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  الملخـص
بعـد  يتضمن هذا البحث وضـع نمـوذج رياضـي للجريـان الثنـائي ال             

واللامنضغط في غشاء متناظر عندما يكون تأثير قوى اللزوجة صغيراً جداً بالنسبة            
إلى قوى الشد السطحي وقوى القصور الذاتي وقد تم الحـصول علـى المعـادلات            
التفاضلية التي تحكم هذا الجريان وقد تم ايجاد حل هذه المعادلات، كما تمت دراسة              

  .الموجات في هذا الغشاء
 

ABSTRACT 
 

In this paper we present a mathematical model for two- 
dimensional incompressible flow in a symmetric thin liquid films 
with the viscosity forces, which can be very small, compared 
with surface tension and inertia forces. We obtain the governing 
differential equation for such flow, we also determine the 
solution of equations and also we consider an inviscid waves in 
thin films. 
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1- Introduction: 
A problem in fluid mechanics, which received some 

attention recently, concerns many different types of doubts about 
the boundary conditions at the surface of liquid films. In the 
motion of a very thin soap films see for example [5], it has been 
suggested that an appropriate boundary condition is the 
kinematic condition of rigidity (inextensible and flexible) rather 
than the dynamic condition of zero shear stress at the bounding 
surfaces [1]. Indeed the only existing theory for such motion is a 
varient of lubrication theory [6], based on this kinematics 
condition. If, on the other hand, the ordinary zero shear stress 
condition at the surface is adopted, then the velocity of along the 
film is almost the same, and this idea is used by [2] when there is 
a balance between surface tension, inertia and visions forces, and 
it is also used by [3] for flow in thin liquid films with negligable 
inertia. 

The mechanics of a free surface film flowing steadily 
between two vertical guide wires was invistigated by [4] and 
shows that the analytic solution can be applied in a loatig 
process. 

The objective of this paper is to develop the corresponding 
theory for more conventional dynamic condition of fluid motion 
within a symmetric film as shown in figure (1.1) whose flow is in 
the x. direction of the coordinate axes x and y, and to achieve the 
derivation of the governing equation for thickness of the liquid 
film when the flow is inviscid, for both steady and unsteady 
motion. Furthermore, we consider inviscid waves of small 
amplitude and the periodic solution of the governing differential 
equation. 
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Figure (1.1) Cross section of symmetric film. 
 

2- Governing Differential Equations: 

The slope of the film surface is zero on the film proper, 
and in the transition region remains small approximately in the 
ratio of its width to a typical value of the radius of curvature, 
only on the border does the slope reach a substantial values, and 
thus we take ∂h/∂c <<1 over the domain x. 

Let z = ± h (x, t) be the equation of the film surfaces, we 
assume here a two-dimensional incompressible flow. 

Following [2], the governing differential equations of 
motion of flow within a double sided films are given by: 
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 Where p is the density of the fluid, p, the dynamic 
viscosity,σ the surface tension, and u is the component of 
velocity along the x - axis. 
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3- Inviscid Waves of Small Amplitude: 
  In the governing differential equations (2.1) and (2.2), if we 

set  
     h = h0 {1 + ε f(x,t)}, .......................................................... (3.1) 

        u = ε g(x,t) , ...................................................................... (3.2) 
where f, g, f′, g′, f′′ and g′′ are continuous functions and e << 1, 
then equations (2.1) and (2.2) give after some manipulation, the 
following fourth order partial differential equation: 
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Equation (3.3) has a fundamental solution of the form 
f (x , t) = ek(ix-αkt) ................................................................ (3.4) 
Differentiate (3.4) with respect to x and t, and then 

substitute these derivatives in equation (3.3), we get 
ρα2 - 3αµ + σho = 0 .......................................................... (3.5) 

 

If the viscosity (J, tends to zero for inviscid approximation, 
then (3.5) gives 

ρα2 + σho = 0 .................................................................... (3.6) 
or 

2/1o )h(i
ρ

σ±=α  

The fundamental solution (3.4) can be expressed as a 
linear combination of solutions, yields  

f(x , t) = sin (kx - αk2t) 
or 

f(x , t) = sin [k (x - ct)]....................................................... (3.7) 

where α = ,
k
c  c is the phase velocity, and k is the wave number. 

Now differentiate (3.7) with respect to x and t, then 
substitute in equation (3.3), we get 
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c = k 2/1o )h(
ρ

σ .................................................................. (3.8) 

A result which is consistent with the usual theory of 
propagation of surface tension ripples on a liquid of depth ho, 
and equation (3.8) is comparable with the theory of irrational 
surface tension waves in a channel of depth ho, namely 

 

C = )kh(tanhk
oρ

σ ........................................................... (3.9) 
 

Provided that kho << 1. This is the usual approximation for 
long-waves in shallow water, not normally relevant to surface 
tension waves in channel theory, since such waves are dominated 
by gravity. 
In terms of wave - length λ, where 

,
k

2π
=λ .......................................................................... (3.10) 

equations (3.8) and (3.10) give the wave speed c, 

c = ,)h(2 2/1
oτ

λ
π ............................................................. (3.11) 

and period 

T = ,
)h(2c 2/1

o
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τπ
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λ ....................................................... (3.12) 

Where 
ρ
σ

=τ  is the kinematic surface tension, and it is the 

only material constant in these inviscid flows. 
The following data for p and a refer to a standard 20C° 

temperature and atmospheric pressure, for λ=l and for the reliable 
application of continuum mechanics, a liquid film must be at 
least 100 molecules thick, we take ho=0.01 cm, and then from 
equations (3.11) and (3.12) we can determine the wave speed c 
and the period T as shown in the following table. 



Joseph G. Abdulahad  &  Abdulrahman M. Morshed 
 

 

 192 

 

Liquid Water Mercury Glycerin Carbon 
tetrachloride 

Linseed 
oil 

Olive 
oil 

Turp-
entine 

µ 
gm/cm.sec 0.0113 0.0155 14.9 0.00974 0.4309 0.8379 0.0149 

ρ 
gm/cm3 0.998 13.55 1.26 1.59 0.94 0.91 0.86 

σ 
gm/sec2 72.97 510.76 62.75 26.27 33.57 33.56 26.27 

τ 
cm3/sec2 73.12 37.69 49.80 16.52 35.70 36.88 30.55 

c 
cm/sec 5.37 3.86 4.43 2.55 3.75 3.82 3.47 

T 
sec 0.186 0.259 0.226 0.392 0.266 0.266 0.288 

 

Table (3.1): The wave speed and the period for various 
liquids. 

 

4- Sinusoidal Wave : 
The theory of inviscid irrational surface waves in a channel 

of depth ho gives. 
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Now equations (3.8) and (3.12) with equation (4.1) are 
comparable if : 
a) For short wave limit, the wave length X is very small and kho 

is very large, but tanh(kho) is asymptotic to one as kho 
becomes very large. Thus equation (4.1) gives 
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Now if ,)
g

(2L 2/1
m ρ

σ
π==λ ........................................................ (4.3) 

then 
λ << λm 

where λm denotes the maximum wave length, and so 
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By using equations (3.10) and (4.4), we get 
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b) For long wave limit, X is very large and thus kho is very small, 
that is  

k2 1h 2
o << ........................................................................... (4.6) 

But tanh(kho) is asymptotic to kho, thus equation (4.1), gives 
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if we neglect the effect of gravity, then equation (4.7) gives 
2/1o )h(kc

ρ
σ

= ..................................................................... (4.8) 

Which is the same as equation (3.12), such waves in which 
the only significant restoring force is surface tension, the force 
responsible for capillary attraction" are often called capillary 
waves. In water the capillary waves are waves with λ < 0.4 cm, 
so that it is easy to excite them by striking a tuning fork and 
placing the tines in the water, see [5]. For example, the tuning 
fork generates by equation (4.8) wave length  
λ ≅ 0.171 cm, with velocity c = 31.42 cm/sec. 

The short and long wave conditions (4.5) and (4.6) 
respectively are not incomparable for some liquids. 
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The value of L from equation (4.3) for water is (1.71 cm) 
and for mercury is (1.23 cm), other values of L can be 
determined from equation (4.3), more further, the conditions in 
term of the wave length λ, respectively becomes: 
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c) ,1
H
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Where H = 
σρ
µ

4
9 2

...................................................................... (4.12) 

 
From table (3.1), it is obvious that the inviscid 

approximation is relevant water and mercury since the viscosity 
p, is very small compared with the other liquids in which this 
approximation is not relevant to them. The following figure 
represents the relation between the maximum wave length λm and 
the wave speed c for water and mercury. 
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Figure (4.1): The wave length λ and the wave speed c 

for  
water and mercury. 

 

From equations (4.3), (4.12), we can determine L and H for 
water and mercury, which are 

Hwater = 3.94 × 10.6 ,  Lwater = 1.71 cm 
Hmarcury = 7.8 × 10.8, Lmercury = 1.23 cm 

 

The following table gives some values for λ and ho. 
 
 
 
 
 
 

Water Mercury Water Mercury 
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2.5 × l0.3 3.94 × l0.4 4.5 × l0.5 7.8 × l0.6 2.8 2 4.4 2 

10.2 8 × l0.3 10.4 1.6 × l0.6 2.23 2.6 4.1 2.3 

5 × l0.2 1.6 × l0.3 10.3 1.6 × l0.4 1.53 3.3 3.1 3.3 

10.1 1.6 × l0.2 10.2 1.6 × l0.3 1.23 3.6 2.1 4.3 

1.71 × l0.1 2.7 × l0.2 1.23 × l0.1 1.9 × l0.2 .1 3.8 .1 45 

 

Table (4.1) values for λ and ho for various liquids. 
Now the limit of one percentage error in each 

approximation gives the following domains of validity of all 
three approximations in (ho, λ) plane as shown in diagram (4.1). 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
The separate limits of 1% error in ho, λ are: 

Ho (cm) λ (cm)  
Minimum Maximum Minimum Maximum 

Hg 9.01 × 10.6 1.88 × 10.9 5.65 × 10.4 1.18 × 10.1 
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H2O 3.91 × 10.4 2.77 × 10.3 2.43 × 10.2 1.72 × 10.1 
 

Diagram (4.1): Domains of validity for approximation  
in (ho , λ) plane. 

 
5- Conclusion: 

The approximation of inviscid waves of small amplitude 
shows that it is a usual approximation for long waves in shallow 
water and normally relevant to surface-waves in channel theory 
since such waves are dominated by gravity. The wave speed c 
and the period T are evaluated for some liquids, namely water 
and mercury. 

The domain of validity of all approximations in the case of 
sinusoidal waves when ho >> H are investigated, and in this case 
the only a symptomatic limit ho >> H → ∞ is relevant and this 
limit may be regarded as the limit H → 0, which means that we 
consider the effect of a very small but non-zero value of viscosity 
µ. 
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