On Regularity and Flatness

Nazar H. Shuker

nazarh_2013@yahoo.com
Dept. of Mathematics
College of Computer Sciences and Mathematics
University of Mosul, Iraq

Received on: 19/2/2002 Accepted on: 02/06/2002 ABSTRACT

A ring R is called a right SF-ring if all its simple right R-modules are flat. It is well known that Von Neumann regular rings are right and left SF-rings. In this paper we study conditions under which SF-rings are strongly regular. Finally, some new characterstic properties of right SF-rings are given.

Keywords: modules, flat, Von Neumann regular rings.

حول الانتظام والتسطح

نزار حمدون شكر

قسم الرياضيات

كلية علوم الحاسوب والرباضيات، جامعة الموصل

تاريخ الاستلام: 2002/02/19 تاريخ القبول: 2002/06/02

الملخص

يقال للحلقة R بأنها من النمط -SF اليمنى ، إذا كان كل مقاس بسيط ايمن فيها مسطحاً. من المعروف أن كل حلقة منتظمة بمفهوم فون نيومان تكون حلقة من النمط -SF اليمنى واليسرى. في هذا البحث أعطينا شروطاً أخرى لكي تكون كل حلقة من النمط -SF اليمنى حلقة منتظمة بقوة . ومن النتائج الأخرى التي حصلنا عليها هي خواص أخرى جديدة للحلقات من النمط -SF اليمنى.

الكلمات المفتاحية: المقاسات، المسطحة، حلقة منتظمة بمفهوم فون نيومان.

1. INTRODUCTION

In this paper all rings are assumed to be associative with identity, and all modules are unital right R-modules.

Following [2], a ring R is called a right (left) SF-ring if all of its simple right (left) R-modules are flat. It is well known that a ring R is Von Neumann regular if and only if every right (left) R-module is flat [3]. Ramamurthi in [8] asked whether left and right SF-ring is Von Neumann regular. Many authors have given various conditions for SF-rings to be regular (see, e.g. Chen [1], Ming [4], Rege [9] and Xu-[10]). In this paper, to the list of equivalent conditions, we shall add several news. We recall that:

- **1-** A ring R is called reduced if R contains no non-zero nilpotent elements.
 - **2-**R is said to be Von Neumann regular (or just regular) if $a \in aRa$ for every $a \in R$, and R is called strongly regular if $a \in a^2R$. Clearly, every strongly regular ring is a regular reduced ring.
 - **3-**R is said to be right duo-ring if every right ideal is a two-sided ideal.
 - **4**-r(a) and L(a) will denote right and left annihilator of a respectively.
 - **5**-Following [9], for any ideal I of R, R/I is flat if and only if for each a ∈ I, there exists b∈I such that a=ba.
 - **6**-Y and J will stand for the right singular ideal and Jacobson radical of R.

2. RINGS WHOSE SIMPLE MODULES ARE FLAT

Following [7], a ring R is called ERT-ring if every essential right ideal of R is a two-sided ideal.

Ming [6] proved the following:

Proposition 2.1. If R is a right duo-ring then R/Y is a reduced ring.

We use a similar method of proof in Prop.2.1 to establish the following lemma.

Lemma 2.2: If R is an ERT-ring, then R/Y is a reduced ring.

Proof. Suppose that R/Y is not reduced, then there exists an element

 $Y \neq a + Y \in R/Y$, $a \in R$, such that $(a+Y)^2 = Y$. This implies that $a \notin Y$ and $a^2 \in Y$. So $r(a^2)$ is essential right ideal of R. Since R is ERT, then $r(a^2)$ is a two-sided ideal. Let I be any subideal of $r(a^2)$

Such that

Its essential in (a)I, this means that $r \cap (a)$ r \subseteq Ia, then (a)r \subseteq $r(a^2)$ and hence in R, this contradicts $a \notin Y$.

The following theorem gives the condition of being right SF-rings are strongly regular.

Theorem 2.3: Let R be a ring. Then the following are equivalent.

- (1) R is strongly regular.
- (2) R is a right SF- and ERT ring.

Proof. $(1) \Longrightarrow (2)$ is obvious.

(2) \Longrightarrow (1) By Lemma 2.2, R/Y is a reduced ring. We claim that Y=0. Suppose that Y \neq 0 then by [5], there exists $0 \neq y \in Y$ such that $y^2 = 0$.

Let M be a maximal right ideal containing r (y). Since r (y) is an essential two-sided ideal of R, then M must be an essential two-sided ideal of R. On the other hand, since R/M is flat module, and since $y \in M$, there exists $c \in M$ such that y=yc, whence $1-c \in r(y) \subseteq M$, yielding $1 \in M$ which contradicts $M \neq R$. This proves that R is a reduced ring. In order to show that R is regular we need to prove that aR+r(a)=R for any $a \in R$. Suppose that $aR+r(a)\neq R$, then there exists a maximal right ideal L containing aR+r(a). But $a \in L$ and R/M is flat, there exists $b \in L$ such that a=ba, whence $1-b \in L(a)=r(a)\subseteq M$. Yielding $1 \in M$ which contradicts $L \neq R$. In particular ar+d=1,

for some $r \in R$ and $d \in r(a)$, whence $a^2r=a$. This proves that R is a strongly regular ring.

We now consider an other condition for right SF-ring to be strongly regular.

Theorem 2.4: Let R be a right SF-ring with every nilpotent element of R is central. Then R is strongly regular.

Proof. Let a be a non-zero element in R with $a^2=0$, and let M be a maximal right ideal containing r(a). Since $a \in r(a) \subseteq M$, and since R/M is flat, there exists $b \in M$ such that a = ba. This implies that $1-b \in L(a)$. But every nilpotent is central gives r(a)=L(a). Whence $1-b \in r(a) \subseteq M$, yielding $1 \in M$, and this contradicts $M \neq R$. Therefore, R is a reduced ring. By a similar method of proof used in Theorem 2.3,R is strongly regular.

3. BASIC PROPERTIES

Recall that a ring R is a right uniform if every right ideal of R is essential.

We are now in a position to give new characteristic properties of a right SF-ring.

Theorem 3.1: If R is a right SF- ring, then

- 1- If L(a) = 0, then a is a right invertable.
- 2- Every reduced ideal of R is strongly regular.
- 3- If J is reduced, then J = 0.
- 4- If R is a right uniform ring, then R is a division ring.

Proof.

- (1) Let $a \in \mathbb{R}$ with L(a)=0. If $a \in \mathbb{R} \neq \mathbb{R}$, there exists a maximal right ideal M containing $a\mathbb{R}$. Since $a \in M$ and \mathbb{R}/M is flat, there exists $b \in M$, such that a=ba. Whence $1-b \in L(a)=0$, yielding $L \in M$, which contradicts $M \neq \mathbb{R}$. Therefore $a\mathbb{R}=\mathbb{R}$.
- (2) Follows from Theorem 2.3.

(3) Let a ∈ J, then by (2) J is strongly regular, and hence there exists b ∈ J such that $a=a^2b$. But a ∈ J gives (1-ab) u = 1 for some u ∈ R, this implies that $(a-a^2b)u=a$. Thus a=0, consequently, J=0. (4) Suppose that Y ≠ 0, then there exists a maximal right ideal M containing Y. For any 0 ≠ y ∈ Y, gives y ∈ M, but R/M is flat, then there exists x ∈ M such that y=xy, whence y ∈ r(1-x). On the other hand, since R is a right uniform, then r(1-x) is an essential right ideal of R. Thus 1-x ∈ Y ⊆ M, this implies that 1 ∈ M, contradicting M ≠ R. Therefore, Y=0. On the other hand, since R is uniform, then for every a ∈ R, r(a) = 0, then by (1), R is a division ring.

Before closing this section, we present the following result.

Proposition 3.2: Let R be a reduced right SF- ring, for any a, $b \in R$ with a.b=0, then r(a) + r(b) = R.

Proof. Suppose that a.b=0 and $r(a) + r(b) \neq R$. Then there exists a maximal right ideal M containing r(a) + r(b). Since $a \in r(b) \subseteq M$, and since R/M is flat, there exists $c \in M$ such that a = ca, whence $1-c \in L(a) = r(a) \subseteq M$, yielding $L \in M$, which contradicts $M \neq R$.

Therefore r(a) + r(b) = R.

REFERENCES

- [1] J. Chen (1991), On Von Neumann regular ring and SFrings, Math. Japon 36, pp. 1123-1127.
- [2] Y.Hirano (1994), On rings whose simple modules are flat , Canad Math . Bull ., 37 (3) , pp. 361-364.
- [3] J.Lambek (1966), Lectures on rings and modules, Blaisdell, waltham, Massachusetts.
- [4] R.Y.C.Ming (1980), On V-rings and prime rings, J.Algebra, 62, pp. 13-20.
- [5] R.Y.C. Ming (1983), On quasi-injectivity and Von Neumann regularity, Monatshefle für Math . 95, pp. 25-32.
- [6] R.Y.C.Ming (1987), On injectivity and p-injectivity, J Math kyoto univ. 27 (3), pp. 439-452.
- [7] R.Y.C.Ming (1998), A note on regular rings III. Riv. Math. Univ. Parma, 6(1), pp. 71-80.
- [8] V.S. Ramamurthi (1975), On injectivity and flatness of certain cyclic modules, proc. Amer. Math. Soc., 48, pp. 21-25.
- [9] M.B. Rege (1986), On Von Neumann regular rings and SF-rings, Math. Japonica, 31 (6), pp. 927-936.
- [10] J.Xu (1991), Flatness and injectivity of simple modules over commutative ring, Comm. Algebra, 19, pp. 535-537.