
 Raf. J. of Comp. & Math’s. , Vol. 10, No. 1, 2013
 Fifth Scientific Conference Information Technology 2012 Dec. 19-20

29

Parallel Programming for Solving Linear BVP’s by Linear Superposition using

CS_Tools

Bashir M.S. Khalaf Firas M. Saeed

College of Education

University of Mosul, Mosul, Iraq
College of medicine

University of Mosul, Mosul, Iraq

Received on: 17/09/2012 Accepted on: 30/01/2013

ABSTRACT

The objective of this paper is to speed the solution of linear Boundary Value

Problem (LPVPs) by parallel Programming by using cs_tools where the solution

methods is the linear superposition Algorithm.

 الطريقة فوق المركبة خطية باستخدام لمسالة القيمة الحدودية ال وازية للحلتالبرمجة الم
 CS-Tools باستخدامالخطية

 فراس م سعيد بشير محمد خلف
 التربية كلية
 ، الموصل، العراقجامعة الموصل

 كلية الطب
 ، الموصل، العراقجامعة الموصل

 30/01/2013تاريخ قبول البحث: 17/09/2012تاريخ استلام البحث:

 الملخص

 المتوا حددة سالددت ا الهدد م مددا اددحا ال زددد اددو حدداسا لددرقة ددل مدددابل الةدديب الز س ددة والددطة ال رم ددة
cs_tools الطرحقة فوق المرك ة.تكون طرحقة الزل اي قن ما

1. Introduction

Theoretical techniques require practical Implementation to confirm their

efficiency and validity: the latter is affected by the computer system available,

especially when considering parallel algorithms. Practical problems of development or

implementation e.g. the reliability and accessibility of the parallel systems can

obviously offset the gain in execution time. Here, we have not attempted a

comprehensive implementation of wide-ranging applications but a single

straightforward problem for each of the three principal techniques presented. The Meiko

equipment briefly is described in Appendix B [2].
In this paper, we discuss the programming and running of these parallel

algorithms for the test of the problems on the Meiko Computing Surface by using CS-

Tools, with C as the programming language. We have only considered the parallel

solution of ODEs. This area of differential equations, is well known which consists of

two main categories [1, 5 and 6]:

1) Initial value problems, and

2) Boundary value problems.

 Bashir M.S. Khalaf & Firas M. Saeed

 30

For the first category, there is no essential difference between the numerical

solution of linear and non-linear cases, so that, we consider only the best of our parallel

techniques for this category on the Meiko transputer system. We noted in reference [2]

that the newly developed PBS technique offers several advantages over the other

parallel techniques, such as:

1) It is completely parallel,

2) It is more effective in controlling the numerical stability of the numerical algorithms

for initial value problems by virtue of integrating over small subintervals only.

This is, accordingly, the technique applied, and is considered in [2] .In contrast,

there are various techniques available for solving either Linear or nonlinear boundary

differential equations. Accordingly [2], we consider the parallel execution of the

preferred parallel method for linear BVPs, namely, the parallel linear superposition

algorithm, whereas in [2], we consider the parallel execution of the PS techniques for

non-linear BVPs. The advantages of the PS techniques are:

1) They are completely parallel,

2) They are particularly effective in controlling the numerical instability of the solutions

of the BVPs.

Before considering the parallel execution of these parallel techniques,

it is essential to understand the problem of implementation to give a brief

explanation of the Programmer's Guide to Sun-CS-Tools [5].

2. Introduction to Sun-CS-Tools [2, 3]

CS-Tools is a parallel program development system which runs on Sun

workstations and supports parallel programming of In-Sun and Sun-hosted Computing

Surface hardware, using standard C and FORTRAN only. It has four components:

1. A set of compilers,

2. A library of communications routines for C and FORTRAN,

3. A loader for distributed programs,

4. A runtime support environment.

2.1 Parallel Programming using CS-Tools [2, 3 and 5]

Here, we need to specify clearly the communicating processes model of parallel

programming used in CS-Tools (further literature is available from meiko which

illustrates, its use in a number of high computation application areas.

To make use of the communication processes approach, the programmer must

first structure an application as a number of separate processes, each process being a

conventional independent C program. The set of programs is constructed to work co-

operatively on a single overall task. A key feature of the model is that processes

communicate and synchronize only by means of message passing systems calls. The

computing-surface hardware offers parallel processing in the form of a number of

independent high performance microprocessors. A programmer makes use of this

parallelism by arranging for different processes to execute on different processors. Inter-

process communication and synchronization is provided entirely by system library calls.

The programmer specifies which processes run on which processor by writing a simple

text file which is read by mrun, the parallel network loader.

The Run Time Executive (RTE) provides operating system facilities to

application programs running on any processor; where services cannot be provided

locally they are referred to the Sun host machine.

http://procea.es/

 Parallel Programming for Solving Linear BVP’s by …

 31

The Computing Surface Network (CSN) provides a mechanism through which

any application process is able to pass messages, apparently directly, to any other. It

hides details of physical connectivity from the programmer: it supports the abstraction

that messages are sent to and received from system-global message ports. The CSN

handles the transfer of messages between these ports transparently to the user.

Figure (1). A model for sending messages through a port

A port may be referenced and used identically from any point in the network.

Where it is necessary to transport messages between processors; this is done invisibly

by the CSN. A port is created at run time by an application code fragment. On creation,

each port is associated with a user defined name. Other code fragments may use this

name to identify a destination address for messages. A port is a one way communication

path only. Only one process creates each port from which it, then receives messages.

Any number of processes may send message to it. Messages sent to ports can be

automatically buffered and queued by the CSN. A block-until-received mode of

operation is also supported.

A number of routines is provided to enable applications programmers to use

ports from C programs. They include 'status reporting' and 'network control' as well as

message-passing routines for various data types. Four of the basic message-passing

routines, which exemplify the use of message ports are:

1) cs-createport ("name") creates a port and associates it with the user defined character

string name. For example:

port1=cs_createport("portl");
creates the port portl.

message port

CSN

Application

 program

p

CSN

Application

 program

p

 Bashir M.S. Khalaf & Firas M. Saeed

 32

2) cs_findport ("name".block) must be used by message senders before communication

can commence with a port. For example:

portl-cs_findport("portl",1);

this can be used by the message sender to send messages to the port portl previously

created with the name "portl". Block determines behaviour in the event that the port

does not exist.

3) (void) cs_send(name, data, data-size, block) is used to send message data, held in a

character buffer pointed to by data, to the port represented by the string name, data-

size holds the number of bytes to be sent, block determines blocking behaviour (in a

way similar to cs_findport).

4) (void) cs_recv(name,data,data-size) is used to receive a message from

the port referenced by the string name. This message is copied into the buffer area

pointed to by data, data-size is used to specify the maximum size of a message.

3. Running Parallel Linear Superposition on the Meiko Computing Surface using

CS-Tools [2, 5 and 6]

The parallel linear superposition method requires at most (n+1) independent

partial solutions of a system which consists of n first-order linear differential equations,

followed by the solution of a linear system of at most n algebraic equations. The various

cases of the distribution of the (n+1) partial solutions over the p independent processors

of the computing system have been considered in detail in [2]. In this section, we

consider the running of the linear parallel superposition algorithm on the School's

particular transputer system, namely, the Meiko Computing Surface using CS-Tools; we

discuss an example which is executed on the Computing Surface. The determination of

the general solution of this particular example requires 5 partial solutions of the system

in [1]. The general solution of the example is:

y(x)=y*(x)+ ,

Where y*(x)=PI (the particular integral).

Computing each of the partial solutions can be assigned to a single processor. A

conventional C code is constructed for computing each partial solution by the Runge-

Kutta-Merson algorithm. The respective codes which compute y1(x), y2(x), y3(x) and

y4(x) are included in the files "superpyl.c", "superpy2.c", "superpy3.c" and "superpy4.c",

and the code which computes y*(x) is included in the file "superppi. c". The last code

also solves the linear algebraic system which determines A3 and A4 only, since the

values of A1 and A2 can be estimated directly. The "superposition.par" file specifies the

distribution of the executable files amongst the processors. The "superposition.par" file

is composed of the following statements:
par

processor 1 superpyl

processor 2 superpy2

processor 3 superpy3

processor 4 superpy4

processor 5 superppi

endpar

3.1 The Mechanism of the Parallel Codes

The "superposition.par" file locates the code which computes, respectively,

y1(x), y2(x), y3(x), y4(x) on the respective processor 1, 2, 3 and 4, and locates the code

 Parallel Programming for Solving Linear BVP’s by …

 33

which computes y*(x) and solves the linear algebraic equations on the processor 5.

Accordingly the processors will operate as follows:

Processor 1:

Define ports for sending messages (data);

compute the values of y1(l), y (l), y (l), y (l);

(i.e. y11(l), y21(l), y31(l), y41(1))

send the computed values to processor 5 through the corresponding ports;

Processor 2:

Define ports for sending messages (data);

compute the values of y2(1) , (l), (l),, (l);

(i.e. y12(1),y22(1), y32(1), y42(1)

send the computed values to processor 5 through the corresponding ports; and similarly

for Processor 3 and processor 4:

Processor 5:

Create ports for receiving the messages (data) from the processors 1, 2, 3.4;

compute the values of y*(l), (1), (1), (1);

receive the sended values from the processors 1, 2, 3, 4; solve the linear algebraic

system for A3 and A4;

The parallel codes of the parallel linear superposition algorithm are given

in the appendix D.

 Bashir M.S. Khalaf & Firas M. Saeed

 34

REFERENCES

[1] Ibraheem K. and Kahalaf B. ”Shooting Neural Networks algorithm for Solving

Boundary value problems in ODEs; Application and applied mathematics ,Vol.6

Issue 11 (June 2011), pp.1927-1941.

[2] Khalaf B. (1990), Parallel numerical algorithem for solving ODEs, Ph.D. thesis,

School of computer studies, Leeds University.

[3] khalaf, B. and Al-nema, M. (2008). Generalize parallel Algorithms For BUPs in

ODEs, The proceeding of the second conference on mathematics Sciences (CMS

2008) Jordan, pp.275-284.

[4] Meiko Scientific; "Meiko In-Sun Computing Surface Hardware"; Occam

User Group Newsletter, No.12, January 1990, pp.98-99.

[5] Meiko LTD; "Hardware and Software Reference Manual"; Meiko LTD, 1987.

[6] Miklosko, J. and V.E. Kotov; "Algorithms, Software and Hardware of

Parallel Computers"; Springer-Verlag, Berlin, 1984.

 Parallel Programming for Solving Linear BVP’s by …

 35

Appendix D

Parallel Codes For Parallel Linear Superposition

This Appendix lists the parallel codes of the parallel linear superposition for solving

Example (5.5.1).

D.1.superpyl.c CODE (FILE)

This code determines the component of (Yl) of superposition method, that is

yll,y21,y31 and y41.

#include<stdio.h>
include ,<f/usr/include/cs .h"

#include<math.h>

main ()

{

Port portyll;

Port porty21;

Port porty31;

Port porty41;

void gl () ;

double exp(),t,tl,t2;

double rl,r2,r3,r4,yl[51

int i,sing,j;

portyll-cs_findport("porty11", 1);

porty21-cs_findport("porty2l",1);

porty31-c§_findport <"porty31", 1) ;

porty41-cs_findport("porty41",1);

tl-ticks();

gl(1.0,yl);

t2-ticks ();

(void) cs_send(portyll, (char *)fiyl[1] ,

sizeof(double),1);

(void) cs_send(porty21,(char *)iyl[2),sizeof(double),1);

(void) cs_send(porty3l,(char *)iyl[3],sizeof(double),1);

(void) cs_send(porty41,(char *)fiyl[4],sizeof(double),1);

h=0.0;

for(i=l;i<=6;++i)

{

gl(h,yl);

(void) cs_send(portyll, (char *)£yl[l],sizeof(double),1);

(void) cs_send(porty21,(char *)£yl[2],sizeof(double),1);

(void) cs_send(porty31,(char *)&yl[3],sizeof(double), 1);

(void) cs_send(porty41,(char *)&yl[4],sizeof(double), 1);

h=h+0.2;

}

void gl(b,y) /^defines Yl*/

double b,y[5];

{

void rk();

rk(b,1.0,0.0,0.0,0.0,y) ;

}

 Bashir M.S. Khalaf & Firas M. Saeed

 36

void rk(b,al,a2,a3,a4,y)/*Runge-Kutta-Merson routine*/

double al,a2,a3,b,a4,y[5];

{

double kl[5],k2[5],k3[5],k4[5],k5[5],c[5];

double h=0.01,tt, t,d,dl,cl,c3,q,exp(),f();

int i,n=4;

d=h/3.0; t=0.0;dl=9.0/8.0; cl=3.0/8.0, q=0.5,c3=l.0/16.0;

y[l]=al;y[2]-a2;y[3]=a3;y(4]=a4;

while(t<b)

{

for(i=l;i<=n;++i)

kl[i]=d*f(i,t,y[1],y[2],y[3],y[4]);

for(i=1;i<=n;++i)

c[i]=y[i]+kl[i];

tt=t+d;

for(i=1;i<=n;++i)

k2[i]=d*f<i,tt,c[l],c[2],c[3],c[4]);

for(i=l;i<=n;++i)

c[i]=y[i]+q*(kl[i]+k2[i]);

for(i=l;i<=n;++i)

k3[i]=d*f(i,tt,c[l],c[2]

for(i=l;i<=n;++i)

c[i]=y[i]+dl*k3[i]+cl*kl[i];

tt=t+q*h;

for(i=l;i<=n;++i)

k4[i]=d*f(i,tt,c[l],c[2],c[3] ,c[4]) ;

for(i=l;i<=n;++i)

C[i]=y[i]+6.0*k4[i]-4.5*k3[i]+1.5*kl[i];

t=t+h;

for(i=1;i<=n;++i)

k5[i]=d*f <i,t,c[l],c[2],c[3],c[4]);

for(i=l;i<=n;++i)

y[i]=y[i]+0.5*(kl[i]+4.0*k4[i]+k5[i]);

 }

 }

double f (i,t,yl,y2,y3,y4)/*define the right hand side of

the homogenous differential system for linear

superposition*/

int i;

double t,yl,y2,y3,y4;

double r,exp();

switch (i) {

case 1:

 r=y2;

break;

case 2:

 r=y3;

break;

 Parallel Programming for Solving Linear BVP’s by …

 37

case 3:

 r=y4;

breaks;

case 4 :

 r=0.0;

break;

}

return(r);

}

D.2.Superpy2.c CODE (FILE)

This code computes the component of (Y2) of superposition method, that is yl2,

y22, y32 and y42.

#include<stdio.h>

#include "/usr/include/cs.h'

include<math.h>

main()

Port porty12.

Port porty22;

Port porty32;

Port porty42,

void g2 () ;

double rl,r2,r3,r4,y2[5],h;

int i.sing

portyl2=cs_findport("portyl2",l);

porty22=cs_findport("porty22",1);

porty32=cs_findport("porty32",1);

porty42=cs-findport("porty42", 1);

g2(1.0,y2);

(void) cs_send(portyl2, (char *)&y2[l],sizeof(double),1) ;

(void) cs_send(porty22,(char *)&y2[2],sizeof(double),1) ;

(void) cs_send(porty32,(char *)&y2[3],sizeof(double),1) ;

(void) cs_send(porty42,(char *)&y2[4],sizeof(double),1) ;

h=0.0;

for(i=l;i<=6;++i)

{

g2(h,y2);

(void) cs_send(portyl2,(char *)&y2[1],sizeof(double), 1);

(void) cs_send(porty22,(char *)&y2[2],sizeof(double), 1);

(void) cs_send(porty32,(char *)&y2[3],sizeof(double), 1);

(void) cs_send(porty42,(char *)&y2[4],sizeof(double), 1);

h=h+0.2;

 }

}

void g2(b,y) /*defines Y2*/

double b,y[5];

{

void rk() ;

 Bashir M.S. Khalaf & Firas M. Saeed

 38

rk(b, 0.0,1.0,0.0,0.0,y) ;

}

void rk (b,al,a2,a3,a4,y)

/*same as in superpyl.c Code*/

double f<i,t,yl,y2,y3,y4)

/*same as in superpyl.c Code*/

D.3.superpy3.c CODE (FILE)

This computes the component of (Y3) of superposition method, that is y13, y23,

y33 and y43.

#include<stdio.h>

#include "/usr/include/cs.h"

#include<math.h>

main ()

{

Port portyl3;

Port porty23;

Port porty33;

Port porty43;

void g3();

double rl,r2,r3,r4,y3[5],h;

int i,sing;
portyl3=cs_f indport ("portyl3", 1);

porty23=cs_findport("porty23", 1) ;

porty33=cs_findport("porty33", 1) ;

porty43=cs_findport("porty43", 1) ;

g3 (1.0,y3);

(void) cs_send(portyl3,(char *)&y3[1],sizeof(double),1);

(void) cs_send(porty23,(char *)&y3[2],sizeof(double),1);

(void) cs_send(porty33,(char *)&y3[3],sizeof(double),1);

(void) cs_send(porty43,(char *)&y3[4],sizeof(double),1);

h=0.0;

for (i=l;i<=6;++i)

{

g3(h,y3);

(void) cs_send(portyl3,(char *)&y3[1],sizeof(double),1);

(void) cs_send(porty23,(char *)&y3[2],sizeof(double),1);

(void) cs_send(porty33,(char *)&y3[3],sizeof(double),1);

(void) cs_send(porty43,(char *)&y3[4], sizeof(double),1);

h=h+0.2;

 }

 }

void g3(b,y)

double b,y[5);

{

void rk();

rk(b,0.0,0.0,1.0,0.0,y);

}

void rk(b,al,a2,a3,a4,y)

 Parallel Programming for Solving Linear BVP’s by …

 39

/*same as in superpyl.c*/

double f(i,t,yl,y2,y3,y4)

/*same as in superpyl.c*/

D.4.superpy4.c CODE (FILE)

This code computes the component of (Y4) superposition method. That is y14,

y24, y34 and y44

#include<stdio.h>

#include "/usr/include/cs".

#include<math.h>

main ()

{

Port portyl4;

Port porty24;

Port porty34;

Port porty44;

void g4 ();

g4(1.0,y4);

(void) cs_send(portyl4,(char *)&y4[1],sizeof(double),1);

(void) cs_send(porty24,(char *)&y4[2], sizeof(double),1);

(void) cs_send(porty34,(char *)&y4[3], sizeof(double),1);

(void) cs_send(porty44,(char *)&y4[4],sizeof(double),1);

h=0.0;

for(i=l;i<=6;++i)

{

g4(h,y4);

(void) cs_send(portyl4,(char *)&y4[1],sizeof(double), 1);

(void) cs_send(porty24,(char *)&y4[2],sizeof(double),1);

(void) cs_send(porty34,(char *)&y4[3],sizeof(double),1);

(void) cs_send(porty44,(char *)&y4[4],sizeof(double),1);

h=h+0.2;

 }

 }

void g4 (b,y) /*defines Y4*/

double b, y [5] ;

{

void rk () ;

rk(b,0.0,0.0,0.0,1.0,y);

}

void rk(b,al,a2,a3, a4,y)

/*same as in superpyl.c*/

double f(i,t,yl,y2,y3,y4)

/*same as in superpyl.c*/

D.5.superppi. c CODE (FILE)

This code computes the (PI) of superposition method, that is yl*, y2*,y3* and

y4*

#include<stdio.h>

 Bashir M.S. Khalaf & Firas M. Saeed

 40

#include "/usr/include/cs.h"

#include "/usr/usersb/pg/khalaf/gauselim.c"

#include<math.h>

main ()

{

Port portyll;

Port porty21;

Port porty31;

Port porty41;

Port portyl2;

Port porty32;

Port porty42;

Port portyl3;

Port porty23;

Port porty33;

Port porty43;

Port porty14;

Port porty24;

Port porty34;

Port porty44;

double a[14][14],b[14],x[14];

void g(),elimination(),backsubs();

double exp(),approxsol,t,tl,t2;

double h,y[5],yl[5],y2[5],y3[5],y4[5]

int i,sing,j;

portyll=cs_createport("portyll");

porty21=cs_createport("porty21");

porty31=cs_createport("porty31");

porty4l=cs_createport("porty41");

portyl2=cs_createport("porty12");

porty22=cs_createport("porty22");

porty32=cs_createport("porty32");

porty42=cs_createport("porty42");

portyl3=cs_createport("porty 13");

porty23=cs_createport("porty23");

porty33=cs__createport("porty33");

porty43=cs_createport("porty43");

portyl4=cs_createport("porty14");

porty24=cs_createport("porty24");

porty34=cs_createport ("porty34");

porty44=cs_createport(nporty44n);

tl=ticks();

g(1.0,y);

t2=ticks ();

(void) cs_recv(portyll,(char *)&yl[l],sizeof(double));

(void) cs_recv(porty21,(char *)&yl[2],sizeof(double));

(void) cs_recv(porty31,(char *)&yl[3],sizeof(double));

(void) cs_recv(porty41,(char *)&yl[4],sizeof(double));

(void) cs_recv(portyl2,(char *)&y2[1],sizeof(double));

 Parallel Programming for Solving Linear BVP’s by …

 41

(void) cs_recv(porty22,(char *)&y2[2],sizeof(double));

(void) cs_recv(porty32,(char *)&y2[3],sizeof(double));

(void) cs_recv(porty42,(char *)&y2[4],sizeof(double));

(void) cs_recv(porty13,(char *)&y3[1],sizeof(double));

(void) cs_recv(porty23,(char *)&y3[2],sizeof(double));

(void) cs_recv(porty33,(char *)&y3[3],sizeof(double));

(void) cs_recv(porty43,(char *)&y3[4],sizeof(double));

(void) cs_recv(portyl4,(char *)&y4[1],sizeof(double));

(void) cs_recv(porty24,(char *)&y4[2],sizeof(double));

(void) cs_recv(porty34,(char *)&y4[3],sizeof(double));

(void) cs_recv(porty44,(char *)&y4[4],sizeof(double));

t=ticks()-t2;

b[l]=1.0+exp(1.0)-yll]-ylll]-y2[l];

b[2]=4.0+exp(1.0)-y[2]-yl(2]-y2[2];

a[l][l]-y3[l];a[l][2]=y4[l];

a[2][l]-y3[2];a[2][2]=y4[2];

elimination(a,b,&sing, 2);

backsubs(a,b,x,2);

t2-ticks() ;

t=(t2-tl)*0.0000064;

h=0.0;

printf(" x exact y approx.y/n") ;

for(i=l;i<=6;++i)

{

g(h,y);

(void) cs_recv(portyll,(char *)&yl[1],sizeof (double));

(void) cs_recv(porty21,(char *)&yl[2],sizeof(double));

(void) cs_recv(porty31,(char *)&yl[3],sizeof(double));

(void) cs recv(porty41,(char *)&yl[4],sizeof(double));

(void) cs_recv(portyl2,(char *)&y2[1],sizeof(double));

(void) cs_recv(porty22,(char *)&y2[2],sizeof(double));

(void) cs_recv(porty32/(char *)&y2[3],sizeof(double));

(void) cs_recv(porty42,(char *)&y2[4],sizeof(double));

(void) cs_recv(portyl3,(char *)&y3[1],sizeof (double));

(void) cs_recv (porty23,(char *)&y3[2],sizeof(double));

(void) cs_recv (porty33,(char *)&y3[3],sizeof(double));

(void) cs_recv (porty43,(char *)&y3[41,sizeof(double));

(void) cs_recv (portyl4,(char *)&y4[1],sizeof(double));

(void) cs_recv (porty24,(char *)&y^[2],sizeof(double));

(void) cs_recv (porty34,(char *)&y4[3],sizeof(double));

(void) cs_ recv(porty44,(char *)&y4[4],sizeof(double));

approxsol=y[l]+yl[l]+y2[l]+x[l]*y3[l]+x[2]*y4[l];

printf("%10.10f %10.13f

%10.13f\n",h,h*h*h*h+exp(h),approxol);

h=h+O.2;

 }

 }

void g(b,y) /^defines the PI*/

double b,y[5];

(

 Bashir M.S. Khalaf & Firas M. Saeed

 42

void rk();

rk(b,0.0,0.0,0.0,0.0,y);

}

void rk(b,al,a2,a3,a4,y)

 /*same as in superpyl.c*/

double f(i,t,yl,y2,y3,y4) /'defines the nonhomogenous

differential system*/

double t,yl,y2,y3,y4;

double r,exp();

switch(i)

 {

case 1:

 r=y2;

break;

case 2:

 r=y3;

break;

case 3:

 r=y4 ;

break;

case 4:

 r=24.0+exp(t);

break;

}

return(r);

}

D.6.superposition.par FILE

This file distributes the parallel codes of the linear superposition to the

corresponding processors.

par

processor 11 superpyl

processor 12 superpy2

processor 13 superpy3

processor 14 superpy4

processor 15 superppi

endpar

