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ABSTRACT

Software Quality still a vague and multifaceted concept, which means different
things to different people, metrics for object oriented design focuses on measurements
that are applied to the class and design characteristics. These measurements allow
designers to access the software early in process, making changes that will reduce
complexity and improve the continuing capability of the design. This paper focused on a
set of object oriented metrics that can be used to measure the quality of an object
oriented design. We study carefully Metrics for object oriented design and focus on
MOOD model.

Keywords: MOOD metrics, Method inheritance factor (MIF), Attribute inheritance
factor (AIF), Coupling factor (CF), Method hiding factor (MHF), Attribute hiding factor
(AHF).
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1. Introduction

A key element of any engineering process is measurement. Measurements are
used to access the quality of engineered product or process used to build it. Work on
software metrics started as early as 1970’s with the belief of improving software
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estimation practices. These included metrics for procedural programming. However,
since 90’s several designers started shifting from Procedural Paradigm to Object
Oriented Paradigm because it is a faster development process having module based
architecture, highly reusable features which increase design quality and so on. This
trend created a new challenge especially to the management team as the conventional
metrics invented for classical paradigm seemed no longer valid in supporting their
project planning and resource allocation. There are several characteristics of an object
oriented design which include inheritance, cohesion, coupling, encapsulation, message
passing ... etc. The traditional complexity metrics cannot measure these characteristics
and are thus not suitable for measuring complexity in OO systems. To ensure the quality
of OO systems, many researchers like Chidamber & Kemerer (C&K Metrics), Lorenz &
Kidd Metrics, Abreau Brito (MOOD Metrics) ... etc proposed metrics for OO
characteristics [13].

Also, design is an important cost driver in software development, for it does not
only cause the cost of its own creation, but it also heavily influences the cost of the
following phases, i.e. implementation and maintenance. The design phase only takes 5-
10% of the total effort (over the whole soft-ware life-cycle) ,If bad design is not fixed in
the design phase, the cost for fixing it after delivery of the software is between 5 and
100 times higher [25].

And because Object oriented paradigm is becoming more pervasive, it becomes
necessary that the software engineering methodologies have quantitative measurements
for accessing the quality of software at both the architectural and component level.
These measures allow the designer to access the software in early stages of the
development process and making changes, that will reduce complexity and improve the
quality of the product at the development phase. OOD metrics is an essential part of
software engineering [12].

Hence, that software quality is no more a benefit, but has become a necessity
because software error can have effects in terms of life, financial loss or time delays.
With the ever increasing number of software projects and increasing concern for quality
of software systems, practitioners and designers need a quantified and experience-based
view on how to make best use of object-oriented mechanisms at the time of
development [12].

OOD metrics focus on internal object structures that reflect the complexity of
each individual entity such as methods and classes, and on external complexity that
measures the interactions among entities, such as coupling and inheritance. Mainly
metrics are categorized into procedural metrics and Object-Oriented metrics [1].

The main objective of this paper is to study carefully OOD based metrics (CK,
Lorenz and Kidd’s and MOOD metrics) for software.

In section 2 OOD is explained, measuring quality is discussed; in section 3,
section 4 gives some details about OOD-Based metrics like CK, Lorenz & Kidd and
MOOQOD. Finally section 5 introduces conclusions.

2 .Object Oriented Design (OOD)

An object-oriented system is made up of interacting objects that maintain their
own local state and provide operations on that state. The representation of the state is
private and cannot be accessed directly from outside the object. OOD processes involve
designing object classes and the relationships between these classes which define the
objects in the system and their interactions [14].
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Object-oriented systems are easier to change than systems developed by using
functional approaches. Objects include both data and operations to manipulate that data.
They may, therefore, be understood and modified as stand-alone entities. Changing the
implementation of an object or adding services should not affect other system objects.
Because objects are associated with things, there is often a clear mapping between real-
world entities (such as hardware components) and their controlling objects in the
system. This improves the understandability, and hence the maintainability, of the
design [14]. So, the definition of object oriented design is:

“Object-oriented design is a method of design encompassing the process of object-
oriented decomposing and a notation for depicting both logical and physical as well as
static and dynamic models of the system under design”[2] and [3].

Objects are the basic units of object oriented design. Identity, states and
behaviors are the main characteristics of any object. A class is a collection of objects
which have common behaviors.

A class represents a template for several objects and describes how these objects
are structured internally. Objects of the same class have the same definition both for
their operation and information structure [2] and [4].

3. Measuring Quality

The term ‘quality assurance’ is widely used in manufacturing industry, Quality
assurance (QA) is the definition of processes and standards that should lead to high-
quality products and the introduction of quality processes into the manufacturing
process [14] .

Software measurement is concerned with deriving a numeric value or profile for
an attribute of a software component, system, or process. By comparing these values to
each other and to the standards that apply across an organization, we may be able to
draw conclusions about the quality of software, or assess the effectiveness of software
processes, tools, and methods [14].

Measurement also enables to improve the software process, assist in the
planning, and tracking the control of a design. A good software engineer uses
measurements to assess the quality of the analysis and design models, the source code,
the test cases, ... etc. [2]

Quality is the degree to which an object (entity) (e.g. process, product, or
service) satisfies a specified set of attributes or requirements [5].

Many quality measures can be collected from literature, the main goal of metrics
is to measure errors and defects. The following quality factor should have every metrics
[2][15][16] and [17]:

« Efficiency - Are the constructs efficiently designed?
The amount of computing resource and code required by a program to perform its
function.

* Complexity - Could the constructs be used more effectively to decrease the
architectural complexity?

« Understandability - Does the design increase the psychological complexity?

* Reusability - Does the design quality support possible reuse?
Extent to which a program or part of a program can be reused in other application,
related to the packaging and scope of the functions that the program performs.

» Testability/Maintainability - Does the structure support ease of testing and changes?
Effort required locating and fixing an error in a program, as well as effort required
to test a program to ensure that it performs its intended function.
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How do we know that our metrics measure the desired design qualities? We
should establish the objectives of measurements before data collection begins and then
we should define each and every metrics in a way that measures the quality of a design.

4. Metrics of Object Oriented Design
In this section, brief details about Object Oriented Design Metrics are explained

as follows, (see Fig. 1):
Design Based
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Figure 1. Metrics Hierarchy [13]
4.1 CK Metrics

This module is also known as MOOSE (Metrics for Object-Oriented Software
Engineering) metrics suite introduced by Chidamber and Kemmerer [11].

This metric suite offers informative insight into whether developers are
following object oriented principles in their design [2] and [18]. They claim that using
several of their metrics collectively helps managers and designers to make better design
decision [2].

The C.K. suite consists of six metrics that assess different characteristics of the
OOD which are:

1. The Weighted Method Per Class (WMC)

2. The Depth of Inheritance Tree (DIT)

3. The Number Of Children(NOC)

4. The Coupling Between Object Classes (CBO)
5. The Response For a Class (RFC)

6. The Lack of Cohesion in Methods (LCOM)

Goal: CK metrics were defined to measure design complexity in relation to their impact
on external quality attributes such as maintainability, reusability [10].

In [10] CK metrics is theoretically and empirically validated.
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4.2 Lorenz and Kidd Metrics

In their fundamental book about software quality named “Object Oriented
Software Metrics in 1994” Lorenz and Kidd introduced many metrics to quantify
software quality assessment. Lorenz and Kidd metrics were accompanied by a
justification for being considered as metrics [11].

Eleven metrics introduced by Lorenz and Kidd are applicable to class diagrams.
A description of these metrics and the rationale behind them is given; they are classified
into three metrics categories [11], Size-oriented metrics for an OO design class focus on
counts of attributes and operations for an individual class and average values for the OO
system as a whole. Inheritance-based metrics focus on the manner in which operations
are reused through the class hierarchy. Metrics for class internals look at cohesion and
code-oriented issues [23], which are:

e Class size metrics, which deal with quantifying an individual class:
= Number of Public Methods (NPM)
= Number of Methods (NM)
= Number of Public Variables per class (NPV)
= Number of Variables per class (NV)
= Number of Class Variables (NCV)
» Number of Class Methods (NCM)
e Class Inheritance metrics, which look at the quality of the classes use of
inheritance:
» Number of Methods Inherited (NMI)
= Number of Methods Overridden (NMO)
» Number of New Methods (NNA)
e Class Internals metrics, which look at general characteristics of classes:
= Average parameters per Method (APM)
= Specialization Index (SIX).

Goal: Lorenz and Kidd’s metrics were defined to measure the static characteristics of
software design, such as the usage of inheritance, the amount of responsibilities in a
class [10].

In [10] Lorenz and Kidd’s metrics are only empirically validated.

4.3 Metrics for Object Oriented Design (MOOD)

Abreu et at.[6] defined MOOD metrics (Metrics for Object Oriented Design).
MOOD refers to a basic structural mechanism of the object-oriented paradigm as
encapsulation (MHF, AHF), inheritance (MIF, AIF), polymorphism (POF), and
message passing (COF). Each metrics is expressed as a measure where the numerator
represents the actual use of one of those feature for a given design [7]. In MOOD
metrics, two main features are used in every metrics; they are methods and attributes

[2].
The metrics are designed to meet a particular set of criteria, also proposed by the
MOOQOD project team. The criteria are listed here:
1. Non-size metrics should be system size independent.
2. Metrics should be dimensionless or expressed in some consistent unit system.
3. Metrics should be easily computable.
4. Metrics should be language independent [1]

Goal: They were defined to measure the use of OO design mechanisms such as
inheritance (MIF and AIF metrics), information hiding (MHF and AHF metrics),
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coupling (CF metric) and polymorphism (PF metric) and the consequent relation with
software quality and development productivity [10].
Also, in [10] MOOD metrics is empirically and theoretically validated.
According to each goal, MOOD metrics has a huge relationship with the object
oriented mechanisms and affect software quality. Now, MOOD metrics is discussed in
details, the context of encapsulation (sometimes called information hiding), inheritance,
polymorphism, and coupling. These are discussed below.

4.3.1 Encapsulation

Encapsulation is the process of hiding all the details of an object that does not
contribute to its essential characteristics [9] The Method Hiding Factor (MHF) and
Attribute Hiding Factor (AHF) were proposed together as a measure of encapsulation
[3] and [6].

MHF and AHF represent the average amount of hiding between all classes in the
system

I) Method Hiding Factor:

Fernando Brito [8] et.al is recommended that MHF should not be lower than a
particular value, but suggest that there is no upper limit, thus implying that it is ‘good'
for all methods in a classes to be hidden (private).[1]

The equation below refers to the Method Hiding Factor (MHF) which represents
the percentage of invisibilities of methods in a class. The MHF is computed by dividing
the number of all visible methods in all classes by the number of all methods in the
classes [1].

Mg(C;

TC )e1— _
MHF = 2‘21[2’”?2 -V Gt (1)
=1 Mq(Cp)

Where the summation occurs over i=1 to TC, TC is defined as total number of classes ,
Md (Ci) = the number of methods defined in class Ci , V (Mmi) = Visibility value of a
member (method or attribute), i.e. a value between 0-1 where public members = 1,
private members = 0 and semi-public (e.g. protected) members are calculated as the
number of classes that can access the member / total classes in the system (in case if you
are working with different packages at the same time, then protected (i.e. method or
attribute) is calculated, otherwise it is considered the same as private in which it is equal
to 0 ). If the value of MHF is high (100%), it means all methods are private which
indicate very little functionality. Thus it is not possible to reuse methods with high
MHF. MHF with low (0%) value indicate all methods are public that means most of the
methods are unprotected [1].

I1) Attribute Hiding Factor:

It refers to the Attribute Hiding Factor (AHF) which is the percentage of
invisibilities of attributes in a class. The AHF is computed by dividing the number of
visible attributes in a class diagram by the number of all attributes in a class [1].
TG [zl a-v )] 2

TG Ag(Cy) e
Where the summation occurs over i=1 to TC, TC is defined as total number of classes ,
Ad (Ci) = the number of attributes defined in class Ci ,V(Ami) is the same as the
visibility of Method Hiding Factor [2].

AHF =
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If the value of AHF is high (100%), it means all attributes are private which indicates
very little functionality. Thus, it is not possible to reuse attributes with high MHF. MHF
with low (0%) value indicate all attributes are public that means most of the attributes
are unprotected [1].

4.3.2 Inheritance

Inheritance is the process by which objects of one class acquire the properties of
the objects of another class.
Inherited features in a class are those which are inherited and not overridden in that
class. Method Inheritance Factor (MIF) and Attribute Inheritance Factor (AIF) are used
to measure inheritance [2].

I) Method Inheritance Factor:

It refers to the Method Inheritance Factor (MIF) which represents the percentage
of effective inheritance of methods. The MIF is computed by dividing the number of all
inherited m(?e_Ehods in all classes by the sum of all methods available of all classes [1].

_ Zi=Milcd)

MIE = S @
Ma = Md + Mi of class Ci , where Md is the number of methods declared in Ci and Mi
is the number of inherited methods in Ci [2].

Where, the summation occurs over i=1 to TC, TC is defined as total number of classes

[2].
I1) Attribute Inheritance Factor:

It refers toAttribute Inheritance Factor (AIF) of a class represents the percentage
of effective Inheritance of attributes. The AIF is computed by dividing the number of all
inherited attribute in all classes by the sum of all attributes available (inherited and
locally defined) of all classes [1].

ARG
AlF = E—Elﬂa(cd ...(4)
Aa=Ad + Ai

Aa = the number of available attributes defined in class Ci

Ad = the number of attributes that declared in the class Ci

Ai = the number of inherited attributes in Ci

Where, the summation occurs over i=1 to TC. TC is defined as total number of classes

[2].
4.3.3 Polymorphism

Polymorphism means the ability to take more than one form. Polymorphism is
an important characteristic in object oriented paradigm. It measures the degree of
overriding in the class inheritance tree [2].

I) Polymorphism Factor:

Polymorphism Factor (PF) represents the actual number of possible different
polymorphic situations with respect to the maximum number of possible distinct
polymorphic situations. The PF is computed by dividing the total number of overridden
methods in all classes by the result of multiplying the number of new methods times the
number of descendants for all classes, respectively. The definition of POF means that it
can only be applied to complete hierarchies.
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TC
i=1 Mo (G
PF — TCEl—]. o( 1) (5)
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Here Mo(Ci)=Override methods .

Mn(Ci)=New methods .

DC(Ci)=Descendant counts [1].

Where, the summation occurs over i=1 to TC. TC is defined as total number of classes

[2].
4.3.4 Coupling

Coupling shows the relationship between model. A class is coupled to another
class if it calls methods of another class [2].

I ) Coupling Factor

Coupling Factor (CF) of a class represents the percentage of couplings among
classes, not computable to inheritance, with respect to the maximum possible number of
couplings in the class diagram. The CF is computed by dividing the number of
associations, not related to inheritance, between all classes by the number of classes
squared minus the number of classes

CE = EEI[ELCI is_clienc(cl-,cj] (6)
TC2-TC
Where, the summation occurs over i=1 to TC. TC is defined as total number of classes

[2].

Here is_client(Ci,Cj)=1 if Ci contains, at least, one non-inheritance reference to
a method or attribute of a class Cj=0 otherwise [1].

This metric is intended to count all client-supplier relationships in a system. It is
not clear, however exactly what is meant by a 'non-inheritance reference’. The two main
relationships in an OO system are 'is-a' and 'has-a' relationships. The former describes
relationships based on inheritance and the latter describes client-supplier relationships,
e.g. one class's use of another class as an instance variable [1].

Pressman [24] argues that, although many factors affect software complexity,
understandability, and maintainability. It is reasonable to conclude that as “the COF
value” increases, the complexity of object oriented design will also increase, and as a
result the understandability, maintainability, and the potential for reuse may suffer.

Based on [11] survey of the existing OOD quality models, they propose a set of
properties that should be exhibited by any OOD quality model to be of practical use.
Lacking any of these properties will result in an inapplicable quality model which is:

1. Depend on high level design features only. High level design features are those
designed models available early in software development life cycle, such as
abstract class diagrams (i.e. without implementation). Depending on high level
design features that allow assessing the design in its early stages.

2. The model objectives, quality characteristics to be assessed, should be stated
explicitly. Some models [11][19, 20, 21, and 22] just introduce metrics without
stating how these metrics could be used to assess quality.

3. The metrics should be precisely defined. Ambiguity in metrics definitions allows
many interpretations for the same metric, for example, in [9] the Weighted
Method per Class metric does not state clearly what “methods” are to be
considered. Are inherited methods considered? Are overridden methods included?
What about overloaded methods? Does visibility affect the counting? These and
other questions will arise when it comes to the application of the model.
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4. The models should express the relationships between the characteristics and
design metrics in a clear, preferably, formal manner. Just stating that a given set of
metrics “affect” fault-proneness, is not enough. A formal expression that involves
metrics and how they coincide to the assessed characteristic is very important.

5. There should be an interpretation of the results. Numbers are no more than
numbers! They do not have a meaning by their own. Till the values produced by a
model are given interpretations that could be used in making decisions, there is no
extra understanding is gained.

6. Models should be validated empirically. Quality models could be developed based
on a person’s own expertise. However, a proof of the validity of any proposed
model is a strong support to its thesis. Empirical validation works, in general, by
assessing the quality characteristics of a given design in two ways, one way using
the proposed model, the other way using human judgment, models without
validation are always in doubt concerning their correctness.

This table gives a summary about our study of object oriented design metrics

Property MOOSE (CK metrics) LK OO Metrics MOOD
Dependence on high
level design NO YES YES
characteristics only
- . Error Density, Fault
Eﬁ;:;?tte?’ii?il(!tsy NO NO Densny_and
Normalized Rework
Precise metrics Yes, except the
Definitions WMC YES YES
Formal relationships | NO NO YES
Results interpretation | NO NO YES
Empirical validation | Validated NO Validated
Measure design measure t_he_ static measure the use of
Goal complexity characterlstlc_s of 00 de5|_gn
software design mechanisms

5. Conclusion

Through this research, it can be said that “Measurement” can help to improve
the software process, assist in the tracking and control of a project and asses the quality
of a product. By analyzing metrics, a developer can correct those areas of software
process early in the design phase which may reduce the amount of maintenance.

In this paper, we have studied object-oriented design based metrics named Ck,
Lorenz and Kidd’s and MOOD, we conclude that each one of them can measure some
of the aspects of the design , but the main focus was on MOOQOD, since it measures OO
mechanisms which are related directly to UML class diagrams.
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