Raf. J. of Comp. & Math’s. , Vol. 7, No. 1, 2010

A Binary Integer Programming model for computing
DNA Sequence Alignment
Nawar N. Qubat
College of Computer Sciences and Mathematics
University of Mosul
Received on:24/8/2008 Accepted on:14/10/2008
ABSTRACT

DNA Sequence Alignment is an important problem in computational
biology and is useful for comparing genomes and finding genes, for
determining evolutionary linkage of different biological sequences.
Dynamic Programming Problems is discussed and applied to solve this
problem. This paper is concerned with computing DNA Sequence
Alignment firstly by formulating a Binary Integer Programming model to
compute the string sequence in Edit Distance Problem then re-formulating
this model to be suitable to compute this alignment. By this model we gave
a good role for Operations Researches field to prove it's efficient to solve
problems of molecule of life. The suggested model is applied to solve an
example in Edit Distance Problem then used again after re-formulating it for
an example in DNA Sequence Alignment Problem.
Keywords: DNA Sequence Alignment, Edit Distance, Binary Integer

Programming, Dynamic Programming.

S5l paaad) Jadad Blilae Gluall muaa AU daap g igal

bld aai g
Jeasal Zaals clacalilly palal) pgle Al
2008/10/14 :J sl g 2008/8/24 : M gl
sl

A5)ke b Bakey sl ela¥) ale 8 dage Al a3 DNA I dldes Cililacal
A) Jila A Dgant) QoD (e (gl il o g liamd) slagdy il pall
A alude Galila) Qs 8 paal Gand) 138 LAl 038 s B il g gy 8 Aalinal)
Alaall et Allie 8 LK Al Ol L608 daimin Aoy #3508 2y Yol DNA
s Ao . Calilaaal) 1is Cload Toalio 050 #3gaill 138 42l sale) 23 Slld 2ay o3
b el z3saill slall disa Jilua a8 Gllaall Cigas Jind a0 Lnkae] 235
da o 4l sale) aas (Al Bya pasial @I aay o3 diluall et Allie & Jbe da B
DNA 1 dlobs Giliha) e 8 Jlia

59

Nawar N. Qubat

¢ daaaal) 450 z\.;a).ﬂ\ ¢ ddliwdll i L_Sjj—‘-“ UA.AL“ bl 313laa sl callls)
ASualil) el

1. Introduction:

Sequence Alignment is used in several different fields including
molecular biology, string editing, speech processing, and codes and error
control. In computational biology this alignment known as DNA Sequence
Alignment which is an important problem for comparing genomes and
finding genes, for determining evolutionary linkage of different biological
sequences.[9]

DeoxyriboNucleic Acid (DNA) is the hereditary molecule of life.
Information encoded within DNA confers physical characteristics such as
hair color, eye color, and susceptibility to certain diseases. By unraveling
the secrets encoded within DNA, numerous biological and medical
discoveries have been and continue to be made.

A DNA sequence is a string formed from a four-letter alphabet
{Adenosine (A), Thymidine (T), Guanosine (G), Cytidine (C)} of biological
macromolecules,for example:ATTCGGATCGGAATCGTAGCC represents
a string of the nucleotides A, G, Cand T.

One basic technigue to glean information from a DNA molecule is to
compare it to other DNA molecules. This comparison, generally called an
alignment, is fundamental to the emerging field of bioinformatics revealing
where sequences are the same and where are they different. The differences
could be invaluable, for example, in helping to explain why individuals have
different susceptibility to disease. [12]

DNA Sequence alignment reveals the relations between the
characters in different sequences, and there are the reverse complement
relations between the characters in DNA double strand.

The measuring of the similarity by Sequence Alignment Problem between
two DNA sequences is basically depends on Edit Distance Problem concept
for finding the similarity between two string.

Our study represents introducing on Edit Distance Problem in
section 2 and then formulating a binary integer programming model for
computing the string sequence via this problem in section 3 and re-solving
an example by this model after solving it by Dynamic Programming
Problem. Section 4 gives more details on DNA Sequence Alignment
Problem and re-formulating the binary model in section 3 to be suitable to
solve this alignment and re-solving an example by this model after solving it
by Dynamic Programming Problem with MATLAB codes in section 6.
Finally, some conclusions were reached in section 5 on this model on it's
effective for computing DNA Sequence Alignment.

60

A Binary Integer Programming model for computing DNA Sequence Alignment

2. Computing the string sequence:

2.1. Edit Distance Problem:

Edit Distance (or Levenshtein distance [10]) between two strings is
defined as the minimal number of edit operations which must be performed
between them, character by character to transform one string into another,
the edit operations are: Replacement (R), Matching (M), Deletion (D) and
Insertion (I) and the string over the (R, M, D and 1) is called an edit
transcript string of the two strings.[6]

Simply, to transform the string abcde to the string bcfeg, we can
delete a then replace d by f and finally insert g, yielding to the string bcfeg.
Also by the following description:

The Optimal Edit Transcript String

D M M R M |
O
Deletion Matching Replacement Insertion

Edit Distance Problem (EDP) is to compute the edit distance
between two given strings along with an optimal edit transcript that
describes the transformation.

The symbol "—" indicated to a gap which occur of the deletion and
insertion operations only, the minimal edit distance operations is the number
of columns in which the characters differ. The aim of finding the minimal
edit distance between two strings is for searching for strings of strings with
most similarity.

2.2. Edit Distance Formula:

For finding the value of edit distance between two strings we have to
use a general description of the problem which as follows:
Let S and T be a two strings with length mand n, respectively, we can
define: E(i, j) as the value of edit distance between S and T for i=1,...,. m,

j=1..,n, E(m,n) is the minimal edit distance between S and T,
E(m,0) or E(0,n)is the minimal effort required to transform the string S

into the null string or the string T into the null string.
In order to calculate E(i, j) we must have an initial conditions:

61

Nawar N. Qubat

E(0,0)=0,
E@i,0)=i,1<i<m,
E(,)= j,1<j<n, and recurrence relation used for 1<i<m,1<j<n
defined as:
E(i-1,j)+0o(S(),-).
EQ,)) =min{E(i, j-D+o(=T())). ..(D)
E(i-1j-1)+o(S>H),T())).
Where o(S(i),—) =1 (deletion operation cost),
o(—T(j)) =1 (insertion operation cost),
0 if S(i)=T(j) (matching operation cost)
o(S(),T())) = (2)

1 if S(i)=#T(j) (replacement operation cost)
See ([2], [7], [9] & [11]).

We can called to o(s(i),-), o(—T(j)) and o(S(i),T(j)) by scoring
functions. Thus, the minimal edit distance between the strings S=abcde
with m=5 and T=bcfeg with n=5is E(m,n) =E(5,5) =3.

2.3. Computing Edit Distance:

In order to calculate E(m,n) we must be able to calculate E(i, j) for
any i and j, this calculation can be done recursively or through Dynamic
Programming. Dynamic Programming Problem (DPP) is a powerful
technique of calculating values more than once to be used to calculate other
values later.

DPP for computing strings sequence depends completely on Edit
Distance formula in (egs. (1) & (2)) by filling a table from left to right and
top to bottom starting by the initial conditions which are the sets of known
values E(i,0) and E(O, j) and bottom-right most value will be the minimal

edit distance E(m,n) . [2]
2.4. Example:

The table below shows the transformation of the string VINTNER to
WRITERS by using DPP, the rows corresponds to a different edit
operations, horizontal for insertion, vertical for deletion and diagonal for
replacement and matching.

Table (2.1)

0 1 2 3 4 5 6 7

62

A Binary Integer Programming model for computing DNA Sequence Alignment

E, j)

WR 1 T E R S
0 02123456 |7
1 vI[1T122 3|45 16 |7
2 1|2]2T272.]3 456
3 N|[3[3]3 32\3 4 |5 |6
4 T4 |4]4a]4a78,]4]5]6
5 N|5 |5 |5]5 42&4 5 |6
6 E|6 |6 |66 |574]5]6
7 R|7 17161716 |5 T4%5

We chose an arbitrary edit distance calculations from table (2.1) such that:

(E(L3)+1=3+1=4
E(2,3)=min <E@2,2)+1=2+1=3 =2
(E(L2)+0=2+0=2

(E(44)+1=3+1=4
E(54)=min <E(53) +1=5+1=6 =4
_E(43)+1=4+1=5

And the terminal value E(7,7)=5 which gives the minimal edit
distance of the two strings, such that:

E6,7)+1=6+1=7
E(7,7)=min <E(7,6)+1=4+1=5
E(6,6) +1=5+1=6

A MATLAB code presented in section 6 and has been used to solve
the Edit Distance Problem with function (editpist).

If we remove the last 3 columns and the last 2 rows from the table
(2.1) of the optimal edit distance then the remaining columns and rows
represent an optimal edit distance for the remaining substrings and this
property called Prefix, see below:

'V I N T N JE R

'W R I T J|E R S

Here, the minimal edit distance of the two substrings VINTN and
WRIT will be E(5,4)=4.[9]

2.5. Recovering the string itself:

63

Nawar N. Qubat

DPP described how to compute the edit distance between two strings
and now we explain how the optimal string recover itself. The key idea is to
retrace the optimal paths of the Dynamic Programming backwards, re-
discovering the path of choices from opt[m][n] into opt[0][0], (opt means
optimal edit distance) which depends on the following three possibilities:

I. Ifacharacter S(i) upto T(j) for 1<i<m, 1< j<n, then:

optli —1][j -1l =optfi][j] if S(@)=T(J). .--(3)

opt[i—1][j -1 =opt[i][j]-1 if SI)=T(j). ...(4)
Il. Ifacharacter S(i) up withagap for 1<i<m, 0< j<n, then:

opt[i —1][j]=optfi][j]-1. ..-(5)
I11. If a character T(j) up withagap for 1< j<n,0<i<m, then:

opt[i][j —1] = optfi][j]-1. ...(6)

Now, by the (egs. (3), (4), (5) and (6)) the recovering of the optimal
paths of the strings in above example from opt[7][7] into opt[0][0] and
according to the inversion of the arrows in the shaded squares we get:

opt[7][7] -1= 4 = opt[7][6] = opt[6][5] = opt[5][4]
opt[5][4] —1= 3= opt[4][4] = opt[3][3]

opt[3][3] 1= 2= opt[2][2]

opt[2][2] —1=1=opt[1][1]

opt[1][1] —1=0=opt[0][0]

opt[3][3] - 1= 2 = opt[2][3] = opt[1][2]
opt[1][2] —1=1=opt[0][1]
opt[0][1] —1=0 = opt[0][0]

opt[3][3] - 1= 2 = opt[2][3] = opt[1][2]
opt1][2] -1=1=opt[1][1]
opt[1][1] —1=0=opt[0][0]

Therefore, the final transformations of the similarity of both strings
VINTNER and WRITERS according to the recovering of the optimal paths

will be:
AV N T N E R —

64

A Binary Integer Programming model for computing DNA Sequence Alignment

W R | T — E R S
OR,
— VvV 1 N T N E R —
w R | — T — E R
OR,
v — 1 N T N E R —
w R | — T — E R S

Respectively.

The first path of transformation string VINTNER to WRITERS is
the best one than the others because it has the least number of gaps (two
gaps) and minimal length (8) than the two other paths. [13]

3. Binary Integer Programming model for Edit Distance:
3.1. Binary Integer Programming Problem:

A Binary Integer Programming Problem (BIPP) is kind of Integer
Programming Problem (IPP) and is given by vector ce R", be R"™ and
matrix AeR™". The goal of the problem is to find a vector x e B" ={0,1}
solving the following optimization problem: [8]

Max c'x
st. Ax<b
x>0

3.2. Formulating BIP model for computing Edit Distance:

Let S and T be a two strings with length mand n, respectively, we
can formulate a binary integer programming model (BIPM) to find the
similarity of S and T on finding a minimum distances between them which
depends on the number of similar characters, such that:

Min > > dgr Xgr .(7.2)
i
subjectto Xg; =T, ..(7.2)
fori=1..,m and j=1..,n,S; €S and T, eT (characters)
1 if XsT, has been taken (branched)
Where X1, = ...(7.3)
0 otherwise
And
0 if S =T,

65

Nawar N. Qubat

de; = .(7.9)

it

1 otherwise

3.3. Proposed algorithm to solve BIPM:

Step 1: (Starting) We choose the first node (NO) to be the variable x ; and
also to be the first comparison between the character S_ from the string S
and the character T, from the string T with the equation x; ; =T, and
distance dg ; .

Step 2: (Matching) If S,, matched (similar to) T, then branch the node (NO)
to the node (N1) which represent the next variable x; . and to be a new

comparison between S, , and T, , with the equation x; . =T, , and

m-1
distance dg ; ,else:
Step 3: (Mismatching) S, mismatched (not similar to) T, then branch the
node (NO) to the node (N1, N2 and N3) which represent the next following
variables to be a new comparisons:

i) N1: x; . withthe equation x; ; =T, ,and distance d ; ,

i) N2: x; . withthe equation x; , =T ,anddistance dg - ,

iii) N3: x; . with the equation x; , =T, and distances d; . .

If one of the nodes (N1, N2 or N3) has a matched characters (as step 2) then
we need not to branch the other two nodes.
Step 4: (Exception) If m=n=2 then we directly branch the node with the

equation x; . =T, and distance d . into the node with the equation
Xsq, =T, evenif S, isnotsimilarto T, .

Step 5: (Ending) Repeat the process in steps 2 and 3 until reaching to the
last variable X, with the equation x;, =T, and distance d ;. .

By this algorithm we get a tree of nodes with the optimal solution of
the Edit Distance Problem which represent the minimum number of edit
operations to transform the string S into the string T with finding at least
one of the optimal transformations paths.

3.4 Solving Example 2.4 according to BIPM:
We have two strings S and T, such that:

66

A Binary Integer Programming model for computing DNA Sequence Alignment

s, [S, [s, [s,]S, [S, |,

T |1, | T, |T, | T, | Tg | T,
W |R I T E R S

with length [S|=m=7 and [T|=n=7
By the algorithm with step 1, the first branched node (NO) is carry
the variable X, . , and by steps 2 and 3 we continue by branching the nodes,

such that:

xs.,r,:xgs:‘g
=1 g
¥
xsﬁzxﬂ:R xssr,:xm:R xssr.,:xxs:S
dpp=0 w1l | dea=1 ao| | 4 =1 3
¥
xssrszxﬂzﬂ'
dgg =0
= 4
¥
Kor, =Xy =7
dar = N5
e ¥ T
xssfizxj\.fl:f xS‘I'!:xH:‘E ?.’SJ.‘z;'.’H:T
d = d =1 d :0
NT N—6 T N—J" m * NS
Tap =Xy =1
d =
i]
I/
xsﬂ—xm: ‘7"521",: R:R xs,r‘,:xﬂ:f
=l o) == gy [%270 wo
¥ v
Fgr = Ry = w Xgr, = Ay = s
=1 3| Y=l
¥
Fan = Fvw =
dyw=1 " 1715
Figure (3.1)

67

Nawar N. Qubat

Step 4 of the algorithm occurs in node (N11), although I is not similar to
R but is branched only to one node (N13).
By following the path of the nodes: N15-N14-N13-N12-N9-N8-N5-
N4-N1-NO, we have the value of the objective function:
dVWXWV +dVRXVR +dIIXII +dNI XNI +dTTX'I'I' +dNTXNT +dEEXEE +dRRXRR +dRSXRS
1(1) +1() +0(1) +1(1) +0(1)) +1(1)+0(1) + 0() +1(1)
5

and we have two transformation of VINTNER to WRITERS (by fixing first
the similar characters in the nodes: N1, N4, N8 and N12) such that:

v — 1 N T N E R —

w R | — T — E R S
OR,

— VvV 1 N T N E R —

w R | — T — E R S

And by following the path of the nodes: N13-N11-N9-N8-N5-N4-
N1-NO we have the value of the objective function:
d\/\NXWV +dIRXIR +dNI XNI +dTTXTT +dNTXNT +dEEXEE +dRRXRR +dRSXRS =

1(1) +1(1) +1(1) +0(1) +1(1) +0(1) + 0(1) +1(1) =5

and we have two transformation of VINTNER to WRITERS (by fixing first
the similar characters in the nodes: N1, N4 and N8) such that:

v I N T N E R —
w R I T — E R S

4. Computing DNA Sequence Alignment:
4.1. DNA Sequence Alignment Problem:

Given two strings S and T with length m and n such that
S=(S,,... S,)and T=(T,,..,T,) respectively, the sequence alignment is
defined as an assignment of gaps to positions 0,..min S and O,..n in T so
as to line up each character in one sequence with either a character or a gap
in the other sequence and this will result in two sequences of equal length.
An alignment between two input sequences, S and T over the alphabet
¥ = {A,C,G,T}, expresses an equivalence relationship between the pair of
sequences by generating two sequences S' and T' of equal length by
inserting the gaps into Sand T.

68

A Binary Integer Programming model for computing DNA Sequence Alignment

An optimal alignment is one that minimizes the number of the gaps
are inserted while simultaneously minimizing the number of replacements
operation occur (i.e. a C aligned with a T).

Gaps are an important concept in biological applications because a
stream of gaps in a DNA sequence my present a significant biological
characteristic, gaps usually incur a penalty to the potential alignment score
between two sequences. If we remove the gaps from S' and T' then we
restored S and T.

To illustrate the idea of an alignment, consider the sequences given
by SSTAAGAAC and T= TGAC. They could have an optimal alignment
consisting of S"and T' below:

s=T A A G A A C
T™=T — — G — A C

Given the scoring functions of one for a matching cost and zero for
gaps and replacement cost, the above alignment would have a score of four.
Note that other alignments can share the maximal score:

s=T A A G A A C
T™=T — — G A — C

And other sub-optimal alignments can have lower scores (3 in the
following instance):

s=T A A G A A C
™= - — T G — A C

See ([1] & [13]).
4.2. Dot Plot Problem:

Dot Plot Problem is one of the earliest methods of comparing two
DNA Sequences Alignment which plots the regions of the similarity
between them by hand.

Dot Plot Problem is to create a table by setting one DNA Sequence
on a vertical axis and the other on a horizontal axis and the dots mark a
match between nucleotides in the sequences. [5]

69

Nawar N. Qubat

Table (4.1)
A GCTAGAGA

.,

>O0O0>A>00>

In the table (3.1), the sequence AGCATAGGA is matched against
the sequence AGCTAGAGA, the regions of similarity occur where it is
clear that there is a string of diagonal dots in the dot plot, so we can easily
compute the similarity by setting the value (2) in each dot in the three
diagonal strings and the value (-1) in the two gaps (i.e. (A,T) and (G,A)) and
obtain:

Optimal Similarity : AGC +(AT)+ TAG + (GA)+GA
2+2+42 + (-1) + 242+2 + (-1) + 2+2 =14

4.3. DNA Sequence Alignment Formula:

DNA Sequence Alignment Problem is an alignment present in
optimal path between the point E(0,0) and the point E(m,n)and Dynamic

Programming used to solve it in the following formula:

Given two string S and T with length m and n respectively, our
goal is to compute the optimal sequence alignment of Sand T.
Let V (i, j) defined as the value of the alignment of the strings S=(S,,...,S,,)

and T=(T,,...,T,).

V(m,n) is the optimal sequence alignment of S and T, in order to
compute V (i, j) we must have an initial conditions: See ([7], [9] & [13])
V(0,0)=0
V(i,0) =V (i—-10) + o(S(i),-), forl<i<m
V(0,j))=V(@O,j-D)+o(-T(j), forl<j<n

And recurrence relation used for 1<i<m, 1< j <ndefined as:

V(i-1j)+o(S(i)-)
V(i, j) =max { V(i,j-1)+o(-T(j)) ...(8)
V(i-1j-1)+a(S(i),T(J)

70

A Binary Integer Programming model for computing DNA Sequence Alignment

Where
o(S(i)-)=-1 (S(i)uptoadgap),
o(=T(j)=-1 (T(j)uptoagap), } Gap penalty

\...(9)

2 if S(i)=T(j) (S(i) match T(j) in same character)
o(S(i),T(})) :{
-1 if S(i)=T(j) (S(i)match T(j) in different character))

4.4. Example:

The table (4.2) gives the transformation of the DNA
sequence alignment AACTGGTACC to TTCACGGCA using Dynamic
Programming Problem:

Table (4.2)

: 0 1 2 3 4 5 6 7 8 9
va.D T T C A C G G C A
0 0 §-1 §-2 £’3 4 |5 |6 [-7]-8]-9
1 A1 TJ12P»2%»3 -1 |2]3]4]5]-6
2 Al-2 |2 |2 |3T1|2]3]4]5]-3
3 c|-3|-3|3]o |-1T1_Jo [-1]-2]-3
4 T |4 |11]11]-1]0 V&o -1 |2 |-3
5 G |5][22 [-2[2|1T2 (2 [1 [0
6 G|-6 |3 |3 |33 |21 T4]3 |2
7 T |74]1]2]3]-3]0o [38] 2
8 A|8 |5 |2 |2 0 |1 |1 |22 15
9 Cc|9 |6 -3 |0 |-1 |2 1 T4 |4
10 ¢ [-10]-7 |4 [-1 |2 |1 |1 |o |3 ?3 g

We chose an arbitrary edit distance calculations from table (2.1) such that:
(V(1a4) _1:_1—1:—2

V(2,4 =max < V(2,3)-1=-3-1=—-4 -1

L V@3 -1=-3+2=-1

[V(6,7)-1=4-1=3
V(7,7)=max < V(7,6)-1=0-1=-1
L V(6,6)-1=1-1=0

From the table (4.2) we got the terminal value V (10,9) =3 which
gives the optimal sequence alignment of the two strings, such that:

11
w

71

Nawar N. Qubat

V(9,9) -1
V(10,9) =max< V(10,8) -1
V(9,8)-1

4-1=3
3-1=2
4-1=3
A MATLAB code presented in section 6 and has been used to solve
the DNA Sequence Alignment Problem with function (seqa1ign).
The recovering of the paths from opt[m][n] into opt[0][0O]

according to the Dynamic Programming formula for DNA Sequence
Alignment in (egs. (8) & (9)) with depending on the following three

possibilities:
I. Ifacharacter S(i) upto T(j) for 1<i<m, 1< j<n, then:
optli —1][j -1 =opt[i][j1-2 if S(i)=T(j) ..(10)
opt[i—1[j-1=opt[i][j]+1 if S>i)=T(j) ..(11)
I. If acharacter S(i) up withagap for 1<i<m, 0< j<n, then:
opt[i—1][j]=opt[i][j]+1 ...(12)
I11. If a character T(j) up withagap for 1< j<n,0<i<m, then:
opt[il[j —1] = opt[i][j]+1 ...(13)

And by the (egs. (10), (11), (12) and (13)) the recovering of the
optimal paths from opt[10][9] into opt[0][0] and according to the inversion

of the arrows in the shaded squares we get:

72

A Binary Integer Programming model for computing DNA Sequence Alignment

opt[10][9] + 1= 4 = opt[9][8]
opt[9][8] - 2 =2 =opt[8][7]
opt[8][7]+1=3=opt[7][7]

opt[7][7]+1=4=opt[6][7]
opt[6][7] — 2 =2 =opt[5][6]
opt[5][6] — 2 =0 = opt[4][5]
opt[4][5] + 1=1=opt[3][5]

opt[3][5] - 2 = -1=opt[2][4]
opt[2][4] -2 =-3=opt[1][3]

opt[1][3] +1=-2 = opt[1][2]
opt[1][2] +1=—1=opt[1][1]
opt[1][1] + 1= 0= opt[0][0]

opt[1][3] +1=-2=opt[0][2]
opt[0][2] + 1=—1=opt[O][1]
opt[0][1] + 1= 0= opt[0][0]

opt[1][3] +1=-2 = opt[1][2]
opt[1][2] +1=-1=opt[0][1]
opt[0][1] + 1= 0= opt[O][O]

OR

opt[10][9] +1=4 = opt[9][9]
opt[9][9] + 1 =5 = opt[8][9]
opt[8][9] — 2 =3 =opt[7][8]
opt[7][8] + 1= 4 = opt[6][7]
opt[6][7] — 2 =2 =opt[5][6]
opt[5][6] — 2 =0 = opt[4][5]
opt[4][5] + 1=1=opt[3][5]
opt[3][5] - 2 = —1=opt[2][4]
opt[2][4] - 2 =-3=opt[1][3]
opt[1][3] +1=-2 =opt[1][2]
opt[1][2] +1=-1=opt[1][1]
opt[1][1] + 1= 0=opt[0][0]

opt[1][3] +1=-2 =opt[0][2]
opt[0][2] +1=-1=opt[O][1]
opt[O][1] +1= 0= opt[0][O]

opt[1][3] +1=-2 = opt[1][2]
opt[1][2] + 1=—-1=opt[O][1]
opt[0][1] + 1= 0= opt[0][0]

Thus, according to the recovering of the optimal paths, the similarity of

the two sequence will be in form:

S =A — — A C

™ T T C A C
OR,

S= — — A A C

™= T T C€C A C

73

T A

O O O O
O O O O
O O o O
> O > O

Nawar N. Qubat

S'= —

T= T
OR,

S= A

T'=
OR,

S'= —

=T
OR,

S=

=T

Respectively.
All the paths of transformation the DNA sequences alignment
AACTGGTACC to TTCACGGCA are optimal because they have the same

A

C

> » >» » » >» >» >

O O O O

O O O

C

O O O 06 0 6 o o

O O 0 6 6 6 O

G

@)

O -

T

C

> >» >» >» >» >

number of gaps (five gaps) and the same length (12). See ([1] & [11]).
4.5. Solving Example 4.4 according to BIPM:

Before going to compute the optimal sequence alignment of the
DNA sequences alignment AACTGGTACC and TTCACGGCA, we need
to re-formulate the binary integer programming model in equations (7.1)

and (7.4) to be suitable to find that sequence, as follows:

Max ZZdSiTJ Xs,1,
i
and
2 if S, =T,
ST,
-1 otherwise

Now, we have two DNA sequences strings S and T, such that:

S:

Sl

SZ

S,

S

6

S7

Sg

S

9

Tl

T2

T

T4

T5

—
[o2]

—

o

T

T

C

A

C

with length [S|=m=10 and T|=n=9

74

A Binary Integer Programming model for computing DNA Sequence Alignment

Xy g =Xy =4
da="1 4
v
Tgp =Ko = Zgp =X =C Koy =Xy =A
B =2 M1 Gy 12 i el -
¥
Tap =X =0
dae="1 1y
e v »
X%ZIAGZG x.'S.JI's:xTG:G XSJI',:XTG:G
d_,qt;:_] M5 dm——l 6 dJ"G -1 17
¥ "
Xgp =ZXpp = Xop =Xge =1 Xep =Xge =0
=1 g | %ee=2 mo||%e=2 w10
Xyg, = Tre =C - Xan = Xee =
fre="l i [%ee=2 wnt
v "~
Xgg, =gy = A Tay =Fgy =4 Xgp = Fgp =0
i | 13 = 14 Ao = 2 15
¥
Tap = Xgg =4
gy =2
- 16
¥
xﬁTJ:xAC:C'
gy =1
A< N17
.
-
el
gl 118
xslrlzxﬂz?’
dr =71 319
Figure (4.1)

75

Nawar N. Qubat

By following the path of the nodes: N19-N18-N17-N16-N15-N12-
N11-N10-N7-N4-N2-NO we have the value of the objective function:
darXat +darXat +dacXac +0daaXan +dccXec +OreXoc +dasXes +AeeXas + e X +
dacXac +dccXee +dcaXca
=11 +(CD)@) +(H@D) +2@Q) +2(Q) +(H@Q) +2(1) +2(1) +(-DAD)+ (D)
V+2@0)+()@Q)=3

and we have three transformation of AACTGGTACC to TTCACGGCA
(by fixing first the similar characters in the nodes: N2, N10, N11, N15 and
N16) such that:

S = A — — A C T G G T A C C

=T T €C A C — G G — — C A
OR,

S = — A A C T G G T A C C

T™=T T A C —G GG — — C A
OR,

S = - A — A C T G G T A C

=T c A C — GG GG — — C A

5. Conclusions:

With the binary integer programming model proposed for computing
DNA Sequence Alignment some important conclusions were reached:

I. The model presented allows to obtain good and effective results for the
Edit Distance and DNA Sequence Alignment Problems as the results of
applying the Dynamic Programming Problem.

I1. The binary model solved by exact algorithm for computing the problems
and obtaining most of the optimal paths with least number of gaps and
shortest length and within a very reasonable computational time in handly
solution than the Dynamic Programming which needs O(mn) time. See ([4]
& [7])

I1l. The binary model proved it's efficient to solve a wide of real-life
problems and gives a very good solutions and one of these problems is
computing the string sequence and it's applications in molecular biology.

76

A Binary Integer Programming model for computing DNA Sequence Alignment

6. MATLAB codes of Dynamic Programming Problem: See [3]

6.1. For Edit Distance Problem:
function e = EditDist (sl,s2)

$EditDist Finds the Edit Distance between strings sl and s2.

Uses an

% efficient dynamic programming algorithm.
DelCost = 1;

InsCost = 1;

ReplCost = 1;

[ml,nl] size(sl);

[m2,n2] size(s2);

$Initialize dynamic matrix E with appropriate size:

E = zeros(nl+l,n2+1);
$This is dynamic programming algorithm:
for i = 1:nl

E(i+1,1) = E(i,1) + DelCost;
end;
for j = 1:n2
E(1,j+1) = E(1,j) + InsCost;
end;
for i = 1:nl
for j = 1:n2
if sl(i) == s2(j)
Repl = 0;
else
Repl = ReplCost;
end;
E(i+1,73+1) = min ([E(i,J)+Repl
E(i,j+1)+InsCost]);
end;
end;
E(nl+l,n2+1) = min ([E (nl,n2)+Repl

E(nl,n2+1)+InsCost])
e = E(nl+l,n2+1);

The Result:
>> EditDist ('VINTNER', '"WRITERS')

E =

o WN RO
do U WN R e
oYU W NN N
g0 W N W W
oUW W W
&I N N N NN IS
S oo oo gl oy o)

ans =

77

E(i+1,7j)+DelCost

E(nl+1,n2)+DelCost

Ul oy Oy O O O) 1

Nawar N. Qubat

6.2. For DNA Sequence Alignment Problem:

function v = SegAlign(dnal,dna?2)
%$SegAlign Finds the Sequence Alignment between two DNA
strings dnal

% dna2. Uses an efficient dynamic programming
algorithm.

DelCost = -1;

InsCost = -1;

ReplCost = -1;

[ml,nl] = size(dnal);

[m2,n2] = size(dna2);

$Initialize dynamic matrix V with appropriate size:
V = zeros(nl+l,n2+1);
%This is dynamic programming algorithm:

for 1 = 1:nl
V(i+l,1) = V(i,1) + DelCost;
end;
for j = 1:n2
V(l,j+1) = V(1,j) + InsCost;
end;
for 1 = 1:nl
for j = 1:n2
if dnal (i) == dna2(j)
Repl = 2;
else
Repl = ReplCost;
end;
V(i+l,3+1) = max ([V(i,J)+Repl V(i+l,j)+DelCost
V(i,j+1)+InsCost]);
end;
end;
V(nl+l,n2+1) = max ([V(nl,n2)+Repl V(nl+l,n2)+DelCost

V(nl,n2+1)+InsCost])
v = V(nl+l,n2+1);

The Result:
>> SegAlign ('AACTGGTACC', 'TTCACGGCA"')
v =
0 -1 -2 -3 -4 -5 -6 -7 -8 -9
-1 -1 -2 -3 -1 -2 -3 -4 -5 -6
-2 -2 -2 -3 -1 -2 -3 -4 -5 -3
-3 -3 -3 0 -1 1 0 -1 -2 -3
-4 -1 -1 -1 -1 0 0 -1 -2 -3
-5 -2 -2 -2 -2 -1 2 2 1 0
-6 -3 -3 -3 -3 -2 1 4 3 2
-7 -4 -1 -2 -3 -3 0 3 3 2
-8 -5 -2 -2 0 -1 -1 2 2 5
-9 -6 -3 0 -1 2 1 1 4 4
-10 -7 -4 -1 -1 1 1 0 3 3
ans =
3

78

A Binary Integer Programming model for computing DNA Sequence Alignment

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

Batzoglou, S., "Sequence Alignment”, lecture #2, CS262, Stanford
Computer Science, USA, 2006. URL.:
http://ai.stanford.edu/~serafim/CS262_2005/LectureNotes/Lecture2

.pdf

Bruce, K., "Dynamic Programming and Minimum String Edit
Distance”, lecture #4, Natural Language Processing CS 181, Pomona
College, USA, 2008.URL.:
http://www.cs.pomona.edu/classes/cs181NLP/lectures/Lec4/L ec4

.pdf

Castro, M., " MATLAB Code for Edit Distance", official website of
MATLAB, 2000. URL:
http://www.mathworks.com/matlabcentral/files/213/EditDist.m

Chan, T., "Practical Linear Space Algorithms for Computing String-
Edit Distances”, Springer Berlin / Heidelberg Publishing, Germany,
pp. 504-513, 2006.URL:
http://www.springerlink.com/content/b7h5840706130846/fulltext

.pdf
Church, K. and Helfman, J., "Dotplot: a Program for Exploring Self-
Similarity in Millions of Lines of Text and Code". Journal of

Computational and Graphical Statistics, 2(2):153-174, 1993.URL:
http://www.imagebeat.com/dotplot/rp.jcgs.pdf

Gilleland, M., "Levenshtein Distance , in Three Flavors", Merriam
Park Software,USA, 2007. URL:
http://www.merriampark.com/ld.htm

Gusfield, D., "Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology"”, Cambridge
University Press, 1% edition, UK, 1997.

Hillier, F. and Lieberman, G., "Introduction to Operation Research”,
McGraw-Hill Press, 7" edition, Holden Day, New York, USA, 2001.

Jones, N. and Pevzner, P., "Introduction to Bioinformatics
Algorithms", MIT Press, 1% edition, Cambridge, Massachusetts,
USA, 2004.

Levenshtein, V., "Binary codes capable of correcting deletions,
insertions and reversals”, Soviet Physics Doklady 10(8) p707-710,
1966.

79

http://ai.stanford.edu/~serafim/CS262_2005/LectureNotes/Lecture2%20.pdf
http://ai.stanford.edu/~serafim/CS262_2005/LectureNotes/Lecture2%20.pdf
http://www.cs.pomona.edu/classes/cs181NLP/lectures/Lec4/Lec4%20.pdf
http://www.cs.pomona.edu/classes/cs181NLP/lectures/Lec4/Lec4%20.pdf
http://www.mathworks.com/matlabcentral/files/213/EditDist.m
http://www.springerlink.com/content/b7h5840706130846/fulltext%20.pdf
http://www.springerlink.com/content/b7h5840706130846/fulltext%20.pdf
http://www.imagebeat.com/dotplot/rp.jcgs.pdf
http://www.merriampark.com/ld.htm

Nawar N. Qubat

[11]

[12]

[13]

Rouchka, E., "Aligning DNA Sequences Using Dynamic
Programming”,Crossroads, the ACM student magazine, Xrdsl13-1,
2006.URL:

http://www.acm.org/crossroads/xrds13-1/dna.html

Royce, T. and Necaise, R., "A Parallel Algorithm for DNA
Alignment",Crossroads, the ACM student magazine, Xrds9-3, 2003.
URL:

http://www.acm.org/crossroads/xrds9-3/alignment.html

Tompa, M., "Lecture Notes on Biological Sequence Analysis",
Technical Report #2000-06-01, University of Massachusetts Lowell,
USA, 2000.URL.:

http://www.cs.uml.edu/bioinformatics/resources/lectures/tompaO0lec

ture.pdf

80

http://www.acm.org/crossroads/xrds13-1/dna.html
http://www.acm.org/crossroads/xrds9-3/alignment.html
http://www.cs.uml.edu/bioinformatics/resources/lectures/tompa00lecture.pdf
http://www.cs.uml.edu/bioinformatics/resources/lectures/tompa00lecture.pdf

