
 Raf. J. of Comp. & Math’s. , Vol. 10, No. 1, 2013

 Fifth Scientific Conference Information Technology 2012 Dec. 19-20

187

Developing Fault Tolerance Integrity Protocol for Distributed Real Time Systems

Dhuha Basheer Abdullah
Prof.dhuha_basheer@uomosul.edu.iq

Amira B. Sallow

 College of Computer Sciences and Mathematics

University of Mosul, Mosul, Iraq

Received on: 21/10/2012 Accepted on: 30/01/2013

ABSTRACT

In the distributed real time systems, tasks must meet their deadline even in the

presence of hardware/software faults. Fault tolerance in distributed real time systems

refers to the ability of the system to meet the tasks deadline and to detect their failure

and recover them. In this paper, we considered the problem of fault tolerance and

developed a fault tolerance protocol called DRT-FTIP (Distributed Real Time – Fault

Tolerance Integrity Protocol).This protocol increases the integrity of the scheduling in

distributed real time systems.
Keywords: Real Time, fault Tolerance, Scheduling, Protocol

 كاشف للأخطاء في أنظمة الزمن الحقيقي الموزعة تطوير بروتكول متكامل
 اميرة سلو الله ضحى بشير عبد

 جامعة الموصل ، كلية علوم الحاسوب والرياضيات
 2013\01\30 :ريخ قبول البحثات 2012\10\21ريخ استلام البحث: ات

خصلملا

المهام من الضروري أن تنجز في وقتها المحدد حتى وان كان هنالك الموزعة في أنظمة الوقت الحقيقي
من الأخطاء المادية أو البرمجية. التحكم بالخطأ في أنظمة الزمن الحقيقي الموزعة يعني قدرة النظام على ا بعض

هذا البحث تم الأخذ بنظر الاعتبار مشكلة التحكم تحقيق الحدود النهائية للمهام واكتشاف الأخطاء وتجاوزها. في
)بروتوكول التحكم بالخطأ المتكامل لأنظمة الزمن الحقيقي ـبالأخطاء وتم تطوير بروتوكول التحكم بالخطأ سمي ب

 البروتوكول المقترح على زيادة تكامل الجدولة لأنظمة الزمن الحقيقي الموزعة. عمل الموزعة(.
 زمن الحقيقي، التحكم بالخطأ، الجدولة، بروتكولال الكلمات المفتاحية:

1. Introduction

Real-time systems can be classified as hard real time systems in which the

consequences of missing a deadline can be catastrophic and soft real time systems

in which the consequences are relatively tolerable. In hard real time systems, it

is important that tasks complete within their deadline even in the presence of a

failure. Examples of hard real-time systems are control systems in space

stations, auto pilot systems and monitoring systems for patients with critical

conditions. In soft real-time systems, it is more important to economically detect a

fault as soon as possible rather than to mask a fault. Examples of soft real-time

systems are all kinds of airline reservation, banking, and E-commerce

applications[3].

A faulty system, due to any reason during processing some task, can cause some

damages. A task running on real time distributed system should be feasible, reliable and

scalable. The real time distributed system such as nuclear systems, robotics, air traffic

control systems, grid … etc. are highly dependable on deadline. A fault in real time

distributed system can result a system into failure if not properly detected and recovered

at time. These systems must function with high availability even under hardware and

 Dhuha B. Abdullah & Amira B. Sallow

 188

software faults. Fault-tolerance is the important technique used to maintain

dependability in these systems. Hardware and software redundancy are well-known

effective methods. Hardware fault-tolerance achieved through applying extra hardware

like processors, communication links, resource (memory, I/O device) whereas in

software fault tolerance tasks, messages are added into the system to deal with faults.

Fault should be detected by applying reliable fault detector followed by some recovery

technique. Many fault detection techniques are available but it is necessary to apply

appropriate fault detector. Unreliable fault detector can make mistake by erroneously

suspecting correct process or trusting crashed process[4].

1.1 Contributions

In this paper, we consider the problem of Fault tolerance in distributed real-time

systems. We design a Distributed Real Time – Fault Tolerance Integrity Protocol (DRT-

FTIP) that has the following prosperities:

1. Designed to function in dynamic network.

2. Coupled with EOE-DRTSA (End to End-Distributed Real Time Scheduling

Algorithm.

3. Control integrity and fault tolerant with proposed Distributed real-time system.

1.2 Related Work

Past works on developing fault tolerance integrity protocol by Edward Curley,

Binoy Ravindran, Jonathan Anderson, and E. Douglas Jensen who considered the

problem of recovering from failures of distributable threads in distributed real-time

systems that operate under run-time uncertainties including those on thread execution

times, thread arrivals, and node failure occurrences. They presented thread integrity

protocol called TPR[4].

Binoy Ravindran, Edward Curley, Jonathan Anderson, and E. Douglas Jensen

who considered the problem of recovering from failures of distributable threads in

distributed real-time systems. They presented a scheduling algorithm called HUA and

two thread integrity protocols called D-TPR and W-TPR [5].

2. Failure, Error, and Faults

Avizienis and others define the terms failure, error and faults as fellows [6]:

Failure: A failure system occurs when the service provided by the system deviates from

the specified service. For example, when a user cannot read his/her stored file from

computer memory, then the expected service is not provided by the system.

Error: An error is a perturbation of internal state of the system that may lead to failure.

A failure occurs when the erroneous state causes an incorrect service to be delivered, for

example, when certain portion of the computer

memory is corrupted or broken and stored files, therefore cannot be read by the user.

Fault: The cause of the error is called a fault. An active fault leads to an error;

otherwise the fault is dormant. For example, impurities in the semiconductor devices

may cause computer memory in the long run to behave unpredictably.

3. Techniques for Fault Tolerance

Fault tolerance is the ability to continue operating despite the failure of a

limited subset of their hardware or software. So, the goal of the system designer

is to ensure that the probability of system failure is acceptably small. There can be

either hardware fault or software fault, which disturbs the real time systems to meet

their deadlines. There are three types of faults: Permanent, intermittent, and transient.

 Developing Fault Tolerance Integrity Protocol for Distributed Real Time Systems

 189

A permanent fault does not die away with time, but remains until it is repaired

as the affected unit is replaced. This is an intermittent fault cycle between the fault–

active and fault benign states. A transient fault dies away after some time[4].There are

different types of fault which can occur in Real-Time Distributed System. These faults

can be classified depending on several factors such as:

Network fault: A Fault occurrence in a network is due to network partition, Packet

Loss, Packet corruption, destination failure, link failure, etc.

Physical faults: This Fault can occur in hardware like fault in CPUs, Fault in memory,

Fault in storage, etc. Media faults: Fault occurrence is due to media head crashes.

Processor faults: fault occurs in processor due to operating system crashes.

Process faults: The occurrence of fault is due to shortage of resource, software bugs.

Service expiry fault: The service time of a resource may expire, while application is

using it.

A fault can be categorized on the basis of computing resources and time. A

failure occurs during computation on system resources can be classified as: omission

failure, timing failure, response failure, and crash failure. Faults occur with respect to

time are shown in Figure 1 below:

Fault

Permanent

Intermittent

Transient

Figure 1. Types of Fault in a System

Permanent: These failures occur by accidentally cutting a wire, power breakdowns and

so on. It is easy to reproduce these failures. These failures can cause major disruptions

and some part of the system may not be functioning as desired.

Intermittent: These are the failures which appear occasionally. Mostly these failures

are ignored while testing the system and only appear when the system goes into

operation. Therefore, it is hard to predict the extent of damage these failures can bring

to the system.

Transient: These failures are caused by some inherent fault in the system. However,

these failures are corrected by retrying roll back the system to previous state such as

restarting software or resending a message. These failures are very common in

computer systems [4].

4. The System Model

We consider a distributed system architecture model [1] consisting of

heterogeneous processors; a set of client nodes; and a set of server nodes. These nodes

were interconnected via a communication network. A single Global Scheduler for the

 Dhuha B. Abdullah & Amira B. Sallow

 190

system was responsible for computing the initial priorities for the tasks; scheduler utility

was checked based on information provided by the application programmer. As new

tasks were introduced to the system, the Global Scheduler distributes them to client

processors. A Local Scheduler in each processor was responsible for specifying the

order of threads executions on a node. Thus, scheduling decisions made by a node

scheduler are independent of that made by other node schedulers. Client Node

schedulers make scheduling decisions using thread scheduling attributes, which

typically include threads' time constraints (e.g., importance, urgency). When a new job

arrives at client node and its utility is larger than the utility of the currently executing

job, the currently job will be preempted and the new job will be scheduled for

execution.

EOE-DRTSA algorithm [1] was designed to overcome the shortcomings of

independent scheduling algorithms by taking into account global information, while

constructing schedule. In EOE-DRTSA scheduling, firstly the thread will be arrived to

the Global Scheduler server. The Global Scheduler will compute the initial Urgency and

DTUF value. We consider the DTUF (Developed TUF) function to be three

dimensional function that decouples importance and urgency of a thread, urgency is

measured on the X-axis, and importance is measured on the Y-axis. The Benefit is

denoted by DTUF and is measured on the Z-axis. After the DTUF values were

computed for the threads, the Global Scheduler will pass the threads to the target node

to be executed there and the DRT-FTIP protocol will be worked concurrently with the

EOE-DRTSA scheduling algorithm. When the thread arrived to the Local Scheduler

node, the node will schedule the thread depending on its local scheduling algorithm.

DRT-FTIP integrity protocol will monitor the scheduling work on the local scheduler.

5. Protocol Algorithm Description

We design an DRT-FTIP(Distributed Real Time – Fault Tolerance Integrity

Protocol) with EOE-DRTSA scheduling algorithm for distributed real time system.

This protocol will control the faults that occurred in this proposed system. In server

side, when a thread sent to the client the server will expect to receive (thread execute

message) from the client. This message means that the thread is executed successfully

and there is no error. The DRT-FTIP protocol has three operation phases:

Phase I:

Establish the protocol for the first time, the server will send Client_Hello

message and wait until the client responds with the message Server_Hello. After that,

the second phase will begin.

Phase II:

In this phase, there are two states of behavior:

a) Normal state behavior: This behavior will describe the successful work for the

DRT-FTIP protocol without any error. In server side, for each thread that has been

sent to the client, the server will send thread Execute_wait message and commit

wait state in the state field in the Execute_Table that belongs to the sender thread.

When the Execute_finish message arrived from the client the server changes the

state field in the Execute_Table to finished to point that the thread was executed

successfully. Figure(2) shows the normal behavior of DRT-FTIP integrity

protocol.

 Developing Fault Tolerance Integrity Protocol for Distributed Real Time Systems

 191

Phase I

Phase II

Phase III

Client_Hello msg

Server_Hello msg

Client_Finish msg

Server_Finish msg

Thread1 Execute_wait msg

Thread2 Execute_wait msg

Thread3 Execute_wait msg

Thread2 Execute_finish msg

Thread1 Execute_finish msg
Thread3 Execute_finish msg

client Server

Figure 2. DRT-FTIP Integrity Protocol: Normal State Behavior

b) Anomaly state behavior: This behavior describes unusual work of

DRT-FTIP protocol. The server check the Execute_Table every Tp (time period).

If an error will be occurred in client side the client system will send exception to

the client application. Actually, exceptions were used for handling unusual errors

in programs that will be occurred during the program execution. The exception

handling mechanism was used to provide a means to detect and report exceptional

circumstances so that, an appropriate action will be taken. The mechanism

suggests incorporation of separate error handling code that performs the following

tasks:

a. Find the problem

b. Inform that an error has been occurred

c. Receive the error information

For any exceptions occurred, the client exception handling will send

error_message to the server explaining the error type. If the error was caused by a

thread, the server will try to send the thread and Thread Execute_wait message

again for three times until Execute_finish message will be arrived. If the error was

caused by the client machine, the server may eliminate that thread from the system

 Dhuha B. Abdullah & Amira B. Sallow

 192

or send it to another client and begins the same operations again. Figure(3) shows

the anomaly behavior for DRT-FTIP integrity protocol.

Phase III:

If there are no threads in the ready queue in server side or the server wants to

finish the protocol in a client, the server will send Client_finish messag and will recive

Server_finish message from the client.

Phase I

Phase II

Phase III

Client_Hello msg

Server_Hello msg

Client_Finish msg

Server_Finish msg

Thread1 Execute_wait msg

Thread2 Execute_wait msg

Thread1 Execute_finish msg

client Server

Thread2 Execute_wait msg

Thread2 Execute_finish msg

Thread3 Execute_wait msg

Thread2_error_msg

Thread3_error_msg

Figure 3. DRT-FTIP Integrity Protocol: Anomaly State Behavior

6. Conclusion

In this paper, we developed a fault tolerance integrity protocol for distributed

real-Time systems. The advantage of the algorithm is that the threads considered

in this system are dynamic and aperiodic. The proposed protocol was simple and easy

to implement. The proposed protocol increases the integrity of the scheduling

algorithm used with it.

 Developing Fault Tolerance Integrity Protocol for Distributed Real Time Systems

 193

REFERENCES

[1] Amira Bibo, Dhuha Basheer, 2012, “EOE-DRTSA: End-to-End Distributed

Real-time System Scheduling Algorithm”, Dept. of Computer Science College

of Computer Sciences and Mathematics University of Mosul, under publishing.

[2] Arvind Kumar, Rama Shankar Yadav, Ranvijay, Anjali Jain, 2011, “Fault

Tolerance in Real Time Distributed System”, Department of Computer Science

and Engineering Motilal Nehru National Institute of Technology, Allahabad.

[3] Christy Persya, T.R.Gopalakrishnan Nair, 2008, “Fault Tolerant Real Time

Systems”, Department of Information Science and Engineering, The Oxford

College of Engineering, Bangalore, India.

[4] Edward Curley, Binoy Ravindran, Jonathan Anderson, E. Douglas Jensen, 2007,

”Recovering from Distributable Thread Failures in Distributed Real-Time Java”,

Virginia Tech Blacksburg, USA.

[5] Edward Curley, Binoy Ravindran, Jonathan Anderson, E. Douglas Jensen, 2006,

“Integrity Protocols for Recovering from Distributable Real-Time Thread

Failures with Assured Timeliness in Dynamic Systems”, Virginia Tech

Blacksburg, USA.

[6] Risat Mahmudpathan, 2010, ”Scheduling Algorithms For Fault-Tolerant Real-

Time Systems”, Department of Computer Science and Engineering, Chalmers

University of Technology, Goteborg, Sweden.

