Raf. J. of Comp. & Math’s. , Vol. 6, No. 3, 2009

The n-Wiener Polynomials of Straight Hexagonal Chains and KxCr

Ali A. Ali Haveen G. Ahmed
aliazizalil933@yahoo.com haveenagali@gmail.com
College of Computer Sciences and Mathematics  College of Science
University of Mosul University of Dohuk.
Received on: 11/09/2008 Accepted on: 23/11/2008
ABSTRACT

The n-Wiener polynomials of straight hexagonal chains and the
Cartesian product of a complete graph K; and a cycle C; are obtained in this
paper. The n-diameter and the n-Wiener index of each such graphs are also
determined.
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1.Introduction.
We follow the terminology of [5,6]. Let v be a vertex of a connected
graph G and let S be an (n-1)-subset of vertices of V(G), n>2, then the n-
distance dn(v,S) is defined as follows[7]
dn(v,S)=min{d(v,u):ueS}. .(1.1)
Sometimes, we refer to the n-distance of the pair (v,S) in G by dn(v,S | G).
The n-diameter diamnG of G is defined by

diamnG=max{dn(v,S): veV(G), ScV(G), Sl =n-1}. .(1.2)
It is clear that for all 2<m<n<p,

diam,G< diammG< diamG. ..(1.3)
The n-Wiener index of G denoted by Wi (G) is defined as

Wn(G)=Y_ dn(v.S), .(1.4)

(v.s)
where the summation is taken over all pairs (v,S) for which veV(G),
ScV(G) and | S| =n-1. The n-average distance pin(G) is defined as
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p-1
un(G)= Wn(G)/p{ ] 3<n<p. ..(L.5)
n-1
Let v be any vertex of G, then the n-distance of v denoted dn(Vl G)
or simply dn(V) is defined as
da(v)= Y. dn(v,S) ISl =n-1. .(1.6)
SV (G)
The Wiener polynomial of G with respect to the n-distance, which is
called n-Wiener polynomial and defined as below.
Definition 1.1.[2]. Let Cn(G,k) be the number of pairs (v,S), |S|=n-1,3<n<p,
such that dn(v,S)=k, for each 0<k<&n. Then, the n-Wiener polynomial
Whn(G;X) is defined by
o,
Wn(Gix)=> Cna(G,K)X*, ..(1.7)
k=0
in which dy is the n-diameter of G .
One may easily see [2] that for 3<n<p, the number of all (v,S) pairs is

o p-1 p-1

Z Cn(G,k):p[ ] Cn(G,O):p( ] ..(1.8)
b p-1-deg v

Cn(G,1)=p[ J > : ..(1.9)
n-1/) VveV(G) n-1

Definition 1.2[1] Let v be a vertex of a G, and let Cn(v,G,k) be the number
of (n-1)-subsets of vertices of G such that

dn(v,SI G)=k , for n>3, 0<k<8.
Then, the n-Wiener polynomial of vertex v, denoted by Whn(v,G;Xx) is
defined as

Wia(V,G;x)=>" Cn(V,G k)X , ...(1.10)
k>0
It is clear that for all k>0,
> Ca(v,GK)=Cn(G,k), ..(1.12)
veV (G)
and
D Wa(V,G,X)=Wh(G;X) . ..(1.12)
veV (G)
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There are many classes of graphs G in which for each k,1<k<dn ,
Cn(v,G,Kk) is the same for every vertex veV(G); such graphs are called [1]
vertex-n-distance regular. If G is of order p and it is vertex-n-distance
regular, then

Wi(G;X)=pWh(v,G;X), ..(1.13)

where v is any vertex of G.
The authors of papers [2,3,4] obtained the n-Wiener polynomials and n-
Wiener index for some special graphs and of some kind of compound
graphs. In this paper, we obtain n-Wiener polynomials for straight
hexagonal chains and for the Cartesian product KixC;.

2. The Cartesian Product of a Cycle and a Complete Graph

Let C be a cycle of order r>3 and vertices v1,Vz,...,vr,V1, and let K;
be a complete graph of vertex set V(Ki)={uz,uz,...,ut}.
It is clear that KixC; is regular of degree t+1, and it is vertex-n-distance
regular. Thus, for every vertex (ui,v;) of KixC; and each k
Cn((ui,vj), KixCr,k)
has the same value for 2<n<tr. Therefore,
diamn KixCr=max{dn(u1,v1):ScV(KxCy), |S|=n-1}.
The n-diameter of KixC; is determined in the next proposition.

Proposition 2.1. For r=2s, s>2, t>3,
diamn KxCr= s+1- | (n+t-1)/2t ], when 2<n<tr.

Proof. Let Ai={(uj,vi);j=1.2,....t}, 1<i<r. The induced subgraph <A;> is
denoted by K" and called the i*" copy of K. It is clear that
diam KxCr=s+1,
therefore, for 2<n<tr
diamn KtXCrSS+1.
Now if 2<n<t, then we take ScAs+1-{(U1,Vs+1)}, and we find that
dn((u,v1),S)=s+1,
as it is clear from KixC; shown in Fig.2.1. Thus,
diamp KixCy=s+1, when 2<n<t.
Now, assume that t+1<n<tr.
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Fig.2.1. The graph KixCos

If S is an (n-1)-set of vertices such that dn((uz1,v1),S[1) is maximum, then
S0 must contain As+1, and the other n-t-1 vertices are taken from the set
[(ASUA5+2) \ (As.1UAs+3) U...J (As+1-jUAs+j+1)]-{(Ul,Vs+1-j),(Ul,Vs+j+1)}
such that

t+2t(J-1)<n-1<3t-2+2t(j-1)
Solving for j, we get

(n-t+1)/2t< j <(n+t-1)/2t.
Since j is an integer, we have

j=L(n+t-1)/2t .
From Fig.2.1, one can easily see that

dn((u1,v1),S1)=s+1j.
Hence the proofis completed. m

Proposition 2.2. For r=2s+1, s>1, t>3,
diamn KxCr=s+1- n/2t ], for 2<n<tr.

Proof. Consider the graph KixCas+1 shown in Fig.2.2 and use the notations
used in the proof of Proposition 2.1.
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Fig.2.2. The graph KixCos+1 .

Let S be an (n-1)-set of vertices such that dn((u1,v1),S) is maximum. If
2<n<2t-1, then ScAs+1UAs+2-{(U1,Vs+1),(U1,Vs+2) },and
dn((u,v1),S)=s+1=diamp KixC;,
as given in the proposition.
If 2t<n<rt, then S must consist of vertices from
[(As+1UAs+2) |\ (ASUAS+3) U...U (As+1-jUAs+j+2)]‘{(Ul,Vs+1-j),(U1,Vs+j+2)}
such that
2tj-1<n-1<2t(j+1)-2 (See Fig.2.2).
Solving for j, we get
(n/2t)-((2t-1)/2t) <j< n/2t.
Since j is positive integer, then j=_.n/2t]. It is clear from the figure that
dn((u1v1),S)=s+1-j.
Therefore,
diamn KixCosr=s+1-j=s+1-{n/2t]. m
We determine the n-Wiener polynomial of KixC; in the following
theorems.

Theorem 2.3. For t>2, 3<n<rt, r=2s+1, we have

5n
Wh(KxCr:xX)=) " Cn(KixCr,K)X,
k=0
in which

rt-1
Cn(Kthr,O):rt( J

n-2
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Cn(Kthnl):rt[ rtl} ] [rttZJ ]1

Cn(KtXCr,k):rt[ a+2tj '( ’ J],

a=2t(s-k+1)-2,

and for 2<k<s,

where

2t-2
Cn(KtXCr,S+1)=rt( J , where 3<n<2t-1;

n-1
and &y is the n-diameter of KixC:.

Proof. Cn(KxC:,0) and Cn(KixCy,1) follow from (1.8) and (1.9).

Since KixCris vertex-n-distance regular, we have for 2<k<dn,
Cn(KtxCr,k)=rtCn((u1,v1),KixCr,K) (See Fig.2.2).

For 2<k<s there are 2t vertices each of distance k from vertex (ui,v1), and

there are 2t(s-k+1)-2(=a) vertices each of distance more than k from (ug,v1).

Thus,

Cn((ul’vl)’Kthr’k):nz_l(ﬂJ[ ) J,Zﬁkfs

=1 n-1-j

J
If 3<n<2t-1, then d,=5+1. In this case, there are exactly 2t-2 vertices each of
distance s+1 from vertex (ui,v1), and there is no vertex of distance more
than s+1.

Therefore,

2t-2
Cn((Ul,Vl),Kthr,S'l'l):( J . n
n-1
Theorem 2.4. For t>2, 3<n<rt, r=2s>4, we have

O
Wn(Kthr;X): Cn(Kthr,k)Xk,
k=0
where dn is the n-diameter, and

rt-1
Cn(KtXCr,O):rt[ J

n-2

Cn(Kthnl)zrt[ [rtl] ] [rttZJ ]’

and for 2<k<s-1,
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n-1 n-1

Cn(KthnS):rt[ [mz] ] [tl} ],

t-1

B2t B
Cn(KtXCr,k)Zl’t[[ M J], B=t(r-2k+1)-2,

Cn(KtXCr,S'l'l):rt( J , where 8n:s+1.

n-1

Proof. Cn(KixCy,0) and Cn(KixCy,1) follow from (1.8) and (1.9). For 2<k<s-
1, we notice that there are 2t vertices each of distance k from (u1,v1), and
there are (2t(s-k)+t-2) vertices each of distance more than k from vertex
(u1,v1). Therefore, for 2<k<s-1,

n-1( 2t B
Cn((ul,vl),KtXCr,k):Z( J[ J

i -1-j

B+2t B
:( ]( J(SeeFig. 2.1).

For 3<n<3t-1, then diamn KixC;>s, and for k=s, there are (2t-1) vertices each
of distance s from (ug,v1), and there are (t-1) vertices each of distance more
than s from (u1,v1). Therefore,

Cn((ul,vl),KtXCr,S):nZl:[ i J[ ) J

=L\ n-1-j
(m—zj (t—lj
n-1 n-1
For 3<n<t, then diam,KxC; =s+1 by Proposition 2.1, and there are exactly

(t-1) vertices each of distance s+1 from vertex (u1,v1), and there is no vertex
of distance more than s+1 from (uy,v1). Thus,

Cal(ULV1), KeXCr s +1)= (HJ .

n-1
Since KxC; is vertex-n-distance regular, then the proof of the theorem is
completed. m
3. Straight Hexagonal Chains

A straight hexagonal chain is a graph ¢ consisting of t hexagons
Hy,Ho,...,H: such that Hi and Hi:+1, 1<i<t-1, have one edge in common as
shown in Fig.3.1.
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Vat-a vy

4t-
V4t+2

4t+1
4t-

Vits Va1

Fig.3.1. The graph gt

It is clear that p(gt)=4t+2 , q(ct)=5t+1.
Let n>2, and consider the vertex vi. The n-diameter of ¢ is the n-distance of
(v1,S) such that S is an (n-1)-set consisting of vertices farthest from vi. To
find S, we notice that
d(V1,Var2)=2t+1, d(V1,Var1)=2t,
d(v,var)=2t , d(v1,var1)=2t-1,
d(vi,vat2)=2t-1, d(V1,Vat3)=2t-2
in general
d(vy,vi)=Li/2], for i=1,2,3,...,4t+2.
Therefore, if dn(v1,S) is maximum, then S consists of the first n-1 vertices
from the sequence:
Vi4t+2,Vat+1,Vat,Vat-1,. . ., V5,V4,V3,V2.
Thus, the vertex of S nearest to V1 iS Vat+a-n.
If n is even, then
d(V1,Vatran)=2(t+1)-(n/2),
and when n is odd,
d(V1,Vat+a-n)=2(t+1)-(n+1)/2.
Therefore,
d(V1,Varran)=2(t+1)- n/2 ],
which completes the proof of the following proposition.
Proposition 3.1. For t>1, 2<n<4t+2,
diamn ¢t =2(t+1)-[n/2 | .m
To find the n- Wiener polynomial, n>3, for ¢t we redraw ¢tas in Fig.3. 2 with
new labels for its vertices.

U2tz U'2t3 Uzt1 U'zt1 Uzl

Uz Ui U3 U3 Us U's
I ‘ I . I ) I . I .
.l . 1 ’_l . 1 . 1
U2 U2 Us Us Us Us Uzt-2 U2t2 U2t U2t Uzt+2
Fig. 3.2-the graph ¢

From Fig.3.2 we notice that ¢ is KoxxPa1 with the edges
{u'iu'i+1:1=1,3,5,...,2t-1} removed.
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Theorem 3. 2. For t>3, 3<n<4t+2, we have
5n
Wn(ciX)= " Ca(guk)x*,

k=0
where dn, is the n-diameter, and

p-1
Cn(@t,0)=p[ ] , p=4t+2,
n-2

Cn(ct,1)=p ( pl] -(2t+4) ( pg] -(2t-2) [ F"‘] ,
Cn(c,2)=2{(t+2) (P?:} D) [ p4J 5 [ psj 5 [ p6J 2) ( p7]

p-5 p-6 p-7 p-8 p-9
Cn(C_,t,B):Z{Z[ J +2( j +(t-4)( J +(t-l)( J-Z( ] -
n-1 n-1 n-1 n-1 n-1
p-11 p-12
2[ J -(2t-5)( ]},
n-1 n-1
Cn(ct,K)=Cn(K2x%P2t+1,K),
in which Cn(K2x%P2t+1,K) is given in Theorem 3.5.3. Ref[1].

Proof. Cn(c,0) and Cn(g;,1) are obtained from (1.8) and (1.9.

To find Cn(gt,2) we notice that for ue{us,uz,uzt+1,Uz+2} there are exactly 2
vertices of distance 2 from u, and there are (p-5) vertices of distance more
than 2 from u. For this case, the number of pairs (u,S) such that dn(u,S)=2 is

SO0

If ue{uliy,ullzullarg,ullz}, then there are exactly 3 vertices of distance 2
from u, and there are (p-6) vertices of distance more than 2 from u. For
these vertices, the number of pairs (u,S) such that dn(u,S)=2 is

4%[ ]( 7 _]:4[( ][ 7 J]. .(32)

If ue{us,ua,...,uzt1,Uzt}, then there are 4 vertices of distance 2 from u and
there are (p-8) vertices of distance more than 4 from u. For these vertices u,
the number of pairs (u,S) such that dn(u,S)=2 is

for 4<k<6n,
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n-1( 4 p-8 p-4 p-8
2(t-1)z[ ]( ]:2@-1)[[ ][ j]. ..(3.3)
=L N\ n—1-j n-1 n-1

Finally, if ue{ uJs,ula,ulls,...,u 23, U2z}, then there are 4 vertices of
distance 2 from u, and there are (p-7) vertices of distance more than 2 from
u. Therefore, the number of pairs (u,S) such that dn(u,S)=2 for these vertices

uis
n-1( 4 p-7 p-3 p-7
2(t-2)2( JE J:Z(t-Z)[( j[ J]. ..(3.4)
=G N\ n-1-j n-1 n-1

Summing the numbers in (3.1)-(3.4), we obtain the value of Cn(¢t,2) as given
in the theorem.

To find Cn(gt,3), we use the same method. If ue{us,uz,Uzt+1,U2t+2}, then the
number of (u,S) pairs of n-distance 3 is

T

If ue{uli,ullo,ullat1,ull2t}, then the number of (u,S) pairs is

S .

If ue{us,us,Uzt.1,U2t}, then the number of (u,S) pairs is

ni( 3 p-11 p-8 p-11
42( I }4[[ J( j]. ..(3.7)
=G N\ n-1-j n-1 n-1
If ue{ulizulls,...,ullot3,ullot2}, then the number of (u,S) pairs of n-
distance 3 is

n-1( 5 p-12 p-7 p-12
2(t-2)z[ ]( J:z(t-z)[L J[ J]. ...(3.8)
=L N\ n-1-j n-1 n-1

If ue{us,uUs,...,uz3,Uz-2}, then the number of (u,S) pairs of n-distance 3 is

n-1( 4 p-12 p-8 p-12
2(t-3)2( I J=2(t-3)[( j( ]]. ..(3.9)
=G N\ n-1-j n-1 n-1

Summing the numbers in (3.5)-(3.9), we get Cn(c,3) as given in the
statement of the theorem.
From Fig.3.2, we notice that for 4<k<dn, if d(u,v)=k in the graph ¢ then it is
also k in KoxPat+1, and conversely. Thus, if dn(u,S)=k in ¢t then it is also k
in KoxPat+1, and conversely. Therefore,

Cn(ct,K)=Cn(K2xP2t+1,k), for 4<k<on. m
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