/3=Y(@3), A, =y@P(0)/4=Y(4), A, =y®(0)/51=Y(5),
A =y©®(0)/61=Y(6), A, =y (0)/=Y (7).

Also, by takingn =9, the following system of equations can be obtained
from Eq.(30):

i0520™ 0™ e A A A

40321 362881 1

40320Ao +362880A1 Phet At At A+ Aot Ay " 5040

58j0A0 + jg:;(l)Al —2A, +3A; —4A, +5A; —6A; +T7A, :25in(1)+5(130.
50140A0 + jg:;cl)Ai +2A, +3A; +4A, +5A; +6A; + 7TA; =2sin(l) +520.

A, A _ 1
S0 'L L 2A) —6A; +12A, — 20A; +30A, — 42A, =—4cos(1) — 2sin(l) — —.
720 5040 3 4 & Ao @ @ 70

A A 1
+——+2A, +6A; +12A, + 20A; + 30A; +42A, =4cos(2) + 2sin(l) + —.
=20 ' 5040 2 3 As A 7 @ (6h) 0

A A -
+ 5| 6A, 247, +60A; —120A + 210A, =6cos(l) - Bsin(l) + .
o 720+ 8% 4 +60A; As 7 @ W+

. 1
1A2°O 7'210 +6A; +24A, +60A; +120A; + 210A, =6cos(l) — 6sin(l) + T
...(32)
We get from the equation system (32):

A, =0, A =-1.00001087423950, A, =0, A, =1.16670748209313,

...(33
A, =0, A =-0.17505449473596, A, =0, A, =0.00855905534263. (33)

Then, series solution becomes

y(x)=-1.00001087423950x +1.16670748200313x°> — 0.17505449473596x°

+0.00855905534263x " —0.00020116846030%° +O( x™ ). ..(34)

By continuing the same procedure forn =15, we get the following series
solution:
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y(x) =—-0.99999999995027x +1.16666666655206x> —0.17499999987933x°
+0.00853174598571x" —2.0116843033x10* x° +2.78078403x10® x*

—2.521270x10°x™ +1.613610° x® + O(x""). ...(35)

Table 4 and 5 bellow exhibit the numerical results and the errors obtained
by using the differential transform method (DTM) with comparison to the
exact solution for n=9and n=15.

Table 4: The Comparison of numerical results of DTM w.r.t. the exact

solution for n=9 and n=15 respectively

X Exact solution DTM (n=15) DTM (n=9)
-1.0 | 0.00000000000000 | -0.00000000001052 | 0.00000000000000
-0.8 | 0.25824819272383 | 0.25824819271282 | 0.25824836176569
-0.6 | 0.36137118297282 | 0.36137118295964 | 0.36137237446520
-0.4 | 0.32711140753927 | 0.32711140752555 | 0.32711365844677
-0.2 | 0.19072255756326 | 0.19072255755419 | 0.19072442297656
-0.0 | 0.00000000000000 | 0.00000000000000 | 0.00000000000000
0.2 | -0.19072255756326 | -0.19072255755419 | -0.19072442297656
0.4 | -0.32711140753927 | -0.32711140752555 | -0.32711365844677
0.6 | -0.36137118297282 | -0.36137118295964 | -0.36137237446520

0.8 | -0.25824819272383 | -0.25824819271282 | -0.25824836176569
1.0 | 0.00000000000000 | 0.00000000001052 | 0.00000000000000

Table 5: The error estimates of DTM when compared with the exact
solution for n=9 and n=15 respectively

X Exact solution “Errors “Errors
DTM (n=15) DTM (n=9)
-1.0 | 0.00000000000000 1.052E-11 0.0000000
-0.8 | 0.25824819272383 1.100E-11 -1.6904186E-7
-0.6 0.36137118297282 1.318E-11 -1.19149238E-6
-0.4 | 0.32711140753927 1.372E-11 -2.2509075E-6
-0.2 | 0.19072255756326 9.070E-12 -1.8654133E-6
-0.0 | 0.00000000000000 0.000 0.0000000
0.2 | -0.19072255756326 -9.070E-12 1.8654133E-6
0.4 | -0.32711140753927 -1.372E-11 2.2509075E-6
0.6 -0.36137118297282 -1.318E-11 1.19149238E-6
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0.8
1.0

-0.25824819272383
0.00000000000000

-1.100E-11
-1.052E-11

1.6904186E-7
0.0000000

From the tables 4 and 5 above, one can observe that as the number of terms
involved increase, the series solution obtained by differential transform

method converges to the series expansion of the exact solution (27).

4. Conclusion

It is shown that the differential transform method can be used success-
fully for finding the solution of linear and nonlinear boundary value
problems of eighth-order. It may be concluded that this technique is very
powerful and efficient in finding semi numerical and analytical solutions for

these types of boundary value problems.
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