
Raf. J. of Comp. & Math’s. , Vol. 7, No. 1, 2010

59

A Binary Integer Programming model for computing

DNA Sequence Alignment

Nawar N. Qubat

College of Computer Sciences and Mathematics

University of Mosul

Received on:24/8/2008 Accepted on:14/10/2008

ABSTRACT

DNA Sequence Alignment is an important problem in computational

biology and is useful for comparing genomes and finding genes, for

determining evolutionary linkage of different biological sequences.

Dynamic Programming Problems is discussed and applied to solve this

problem. This paper is concerned with computing DNA Sequence

Alignment firstly by formulating a Binary Integer Programming model to

compute the string sequence in Edit Distance Problem then re-formulating

this model to be suitable to compute this alignment. By this model we gave

a good role for Operations Researches field to prove it's efficient to solve

problems of molecule of life. The suggested model is applied to solve an

example in Edit Distance Problem then used again after re-formulating it for

an example in DNA Sequence Alignment Problem.

Keywords: DNA Sequence Alignment, Edit Distance, Binary Integer

Programming, Dynamic Programming.

محاذاة تسلسل الحمض النووي ساب نموذج برمجة ثنائي صحيح للح
قباط نجم نوار

جامعة الموصل ، كلية علوم الحاسوب والرياضيات
14/10/2008قبول: ال تاريخ 24/8/2008تاريخ الاستلام:

 الملخص
تعتبر مسألة مهمة في علم الأحياء الحسابي ومفيدة في مقارنة DNAاصطفاف سلسلة الـ

المورثات وإيجاد الجينات وفي تقرير الترابط التطوري من السلاسل الحيوية المختلفـة مسـا ل البرمجـة
ـ الديناميكية قد نوقشت وطب قت في حل هذه المسألة هذا البحث اهتم في حسـا اصـطفاف سلسـلة الـ

DNA أولًا بصياغة نموذج برمجة صحيحة ثنا يـة لحسـا سلسـلة الةلمـة فـي مسـألة تحريـر المسـافة
ثــم بعــد ذلــع تــم اعــادة صــياغة هــذا النمــوذج ليكــوا مناســباً لحســا هــذا الاصــطفاف بواســطة هــذا

بحوث العمليات في حل مسا ل جزيئـة الحيـاة النمـوذج المقتـرق طبـ النموذج أعطينا دور جيد لحقل
في حل مثال فـي مسـألة تحريـر المسـافة ثـم بعـد ذلـع اسـتخدر مـرة أعـرة بعـد اعـادة صـياغت فـي حـل

 DNAمثال في مسألة اصطفاف سلسلة الـ

Nawar N. Qubat

60

نا يـة الصـحيحة ي الةلمات المفتاحيـة محـاذاة تسلسـل الحمـن النـووي ي تحريـر المسـافة ي البرمجـة الث
 البرمجة الديناميكية

1. Introduction:

Sequence Alignment is used in several different fields including

molecular biology, string editing, speech processing, and codes and error

control. In computational biology this alignment known as DNA Sequence

Alignment which is an important problem for comparing genomes and

finding genes, for determining evolutionary linkage of different biological

sequences.[9]

DeoxyriboNucleic Acid (DNA) is the hereditary molecule of life.

Information encoded within DNA confers physical characteristics such as

hair color, eye color, and susceptibility to certain diseases. By unraveling

the secrets encoded within DNA, numerous biological and medical

discoveries have been and continue to be made.

A DNA sequence is a string formed from a four-letter alphabet

{Adenosine (A), Thymidine (T), Guanosine (G), Cytidine (C)} of biological

macromolecules,for example:ATTCGGATCGGAATCGTAGCC represents

a string of the nucleotides A, G, C and T.

One basic technique to glean information from a DNA molecule is to

compare it to other DNA molecules. This comparison, generally called an

alignment, is fundamental to the emerging field of bioinformatics revealing

where sequences are the same and where are they different. The differences

could be invaluable, for example, in helping to explain why individuals have

different susceptibility to disease. [12]

DNA Sequence alignment reveals the relations between the

characters in different sequences, and there are the reverse complement

relations between the characters in DNA double strand.

The measuring of the similarity by Sequence Alignment Problem between

two DNA sequences is basically depends on Edit Distance Problem concept

for finding the similarity between two string.

Our study represents introducing on Edit Distance Problem in

section 2 and then formulating a binary integer programming model for

computing the string sequence via this problem in section 3 and re-solving

an example by this model after solving it by Dynamic Programming

Problem. Section 4 gives more details on DNA Sequence Alignment

Problem and re-formulating the binary model in section 3 to be suitable to

solve this alignment and re-solving an example by this model after solving it

by Dynamic Programming Problem with MATLAB codes in section 6.

Finally, some conclusions were reached in section 5 on this model on it's

effective for computing DNA Sequence Alignment.

A Binary Integer Programming model for computing DNA Sequence Alignment

61

2. Computing the string sequence:

2.1. Edit Distance Problem:

Edit Distance (or Levenshtein distance [10]) between two strings is

defined as the minimal number of edit operations which must be performed

between them, character by character to transform one string into another,

the edit operations are: Replacement (R), Matching (M), Deletion (D) and

Insertion (I) and the string over the (R, M, D and I) is called an edit

transcript string of the two strings.[6]

Simply, to transform the string abcde to the string bcfeg, we can

delete a then replace d by f and finally insert g, yielding to the string bcfeg.

Also by the following description:

The Optimal Edit Transcript String

D M M R M I

a b c d e —

— b c f e g

Deletion Matching Replacement Insertion

Edit Distance Problem (EDP) is to compute the edit distance

between two given strings along with an optimal edit transcript that

describes the transformation.

The symbol "—" indicated to a gap which occur of the deletion and

insertion operations only, the minimal edit distance operations is the number

of columns in which the characters differ. The aim of finding the minimal

edit distance between two strings is for searching for strings of strings with

most similarity.

2.2. Edit Distance Formula:

For finding the value of edit distance between two strings we have to

use a general description of the problem which as follows:

Let S and T be a two strings with length m and n , respectively, we can

define:),(jiE as the value of edit distance between S and T for mi ,...,1= ,

nj ,...,1= ,),(nmE is the minimal edit distance between S and T,

)0,(mE or),0(nE is the minimal effort required to transform the string S

into the null string or the string T into the null string.

In order to calculate),(jiE we must have an initial conditions:

Nawar N. Qubat

62

0)0,0(=E ,

miiiE = 1,)0,(,

njjjE = 1,),0(, and recurrence relation used for njmi  1,1

defined as:

)),((),1(−+− iSjiE  .

 min),(=jiE))(,()1,(jTjiE −+−  . …(1)

))(),(()1,1(jTiSjiE +−− .

Where 1)),((=−iS (deletion operation cost),

1))(,(=− jT (insertion operation cost),

 0 if)()(jTiS = (matching operation cost)

=))(),((jTiS …(2)

 1 if)()(jTiS  (replacement operation cost)

See ([2], [7], [9] & [11]).

We can called to))(,(),),((jTis −−  and))(),((jTiS by scoring

functions. Thus, the minimal edit distance between the strings S=abcde

with 5=m and T=bcfeg with 5=n is 3)5,5(),(== EnmE .

2.3. Computing Edit Distance:

In order to calculate),(nmE we must be able to calculate),(jiE for

any i and j , this calculation can be done recursively or through Dynamic

Programming. Dynamic Programming Problem (DPP) is a powerful

technique of calculating values more than once to be used to calculate other

values later.

DPP for computing strings sequence depends completely on Edit

Distance formula in (eqs. (1) & (2)) by filling a table from left to right and

top to bottom starting by the initial conditions which are the sets of known

values)0,(iE and),0(jE and bottom-right most value will be the minimal

edit distance),(nmE . [2]

2.4. Example:

The table below shows the transformation of the string VINTNER to

WRITERS by using DPP, the rows corresponds to a different edit

operations, horizontal for insertion, vertical for deletion and diagonal for

replacement and matching.

Table (2.1)

 0 1 2 3 4 5 6 7

A Binary Integer Programming model for computing DNA Sequence Alignment

63

),(jiE

 W R I T E R S

0 0 1 2 3 4 5 6 7

1 V 1 1 2 3 4 5 6 7

2 I 2 2 2 2 3 4 5 6

3 N 3 3 3 3 3 4 5 6

4 T 4 4 4 4 3 4 5 6

5 N 5 5 5 5 4 4 5 6

6 E 6 6 6 6 5 4 5 6

7 R 7 7 6 7 6 5 4 5

We chose an arbitrary edit distance calculations from table (2.1) such that:

 4131)3,1(=+=+E

min)3,2(=E 3121)2,2(=+=+E = 2

 2020)2,1(=+=+E

 4131)4,4(=+=+E

min)4,5(=E 6151)3,5(=+=+E = 4

 5141)3,4(=+=+E

And the terminal value 5)7,7(=E which gives the minimal edit

distance of the two strings, such that:

 7161)7,6(=+=+E

min)7,7(=E 5141)6,7(=+=+E

 6151)6,6(=+=+E

A MATLAB code presented in section 6 and has been used to solve

the Edit Distance Problem with function (EditDist).

If we remove the last 3 columns and the last 2 rows from the table

(2.1) of the optimal edit distance then the remaining columns and rows

represent an optimal edit distance for the remaining substrings and this

property called Prefix, see below:

V I N T N E R

W R I T E R S

Here, the minimal edit distance of the two substrings VINTN and

WRIT will be 4)4,5(=E . [9]

2.5. Recovering the string itself:

Nawar N. Qubat

64

DPP described how to compute the edit distance between two strings

and now we explain how the optimal string recover itself. The key idea is to

retrace the optimal paths of the Dynamic Programming backwards, re-

discovering the path of choices from]][[nmopt into]0][0[opt , (opt means

optimal edit distance) which depends on the following three possibilities:

I. If a character)(iS up to)(jT for njmi  1,1 , then:

]][[]1][1[jioptjiopt =−− if)()(jTiS = . …(3)

 1]][[]1][1[−=−− jioptjiopt if)()(jTiS  . …(4)

II. If a character)(iS up with a gap for njmi  0,1 , then:

 1]][[]][1[−=− jioptjiopt . …(5)

III. If a character)(jT up with a gap for minj  0,1 , then:

 1]][[]1][[−=− jioptjiopt . …(6)

Now, by the (eqs. (3), (4), (5) and (6)) the recovering of the optimal

paths of the strings in above example from]7][7[opt into]0][0[opt and

according to the inversion of the arrows in the shaded squares we get:

]0][0[01]1][1[

]1][1[11]2][1[

]2][1[]3][2[21]3][3[

]0][0[01]1][0[

]1][0[11]2][1[

]2][1[]3][2[21]3][3[

]0][0[01]1][1[

]1][1[11]2][2[

]2][2[21]3][3[

]3][3[]4][4[31]4][5[

]4][5[]5][6[]6][7[41]7][7[

optopt

optopt

optoptopt

OR

optopt

optopt

optoptopt

OR

optopt

optopt

optopt

optoptopt

optoptoptopt

==−

==−

===−

−−−−−−−−−−−−−−−−−−−−

==−

==−

===−

−−−−−−−−−−−−−−−−−−−−

==−

==−

==−

−−−−−−−−−−−−−−−−−−−−−−

===−

====−

Therefore, the final transformations of the similarity of both strings

VINTNER and WRITERS according to the recovering of the optimal paths

will be:

V I N T N E R —

A Binary Integer Programming model for computing DNA Sequence Alignment

65

W R I T — E R S

OR,

— V I N T N E R —

W R I — T — E R S

OR,

V — I N T N E R —

W R I — T — E R S

Respectively.

The first path of transformation string VINTNER to WRITERS is

the best one than the others because it has the least number of gaps (two

gaps) and minimal length (8) than the two other paths. [13]

3. Binary Integer Programming model for Edit Distance:

3.1. Binary Integer Programming Problem:

A Binary Integer Programming Problem (BIPP) is kind of Integer

Programming Problem (IPP) and is given by vector nc  , mb  and

matrix
mnA  . The goal of the problem is to find a vector  1,0= nx

solving the following optimization problem: [8]

Max xcT

s.t. bAx 

 0x

3.2. Formulating BIP model for computing Edit Distance:

Let S and T be a two strings with length m and n , respectively, we

can formulate a binary integer programming model (BIPM) to find the

similarity of S and T on finding a minimum distances between them which

depends on the number of similar characters, such that:

Min 
i j

TSTS jiji
xd , …(7.1)

subject to jTS Tx
ji
= , …(7.2)

for mi ,...,1= and nj ,...,1= , SSi  and TT j  (characters)

 1 if
ji TSx has been taken (branched)

Where =
ji TSx …(7.3)

 0 otherwise

And

 0 if ji TS =

Nawar N. Qubat

66

 =
ji TSd …(7.4)

 1 otherwise

3.3. Proposed algorithm to solve BIPM:

Step 1: (Starting) We choose the first node (N0) to be the variable
nm TSx and

also to be the first comparison between the character mS from the string S

and the character nT from the string T with the equation nTS Tx
nm
= and

distance
nm TSd .

Step 2: (Matching) If mS matched (similar to) nT then branch the node (N0)

to the node (N1) which represent the next variable
11 −− nm TSx and to be a new

comparison between 1−mS and 1−nT with the equation 111 −=
−− nTS Tx

nm
 and

distance
11 −− nm TSd , else:

Step 3: (Mismatching) mS mismatched (not similar to) nT then branch the

node (N0) to the node (N1, N2 and N3) which represent the next following

variables to be a new comparisons:

i) N1:
1−nm TSx with the equation 11 −=

− nTS Tx
nm

and distance
1−nn TSd ,

ii) N2:
11 −− nm TSx with the equation

111 −=
−− nTS Tx

nm
and distance

11 −− nm TSd ,

iii) N3:
nm TSx

1−
 with the equation nTS Tx

nm
=

−1
 and distances

nm TSd
1−

.

If one of the nodes (N1, N2 or N3) has a matched characters (as step 2) then

we need not to branch the other two nodes.

Step 4: (Exception) If 2== nm then we directly branch the node with the

equation 222
Tx TS = and distance

22 TSd into the node with the equation

111
Tx TS = even if 2S is not similar to 2T .

Step 5: (Ending) Repeat the process in steps 2 and 3 until reaching to the

last variable
11 TSx with the equation 111

Tx TS = and distance
11 TSd .

By this algorithm we get a tree of nodes with the optimal solution of

the Edit Distance Problem which represent the minimum number of edit

operations to transform the string S into the string T with finding at least

one of the optimal transformations paths.

3.4 Solving Example 2.4 according to BIPM:

 We have two strings S and T, such that:

S:

A Binary Integer Programming model for computing DNA Sequence Alignment

67

1S 2S 3S 4S 5S 6S 7S

V I N T N E R

T:

1T 2T 3T 4T 5T 6T 7T

W R I T E R S

with length 7==mS and 7== nT

By the algorithm with step 1, the first branched node (N0) is carry

the variable
77TSx , and by steps 2 and 3 we continue by branching the nodes,

such that:

Figure (3.1)

Nawar N. Qubat

68

 Step 4 of the algorithm occurs in node (N11), although I is not similar to

R but is branched only to one node (N13).

By following the path of the nodes: N15-N14-N13-N12-N9-N8-N5-

N4-N1-N0, we have the value of the objective function:

RSRSRRRREEEENTNTTTTTNINIIIIIVRVRVWVW xdxdxdxdxdxdxdxdxd ++++++++

= 1 (1) + 1 (1) + 0 (1) + 1 (1) + 0 (1) + 1 (1) + 0 (1) + 0 (1) + 1 (1)

= 5

and we have two transformation of VINTNER to WRITERS (by fixing first

the similar characters in the nodes: N1, N4, N8 and N12) such that:

V — I N T N E R —

W R I — T — E R S

OR,

— V I N T N E R —

W R I — T — E R S

 And by following the path of the nodes: N13-N11-N9-N8-N5-N4-

N1-N0 we have the value of the objective function:

RSRSRRRREEEENTNTTTTTNINIIRIRVWVW xdxdxdxdxdxdxdxd +++++++ =

 1 (1) + 1 (1) + 1 (1) + 0 (1) + 1 (1) + 0 (1) + 0 (1) + 1 (1) = 5

and we have two transformation of VINTNER to WRITERS (by fixing first

the similar characters in the nodes: N1, N4 and N8) such that:

V I N T N E R —

W R I T — E R S

4. Computing DNA Sequence Alignment:

4.1. DNA Sequence Alignment Problem:

 Given two strings S and T with length m and n such that

S=),...,(1 mSS and T=),...,(1 nTT respectively, the sequence alignment is

defined as an assignment of gaps to positions m,...0 in S and n,...0 in T so

as to line up each character in one sequence with either a character or a gap

in the other sequence and this will result in two sequences of equal length.

An alignment between two input sequences, S and T over the alphabet

Σ = {A,C,G,T}, expresses an equivalence relationship between the pair of

sequences by generating two sequences S' and T' of equal length by

inserting the gaps into S and T.

A Binary Integer Programming model for computing DNA Sequence Alignment

69

 An optimal alignment is one that minimizes the number of the gaps

are inserted while simultaneously minimizing the number of replacements

operation occur (i.e. a C aligned with a T).

 Gaps are an important concept in biological applications because a

stream of gaps in a DNA sequence my present a significant biological

characteristic, gaps usually incur a penalty to the potential alignment score

between two sequences. If we remove the gaps from S' and T' then we

restored S and T.

 To illustrate the idea of an alignment, consider the sequences given

by S=TAAGAAC and T= TGAC. They could have an optimal alignment

consisting of S' and T' below:

S'= T A A G A A C

T'= T — — G — A C

 Given the scoring functions of one for a matching cost and zero for

gaps and replacement cost, the above alignment would have a score of four.

Note that other alignments can share the maximal score:

S'= T A A G A A C

T'= T — — G A — C

 And other sub-optimal alignments can have lower scores (3 in the

following instance):

S'= T A A G A A C

T'= — — T G — A C

See ([1] & [13]).

4.2. Dot Plot Problem:

 Dot Plot Problem is one of the earliest methods of comparing two

DNA Sequences Alignment which plots the regions of the similarity

between them by hand.

 Dot Plot Problem is to create a table by setting one DNA Sequence

on a vertical axis and the other on a horizontal axis and the dots mark a

match between nucleotides in the sequences. [5]

Nawar N. Qubat

70

Table (4.1)

 A G C T A G A G A

A · · · ·

G · · ·

C ·

A · · · ·

T ·

A · · · ·

G · · ·

G · · ·

A · · · ·

 In the table (3.1), the sequence AGCATAGGA is matched against

the sequence AGCTAGAGA, the regions of similarity occur where it is

clear that there is a string of diagonal dots in the dot plot, so we can easily

compute the similarity by setting the value (2) in each dot in the three

diagonal strings and the value (-1) in the two gaps (i.e. (A,T) and (G,A)) and

obtain:

Optimal Similarity : A G C + (A,T) + T A G + (G,A) + G A

 2+2+2 + (-1) + 2+2+2 + (-1) + 2+2 = 14

4.3. DNA Sequence Alignment Formula:

 DNA Sequence Alignment Problem is an alignment present in

optimal path between the point)0,0(E and the point),(nmE and Dynamic

Programming used to solve it in the following formula:

 Given two string S and T with length m and n respectively, our

goal is to compute the optimal sequence alignment of S and T.

Let),(jiV defined as the value of the alignment of the strings S=),...,(1 mSS

and T=),...,(1 nTT .

),(nmV is the optimal sequence alignment of S and T, in order to

compute),(jiV we must have an initial conditions: See ([7], [9] & [13])

njforjTjVjV

miforiSiViV

V

−+−=

−+−=

=

1)),(,()1,0(),0(

1),),(()0,1()0,(

0)0,0(





And recurrence relation used for njmi  1,1 defined as:

)),i(S()j,i(V −+− 1

max)j,i(V =))j(T,()j,i(V −+− 1 …(8)

))j(T),i(S()j,i(V +−− 11

A Binary Integer Programming model for computing DNA Sequence Alignment

71

Where
 1−=−)),i(S( ()i(S up to a gap),

 1−=−))j(T,( ()j(T up to a gap),

 2 if)j(T)i(S = ()i(S match)j(T in same character)

=))j(T),i(S(

 -1 if)j(T)i(S  ()i(S match)j(T in different character)

4.4. Example:

 The table (4.2) gives the transformation of the DNA

sequence alignment AACTGGTACC to TTCACGGCA using Dynamic

Programming Problem:

Table (4.2)

),(jiV
0 1 2 3 4 5 6 7 8 9

 T T C A C G G C A

0 0 -1 -2 -3 -4 -5 -6 -7 -8 -9

1 A -1 -1 -2 -3 -1 -2 -3 -4 -5 -6

2 A -2 -2 -2 -3 -1 -2 -3 -4 -5 -3

3 C -3 -3 -3 0 -1 1 0 -1 -2 -3

4 T -4 -1 -1 -1 -1 0 0 -1 -2 -3

5 G -5 -2 -2 -2 -2 -1 2 2 1 0

6 G -6 -3 -3 -3 -3 -2 1 4 3 2

7 T -7 -4 -1 -2 -3 -3 0 3 3 2

8 A -8 -5 -2 -2 0 -1 -1 2 2 5

9 C -9 -6 -3 0 -1 2 1 1 4 4

10 C -10 -7 -4 -1 -1 1 1 0 3 3

We chose an arbitrary edit distance calculations from table (2.1) such that:

 2111)4,1(−=−−=−V

max)4,2(=V 4131)3,2(−=−−=−V = -1

 1231)3,1(−=+−=−V

 3141)7,6(=−=−V

max)7,7(=V 1101)6,7(−=−=−V = 3

 0111)6,6(=−=−V

 From the table (4.2) we got the terminal value 3)9,10(=V which

gives the optimal sequence alignment of the two strings, such that:

Gap penalty

…(9)

Nawar N. Qubat

72

 3141)9,9(=−=−V

max)9,10(=V 2131)8,10(=−=−V

 3141)8,9(=−=−V

 A MATLAB code presented in section 6 and has been used to solve

the DNA Sequence Alignment Problem with function (SeqAlign).

 The recovering of the paths from]][[nmopt into]0][0[opt

according to the Dynamic Programming formula for DNA Sequence

Alignment in (eqs. (8) & (9)) with depending on the following three

possibilities:

I. If a character)(iS up to)(jT for njmi  1,1 , then:

 2]][[]1][1[−=−− jioptjiopt if)()(jTiS = ...(10)

 1]][[]1][1[+=−− jioptjiopt if)()(jTiS  ...(11)

II. If a character)(iS up with a gap for njmi  0,1 , then:

 1]][[]][1[+=− jioptjiopt …(12)

III. If a character)(jT up with a gap for minj  0,1 , then:

 1]][[]1][[+=− jioptjiopt …(13)

 And by the (eqs. (10), (11), (12) and (13)) the recovering of the

optimal paths from]9][10[opt into]0][0[opt and according to the inversion

of the arrows in the shaded squares we get:

A Binary Integer Programming model for computing DNA Sequence Alignment

73

]0][0[01]1][0[

]1][0[11]2][1[

]2][1[21]3][1[

]0][0[01]1][0[

]1][0[11]2][0[

]2][0[21]3][1[

]0][0[01]1][1[

]1][1[11]2][1[

]2][1[21]3][1[

]3][1[32]4][2[

]4][2[12]5][3[

]5][3[11]5][4[

]5][4[02]6][5[

]6][5[22]7][6[

]7][6[41]7][7[

]7][7[31]7][8[

]7][8[22]8][9[

]8][9[41]9][10[

optopt

optopt

optopt

OR

optopt

optopt

optopt

OR

optopt

optopt

optopt

optopt

optopt

optopt

optopt

optopt

optopt

optopt

optopt

optopt

==+

=−=+

=−=+

−−−−−−−−−−−−−−−

==+

=−=+

=−=+

−−−−−−−−−−−−−−−

==+

=−=+

=−=+

−−−−−−−−−−−−−−−−−

=−=−

=−=−

==+

==−

==−

==+

==+

==−

==+

OR

]0][0[01]1][0[

]1][0[11]2][1[

]2][1[21]3][1[

]0][0[01]1][0[

]1][0[11]2][0[

]2][0[21]3][1[

]0][0[01]1][1[

]1][1[11]2][1[

]2][1[21]3][1[

]3][1[32]4][2[

]4][2[12]5][3[

]5][3[11]5][4[

]5][4[02]6][5[

]6][5[22]7][6[

]7][6[41]8][7[

]8][7[32]9][8[

]9][8[51]9][9[

]9][9[41]9][10[

optopt

optopt

optopt

OR

optopt

optopt

optopt

OR

optopt

optopt

optopt

optopt

optopt

optopt

optopt

optopt

optopt

optopt

optopt

optopt

==+

=−=+

=−=+

−−−−−−−−−−−−−−−

==+

=−=+

=−=+

−−−−−−−−−−−−−−−

==+

=−=+

=−=+

−−−−−−−−−−−−−−−−−

=−=−

=−=−

==+

==−

==−

==+

==−

==+

==+

 Thus, according to the recovering of the optimal paths, the similarity of

the two sequence will be in form:

S'= A — — A C T G G T A C C

T'= T T C A C — G G — — C A

OR,

S'= — — A A C T G G T A C C

T'= T T C A C — G G — — C A

OR,

Nawar N. Qubat

74

S'= — A — A C T G G T A C C

T'= T T C A C — G G — — C A

OR,

S'= A — — A C T G G T A C C

T'= T T C A C — G G C A — —

OR,

S'= — — A A C T G G T A C C

T'= T T C A C — G G C A — —

OR,

S'= — A — A C T G G T A C C

T'= T T C A C — G G C A — —

Respectively.

 All the paths of transformation the DNA sequences alignment

AACTGGTACC to TTCACGGCA are optimal because they have the same

number of gaps (five gaps) and the same length (12). See ([1] & [11]).

4.5. Solving Example 4.4 according to BIPM:

 Before going to compute the optimal sequence alignment of the

DNA sequences alignment AACTGGTACC and TTCACGGCA, we need

to re-formulate the binary integer programming model in equations (7.1)

and (7.4) to be suitable to find that sequence, as follows:

 Max 
i j

TSTS jiji
xd …(14.1)

 and

 2 if ji TS =

 =
ji TSd …(14.2)

 -1 otherwise

Now, we have two DNA sequences strings S and T, such that:

S:

1S 2S 3S 4S 5S 6S 7S 8S 9S 10S

A A C T G G T A C C

T:

1T 2T 3T 4T 5T 6T 7T 8T 9T

T T C A C G G C A

with length 10==mS and 9== nT

A Binary Integer Programming model for computing DNA Sequence Alignment

75

Figure (4.1)

Nawar N. Qubat

76

 By following the path of the nodes: N19-N18-N17-N16-N15-N12-

N11-N10-N7-N4-N2-N0 we have the value of the objective function:
+++++++++ TGTGGGGGGGGGTCTCCCCCAAAAACACATATATAT xdxdxdxdxdxdxdxdxd

CACACCCCAGAG xdxdxd ++

=-1 (1) + (-1) (1) + (-1) (1) + 2 (1) + 2 (1) + (-1) (1) + 2 (1) + 2 (1) + (-1) (1) + (-1)

(1) + 2 (1) + (-1) (1) = 3

and we have three transformation of AACTGGTACC to TTCACGGCA

(by fixing first the similar characters in the nodes: N2, N10, N11, N15 and

N16) such that:

S'= A — — A C T G G T A C C

T'= T T C A C — G G — — C A

OR,

S'= — — A A C T G G T A C C

T'= T T C A C — G G — — C A

OR,

S'= — A — A C T G G T A C C

T'= T T C A C — G G — — C A

5. Conclusions:

 With the binary integer programming model proposed for computing

DNA Sequence Alignment some important conclusions were reached:

I. The model presented allows to obtain good and effective results for the

Edit Distance and DNA Sequence Alignment Problems as the results of

applying the Dynamic Programming Problem.

II. The binary model solved by exact algorithm for computing the problems

and obtaining most of the optimal paths with least number of gaps and

shortest length and within a very reasonable computational time in handly

solution than the Dynamic Programming which needs)(mnO time. See ([4]

& [7])

III. The binary model proved it's efficient to solve a wide of real-life

problems and gives a very good solutions and one of these problems is

computing the string sequence and it's applications in molecular biology.

A Binary Integer Programming model for computing DNA Sequence Alignment

77

6. MATLAB codes of Dynamic Programming Problem: See [3]

6.1. For Edit Distance Problem:

function e = EditDist(s1,s2)
%EditDist Finds the Edit Distance between strings s1 and s2.

Uses an

% efficient dynamic programming algorithm.

DelCost = 1;
InsCost = 1;
ReplCost = 1;

[m1,n1] = size(s1);
[m2,n2] = size(s2);
%Initialize dynamic matrix E with appropriate size:
E = zeros(n1+1,n2+1);
%This is dynamic programming algorithm:
for i = 1:n1
 E(i+1,1) = E(i,1) + DelCost;
end;
for j = 1:n2
 E(1,j+1) = E(1,j) + InsCost;
end;
for i = 1:n1
 for j = 1:n2
 if s1(i) == s2(j)
 Repl = 0;
 else
 Repl = ReplCost;
 end;
 E(i+1,j+1) = min([E(i,j)+Repl E(i+1,j)+DelCost

E(i,j+1)+InsCost]);
 end;
end;
E(n1+1,n2+1) = min([E(n1,n2)+Repl E(n1+1,n2)+DelCost

E(n1,n2+1)+InsCost])
e = E(n1+1,n2+1);

The Result:
>> EditDist('VINTNER','WRITERS')

E =

 0 1 2 3 4 5 6 7

 1 1 2 3 4 5 6 7

 2 2 2 2 3 4 5 6

 3 3 3 3 3 4 5 6

 4 4 4 4 3 4 5 6

 5 5 5 5 4 4 5 6

 6 6 6 6 5 4 5 6

 7 7 6 7 6 5 4 5

ans =

 5

Nawar N. Qubat

78

6.2. For DNA Sequence Alignment Problem:

function v = SeqAlign(dna1,dna2)
%SeqAlign Finds the Sequence Alignment between two DNA

strings dna1
% dna2. Uses an efficient dynamic programming

algorithm.
DelCost = -1;
InsCost = -1;
ReplCost = -1;

[m1,n1] = size(dna1);
[m2,n2] = size(dna2);
%Initialize dynamic matrix V with appropriate size:
V = zeros(n1+1,n2+1);
%This is dynamic programming algorithm:
for i = 1:n1
 V(i+1,1) = V(i,1) + DelCost;
end;
for j = 1:n2
 V(1,j+1) = V(1,j) + InsCost;
end;
for i = 1:n1
 for j = 1:n2
 if dna1(i) == dna2(j)
 Repl = 2;
 else
 Repl = ReplCost;
 end;
 V(i+1,j+1) = max([V(i,j)+Repl V(i+1,j)+DelCost

V(i,j+1)+InsCost]);
 end;
end;
V(n1+1,n2+1) = max([V(n1,n2)+Repl V(n1+1,n2)+DelCost

V(n1,n2+1)+InsCost])
v = V(n1+1,n2+1);

The Result:
>> SeqAlign('AACTGGTACC','TTCACGGCA')

V =

 0 -1 -2 -3 -4 -5 -6 -7 -8 -9

 -1 -1 -2 -3 -1 -2 -3 -4 -5 -6

 -2 -2 -2 -3 -1 -2 -3 -4 -5 -3

 -3 -3 -3 0 -1 1 0 -1 -2 -3

 -4 -1 -1 -1 -1 0 0 -1 -2 -3

 -5 -2 -2 -2 -2 -1 2 2 1 0

 -6 -3 -3 -3 -3 -2 1 4 3 2

 -7 -4 -1 -2 -3 -3 0 3 3 2

 -8 -5 -2 -2 0 -1 -1 2 2 5

 -9 -6 -3 0 -1 2 1 1 4 4

 -10 -7 -4 -1 -1 1 1 0 3 3

ans =

 3

A Binary Integer Programming model for computing DNA Sequence Alignment

79

REFERENCES

[1] Batzoglou, S., "Sequence Alignment", lecture #2, CS262, Stanford

 Computer Science, USA, 2006. URL:

 http://ai.stanford.edu/~serafim/CS262_2005/LectureNotes/Lecture2

 .pdf

[2] Bruce, K., "Dynamic Programming and Minimum String Edit

 Distance", lecture #4, Natural Language Processing CS 181, Pomona

 College, USA, 2008.URL:

 http://www.cs.pomona.edu/classes/cs181NLP/lectures/Lec4/Lec4

 .pdf

[3] Castro, M., " MATLAB Code for Edit Distance", official website of

 MATLAB, 2000. URL:

 http://www.mathworks.com/matlabcentral/files/213/EditDist.m

[4] Chan, T., "Practical Linear Space Algorithms for Computing String-

 Edit Distances", Springer Berlin / Heidelberg Publishing, Germany,

 pp. 504-513, 2006.URL:

 http://www.springerlink.com/content/b7h5840706130846/fulltext

 .pdf

[5] Church, K. and Helfman, J., "Dotplot: a Program for Exploring Self-

 Similarity in Millions of Lines of Text and Code". Journal of

 Computational and Graphical Statistics, 2(2):153-174, 1993.URL:

 http://www.imagebeat.com/dotplot/rp.jcgs.pdf

[6] Gilleland, M., "Levenshtein Distance , in Three Flavors", Merriam

 Park Software,USA, 2007. URL:

 http://www.merriampark.com/ld.htm

[7] Gusfield, D., "Algorithms on Strings, Trees, and Sequences:

 Computer Science and Computational Biology", Cambridge

 University Press, 1st edition, UK, 1997.

[8] Hillier, F. and Lieberman, G., "Introduction to Operation Research",

 McGraw-Hill Press, 7th edition, Holden Day, New York, USA, 2001.

[9] Jones, N. and Pevzner, P., "Introduction to Bioinformatics

 Algorithms", MIT Press, 1st edition, Cambridge, Massachusetts,

 USA, 2004.

[10] Levenshtein, V., "Binary codes capable of correcting deletions,

 insertions and reversals", Soviet Physics Doklady 10(8) p707-710,

 1966.

http://ai.stanford.edu/~serafim/CS262_2005/LectureNotes/Lecture2%20.pdf
http://ai.stanford.edu/~serafim/CS262_2005/LectureNotes/Lecture2%20.pdf
http://www.cs.pomona.edu/classes/cs181NLP/lectures/Lec4/Lec4%20.pdf
http://www.cs.pomona.edu/classes/cs181NLP/lectures/Lec4/Lec4%20.pdf
http://www.mathworks.com/matlabcentral/files/213/EditDist.m
http://www.springerlink.com/content/b7h5840706130846/fulltext%20.pdf
http://www.springerlink.com/content/b7h5840706130846/fulltext%20.pdf
http://www.imagebeat.com/dotplot/rp.jcgs.pdf
http://www.merriampark.com/ld.htm

Nawar N. Qubat

80

[11] Rouchka, E., "Aligning DNA Sequences Using Dynamic

 Programming",Crossroads, the ACM student magazine, Xrds13-1,

 2006.URL:

 http://www.acm.org/crossroads/xrds13-1/dna.html

[12] Royce, T. and Necaise, R., "A Parallel Algorithm for DNA

 Alignment",Crossroads, the ACM student magazine, Xrds9-3, 2003.

 URL:

 http://www.acm.org/crossroads/xrds9-3/alignment.html

[13] Tompa, M., "Lecture Notes on Biological Sequence Analysis",

 Technical Report #2000-06-01, University of Massachusetts Lowell,

 USA, 2000.URL:

 http://www.cs.uml.edu/bioinformatics/resources/lectures/tompa00lec

 ture.pdf

http://www.acm.org/crossroads/xrds13-1/dna.html
http://www.acm.org/crossroads/xrds9-3/alignment.html
http://www.cs.uml.edu/bioinformatics/resources/lectures/tompa00lecture.pdf
http://www.cs.uml.edu/bioinformatics/resources/lectures/tompa00lecture.pdf

