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ABSTRACT 
Conjugate gradient methods are wildly used for unconstrained 

optimization especially when the dimension is large. In this paper we 

propose a new kind of nonlinear conjugate gradient methods which on the 

study of Dai and Liao (2001), the new idea is how to use the pair conjugate 

gradient method with this study (new cojugacy condition) which consider an 

inexact line search scheme but reduce to the old one if the line search is 

exact. Convergence analysis for this new method is provided. Our numerical 

results show that this new methods is very efficient for the given ten test 

function compared with other methods. 
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 للامثلية غير الخطية طريقة تدرج مترافق جديدة معتمدة على تقنية التدرج المترافق المزدوج

 هدى عصام احمد                                                                      عباس يونس البياتي

 كلية علوم الحاسوب والرياضيات/جامعة الموصل/العراق 
 26/12/2005تاريخ قبول البحث :    28/8/2005تاريخ استلام البحث : 

 الملخص

طرق التدرج المترافق تستعمل بكثرة في الامثلية اللاخطية وخصوصا للمسائل ذات الأبعاد 
الكبيرة. في هذا البحث افترضنا طريقة تدرج مترافق جديدة للدوال غير الخطية معتمدة على فكرة 

(2001) Dai and Liao  دم تقنية التدرج المترافق المزدوج مع البحث الخطي وهذه الطريقة تستخ
غير المضبوط والتي تتحول الى طريقة التدرج المترافق القياسية باستعمال البحث الخطي المضبوط. 
تم التطرق كذلك الى تحليل تقارب هذه الطريقة ثم استخدام هذه الطريقة عدديا مع استعمال عشرة 

 نتائج كفوءة جدا.    دوال غيرخطية ومن ثم الحصول على 

 التدرج المترافق. ائقالامثلية اللاخطية، طر  الكلمات المفتاحية:
1.Introduction  

We are concerned with the following unconstrained minimization 

problem: 

)(  minimize xf       …(1) 

where RRf n →: is smooth and its gradient )()( xfxg =  is exist. There are 

several kinds of numerical methods for solving (1), which include the 

steepest descent method, the Newton method and quasi-Newton methods, 

for example. Among them the conjugate gradient method is one choice for 
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solving large-scale problems, because it does not need any matrices. 

Conjugate gradient methods are iterative methods of the form 

11 −− += kkkk dxx       …(2) 



 =−

+−
=

−

1kfor                              

2kfor                1

k

kkk
k

g

dg
d


   …(3) 

where 
k

g  denotes )( kxf  and k
 is a scalar.   

If  )(xf  is a strictly convex quadratic function: 

  cxbGxxxf TT ++=
2

1
)(      …(4) 

where nXnRG is asymmetric positive definite matrix, and k  is given by: 

  
k

T
k

k
k

Add

g
2

=       …(5) 

then the method (2)-(3) is called the linear conjugate gradient method, 

where .  denotes the Euclidean norm. The linear conjugate gradient method 

was originally proposed by Hestenes and Stiefel (1952) for solving linear 

system of equations 

  bGx =        …(6) 

within the framework of linear conjugate gradient methods, the conjugacy  

condition is defined by  

  jifor         , 0 =j
T
i Gdd      …(7) 

for search directions, and this condition guarantees the finite termination of 

the linear conjugate gradient methods. 

On the other hand, the method (2)-(3) is called nonlinear conjugate gradient 

method for general unconstrained optimization problem (general nonlinear 

function). The nonlinear conjugate gradient method was first proposed by 

Fletcher and Reeves (Fletcher and Reeves, 1964). Within the framework of 

nonlinear conjugate gradient methods, the conjugacy condition is replaced 

by  

  01 =−k
T
k yd       …(8) 

Where 

11 −− −= kkk ggy                … (9) 

for search direction, because the relations. 

1
1

1
1

1
1

1

1
)(

1
)(

1
−

−
−

−
−

−
− =−=−= k

T
k

k
kk

T
k

k
kk

T
k

k
k

T
k ydggdxxGdGdd


. 

Hold for the strictly convex quadratic objective function. 

Multiplying 1−ky  in (3) and using (8), we can deduce a formula for the scalar 

k , as: 



New conjugacy condition with pair-conjugate gradient methods for… 
 

 

 23 

11

1

−−

−=

k
T
k

k
T
k

k
yd

yg
       …(10)  

This is the so-called HS formula, which was given by Hestenes and Stiefel 

(1952), also there is well-known formulae for k  are the Fletcher-Reeves 

(FR), (Fletcher, 1964) and Polak Ribiere (PR), (Polak,1969) and (Polyak, 

1969) they are given by  

2

1

2

−

=

k

kFR
k

g

g
       …(11) 

2

1

1

−

−=

k

k
T
kPR

k
g

yg
       … (12) 

To establish the convergence results methods mentioned above, it is usually 

required that the step k  should satisfy the following strong Wolfe 

conditions  

k
T
kkkkkk dgxfdxf  −+ )()(     …(13) 

k
T
kk

T
kkk dgddxg   )(  −+     … (14) 

where 10   . On the other hand, many numerical methods (e.g. the 

steepest descent method and quasi-Newton methods) for unconstrained 

optimization are proved to be convergent under the Wolfe conditions: 

k
T
kkkkkk dgxfdxf  −+ )()(    …(15) 

k
T
kk

T
kkk dgddxg   )(  +     …(16)  

Thus it is an important issue to study global convergence of conjugate 

gradient methods under the Wolfe conditions instead of the strong Wolfe 

conditions. 

2. The Dai and Liao method 

As stated in section 1, the conjugacy condition which may be 

represented by the 

form: 

01 =−k
T
k yd        …(17) 

for nonlinear conjugate gradient methods. The extension of the conjugacy 

condition was studied by Peery and also Shanno (Peery,1978) and (Shanno, 

1978). However, both the conjugacy conditions (7) and (17) depend on the 

exact line searchs. In practical computation, one normally carries out inexact 

line search instead of exact line searches. In the case when 01 + k
T
k dg , the 

conjugacy conditions (7) and (17) may have some disadvantages, for this 

reason the extension of the conjugacy condition studied by Perry (1978), he 

tried to accelerate the conjugate gradient method by incorporating the secod-

order information into it, specifically, he used the quasi-Newton condition 
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11 −− = kkk syH       …(18) 

where kH  is nxnsymmetric and positive definite matrix and 111 −−− = kkk ds  . 

For quasi-Newton methods, the search direction kd  can be calculated as: 

kkk gHd −=       …(19) 

by (18) and (19), we have that  

1111 )()( −−−− −=−=−= k
T
kkk

T
kk

T
kkk

T
k sgyHgygHyd  … (20) 

eq(20) is called Perry condition, which implies (17) holds if the line search 

is exact since, in this case 01 =−k
T
k sg . However, practical algorithms 

normally adopt inexact line searches instead of exact line searches. For this 

reason Dai and Liao (2001) replaced the conjugacy condition (17) with the 

condition: 

1
T
k1

T
k gd −− −= kk sty      …(21) 

where 0t  is a scalar. In the case 0=t , (21) reduces to the usual conjugacy 

condition (17). On the other hand, in the case 1=t , (21) becomes Perry’s 

condition (20). To ensure the search direction 
k

d  satisfies condition (21), by 

substituting (3) in to (21), they had obtained 

1111 −−−− −=+− k
T
kk

T
kkk

T
k stgydyg      …(22) 

this gives the Dai and Liao formula  

11

11 )(

−−

−− −
=

k
T
k

kk
T
kDL

k
yd

tsyg
      …(23) 

we note that the case 1=t  reduces to Perry formula: 

11

11 )(

−−

−− −
=

k
T
k

kk
T
kP

k
yd

syg
      …(24) 

the equation (23) can be written by: 

11

1 t 

−−

−−=

k
T
k

k
T
kHS

k
DL
k

yd

sg
      ...(25) 

for which we see that formula (23) with ),0[ t  really defines aclass of 

nonlinear conjugate gradient methods. Similarly, we call the method defined 

by (2)-(3) with 
k

  from (23), method (DL), the aim of Dai and Liao is how 

to fined the best value of t to give the best nonlinear conjugate gradient 

method. For any 0t , denote kd  and kd  to be the search directions given 

by method (23) and the HS method, respectively, namely: 

1−+−= k
DL
kkk dgd        …(26) 

1−+−= k
HS
kkk dgd       …(27) 

Assume that 0dg k

T

k  . Then from (26), (27), (25) and 011 −− k
T
k yd , we also 

have 0k
T
k dg . Thus if the direction generated by the HS method is descent, 
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and if the line search provides the relation 011 −− k
T
k yd , then the direction 

give by DL method (23) must also be a descent direction. Denote also *
k  

and k  to be one-dimensional minimize of f  along the directions kd  and 

kd  respectively. Consider the following Lemma for quadratic functions (Dai 

and Liao, 2001). 

2.1 Lemma 

Suppose that f  is quadratic function given in (4); then we have 

that:












−−=+−+

−−

−

−−

−

11

2
1

11

22
1* )(

)
2

(
))((2

)(
)()(

k
T
k

k
T
k

k
T
kk

k
T
kk

T
k

k
T
k

kkkkkk
ys

sg
dg

tGddGdd

tdg
dxfdxf   

         …(28) 

The prove of this Lemma is defined in (Dai and Liao, 2001). 

from Lemma Dai and Liao obtained the best value of t which defined by: 

k

kd
t



T
kg

=       …(29) 

Where 

0
)(

11

2
1 +=

−−

−

k
T
k

k
T
k

k
T
kkk

ys

sg
dg     …(30) 

3.New nonlinear conjugacy gradient method using pair direction 

In this section we find the new value of t  by using pair direction U  

and V, before that we give  some definitions. 

3.1 Definition  

Vectors n
n Rppp ,...,, 21 are called left conjugate direction vectors 

(LCD) of a nxn real nonsingular matrix G if  








=

=

jifor              0

jifor              0

j
T
i

j
T
i

Gpp

Gpp
    …(31) 

that is  )      (== LGPPT , 

where ],...,,[ 21 npppP = . (Yuan and Golub, 2003). 

3.2 Definition  

Vectors n
n Rppp ,...,, 21 are called right conjugate direction vectors 

(RCD) of a nxn real nonsingular matrix G if  








=

=

jifor              0

jifor              0

j
T
i

j
T
i

Gpp

Gpp
    …(32) 

that is  )      (==UGPPT , 
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where ],...,,[ 21 npppP = . (Yuan and Golub, 2003). 

3.3 Definition  

Vectors n
n Rppp ,...,, 21 are called conjugate gradient vectors (CG) 

of nxn real nonsingular matrix G if  








=

=

jifor              0

jifor              0

j
T
i

j
T
i

Gpp

Gpp
    …(33) 

that is  ) 0\0 (== DGPPT , 

where ],...,,[ 21 npppP = . (Yuan and Golub, 2003). 

3.4 Definition  

Vectors n
n Rppp ,...,, 21 are called semi-conjugate vectors (SCD) of 

G if they are LCD vectors or RCD vectors of G. (Yuan and Golub, 2003). 

3.5 Remark  

If G is symmetric and nonsingular, then we observe that the left 

conjugate direction vectors of G are also right direction vectors of G. In this 

case, we call the vectors conjugate gradient vector of G. In terms of 

Stewart’s definition (Stewart, 1973), U and V are G-conjugate if GUV T  is 

Lower triangular. Of course Stewart’s G-conjugate direction is the Left 

conjugate direction when U=V=P. (Yuan and Golub, 2003). 

3.6 Definition  

Let G, U and V be nonsingular nxn matrices. Then (U,V)is an G-

conjugate pair if  GUVL T=  is Lower triangular (Wyk, 1977). 

3.7 New delimitative for finding the value of  t   for pair conjugate          

gradient method.   

Suppose that f  is given in (4). Then we have that : 

)()(                                                      

)]()([)]()([)()( **

kukv

kukkkkvkkkkkkkkk

xfxf

xfuxfxfvxfuxfvxf

−+

−+−−+=+−+ 
 

         …(34) 

by the definitions of 
*

k
  and 

−
k

 for the pair direction, it is easy to show 

that  

k
T
k

k
T
k

k
vGv

vg

  

* −
=  and  

k
T
k

k
T
k

k
uGv

vg

  

−
=    …  (35) 

and by the strong Wolfe condition (13), we have 

[ k
T
kkkkkk dgxfdxf  −+ )()( ] 

then (34) becomes     
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)()(  )
  

( )
  

()()( *
kukvk

T
k

k
T
k

k
T
k

k
T
k

k
T
k

k
T
k

kkkkkk xfxfug
uGv

vg
vg

vGv

vg
uxfvxf −+

−
−

−
+−+    

          …(36) 

 since 10    then we can take 
2

1
= ,  

)()(  )
  

(
2

1
 )

  
(

2

1
)()( *

kukvk
T
k

k
T
k

k
T
k

k
T
k

k
T
k

k
T
k

kkkkkk xfxfug
uGv

vg
vg

vGv

vg
uxfvxf −+

−
−

−
=+−+     

…(37) 

                        )()(  
  

)(

2

1
 

  2

1
2

kukv

k
T
k

k
T
k

k
T
k

k
T
k

k
T
k xfxf

vGv

vg
ug

uGv

vg
−+














−














=  

…(38) 

       )()(
)  )(  (2

kukv

k
T
kk

T
k

xfxf
uGvvGv

−+


=  … (39) 

where  

)  ()()  )()(( 2
k

T
kk

T
kk

T
kk

T
kk

T
k uGvvgvGvugvg −=   …(40) 

since  

kk gv −=       … (41) 

1−+= k
DL
kkk uvu         …(42) 

Where DL
k  is defined in (25) [

11

1 t 

−−

−−=

k
T
k

k
T
kHS

k
DL
k

yd

sg
 ] 

and define 
11

1

−−

−−
=

k
T
k

k
T
k

k
yu

sg
       …(43) 

then (42) becomes 

1][ −++= kk
HS
kkk utvu      … (44) 

11  −− ++= kkk
HS
kkk utuvu       …(45) 

Now substitute (45) in (40) to get 

 

))  (  ()()) ()(  )(( 11
2

11 −−−− ++−++= kkk
HS
kk

T
kk

T
kkkk

HS
kk

T
kk

T
kk

T
k utuvGvvgutuvgvGvvg 

         … (46) 

since  0)  ( 1 =−k
T
k uGv (from the definition of the semi conjugate direction ) 

then (46) is becomes : 

)       ()(             

) )(  )((

11
2

11

−−

−−

++

−++=

k
T
kkk

T
k

HS
kk

T
kk

T
k

k
T
kkk

T
k

HS
kk

T
kk

T
kk

T
k

uGvtuGvvGvvg

ugtugvgvGvvg




 

)  ()() )(  )(( 2
11 k

T
kk

T
kk

T
kkk

T
k

HS
kk

T
kk

T
kk

T
k vGvvgugtugvgvGvvg −++= −− 

 ] )[  )(( 11 k
T
kk

T
kkk

T
k

HS
kk

T
kk

T
kk

T
k vgugtugvgvGvvg −++= −−   

]    )[  )(( 11 −− += k
T
kkk

T
k

HS
kk

T
kk

T
k ugtugvGvvg    …(47) 
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from (39) we have 

                                                                             

 )()(
)  )(  (2

]    )[  )(( 11
kukv

k
T
kk

T
k

k
T
kkk

T
k

HS
kk

T
kk

T
k xfxf

uGvvGv

ugtugvGvvg
−+

+
= −− 

 

)()(
)  (2

]    )[( 11
kukv

k
T
k

k
T
kkk

T
k

HS
kk

T
k xfxf

uGv

ugtugvg
−+

+
= −− 

 














−=+ −−

k
T
k

k
T
k

kvkuk
T
kkk

T
k

HS
k

vg

uGv
xfxfugtug

)  (2
)()(    11   

 













−
−=+ −

k
kvkuk

T
kk

HS
k xfxfugt




2
)()()( )   ( 1  















−
−=+

− )(

2
)()( )   (

1k
T
kk

kvkuk
HS
k

ug
xfxft


  

HS
k

k
T
kk

kvkuk
ug

xfxft 


 −














−
−=

− )(

2
)()(    

1

 

)(

)(

)()(

)(2
)()(   

1

1

11

11

−

−

−−

−− +













−=

k
T
k

k
T
k

k
T
kk

T
kk

k
T
k

kvku
sg

yg

sgug

yu
xfxft


 …(48) 

where 0t  is a scalar. In practical if we have to take 
t

t
1

=  which give the 

best result, then the new formula for the pair conjugate gradient method is 

defined by: 














−=

−−

−

11

1 t 

k
T
k

k
T
kHS

k
New
k

yu

sg
     … (49) 

we call this  new formula (49) with (2)-(3) by the new pair method. 

4.The algorithm of the new pair conjugate gradient method  

We list bellow the out lines of the new method 

For an initial point 
0

x : 

Step (1): set k=1, 11 −− −= kk gv . 

Step (2): set 11 −− += kkkk vxx  , where k  is a scalar chosen in such a way such 

that 1− kk ff .  

Step (3): check for convergence, i.e. if kf , where   is small positive 

tolerance, stop; otherwise continue. 

Step (4): if k2 go to step (5), else go to step (8). 

Step (5): compute kkkk uxx += −1 , where 














−
−=

+ )( *
1 kk

T
k

k
T
k

kk
ggu

vg
 . 
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Step (6): check for convergence, i.e. if +1kg , where   is small positive 

tolerance, stop; otherwise continue. 

Step (7): compute the value of t  where t  becomes 

 













+














−=

−

−

−−

−−

)(

)(

)()(

)(2
)()(/1

1

1

11

11

k
T
k

k
T
k

k
T
kk

T
kk

k
T
k

kvku
sg

yg

sgug

yu
xfxft


. 

Step (8): Compute the new search direction 1−+−= k
New
kkk ugu  , where k  is 

computed by the following formula 
11

1 

−−

−−=

k
T
k

k
T
kHS

k
New
k

yu

sg
t . 

Step (9): if k=n or if 
2

1 2.0 kk
T
k ggg −   is satisfied go to step (1), else, set 

k=k+1, and go to step (2). 

5. Generalized conjugate directions 

We will now formulate the analogous generalized conjugate 

direction method for the minimization of function  f(x) .  Suppose that U and 

V form a conjugate pair. Set =0x  arbitrary, )( 00 xgg = , 

for I=0,1,---,compute: 

kkkk vxx +=+1       …(50.a) 

where k minimizes )( kkk vxf + as a function of  , and let 

)x(g   ),( *
1k

*
1k ++ == gxgg kk ,    …(50.b) 

  














−
−=

+ )( *
1

**

kk
T
k

k
T
k

kk
ggu

vg
     …(50.c) 

  kkkk uxx **
1 +=+      …(50.d) 

Before we prove that this algorithm will find the minimum of  quadratic 

function in n steps, then we show that if f  is quadratic then **
k  in (35) are 
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(see, Wyk, 1977). 
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6. Theorem  

If  the  iteration  (50) is  applied to  the quadratic  function  where 

 (U,V) form a G-conjugate pair, the minimum is found in at most n 

iterations, moreover, nx  lies in the subspace generated by 0x  and 

11,...,, −no vvv . 

Proof: 

The first result is established by proving that  

01 =+ j
T
i vg  

for all i<n and j=0,1,…,i, by induction. For i=0,  

0)(         

         

]([)(

00

00

00
00

00
**

00

0
**

0010

=−=

+=

++=+=

Gvu
Guv

vg
vg

Gvuvg

vbuxGvbGxvg

T

T

T
T

T
i

T

T
i

TT
i





  

now suppose that 

0=j
T
i vg  

for some i and j=0,1,…,i-1, then for j=0,1,…,i 

i
T
iii

T
ij

T
i uGvvgvg   **

1 +=+ . 

Due to the induction hypothesis and the conjugacy, 

i
T
ij

T
i uGvvg   0 ==  

for all j<i, and for the case j=i 

0)( =− i
T
i

i
T
i

i
T
i

i
T
i Guv

Guv

gv
vg , (see, Wyk, 1977). 

7. Numerical results 

We tested the HS method (10), Perry method (24), DL method (25) 

and our new pair conjugate gradient method (49) All results are obtained 

using Pentium 4 workstation and all programs are written in Fortran 

language. Our line search subroutine computes 
k

  such that the strong 

Wolfe condition (13)-(14) hold with 001.0=  and 9.0= . The initial value 

of 
k

 is always compute by a cubic fitting procedure which was described 

in details by Bunday (Bunday, 1982) used as a line search procedure. 

Although our line search cannot always ensure the descent property of 
k

d  

for all three methods, uphill search directions seldom occur in our numerical 

experiments. In the case when an uphill search direction does occur, we 
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restart the algorithm by setting kk gd −= . For the DL method (25) 1.0=t  is 

selected. (see Dai and Liao, 2001). 

We have test ten function with different dimension n=100, 1000 and 

10000. The numerical results are given in the form of NOF and NOI where 

NOF denote the numbers of function evaluations, and NOI denote the 

numbers of iterations. The stopping condition is 5
1 10*1 −
+ kg . 

Comparing the new pair method (49) with HS method, Peery method, DL 

method we could say that the new method is more efficient  than all 

especially for Powell function, Wood function, Helical function, Powell3 

function, Helical function, Edeger function and Resip function from the ten 

function test in this section as we see from the Tabel (7.1), (7.2), (7.3). 
 

Table (6.1A) 

Numerical comparisons of the new CG method with n=100 

 HS method Perry method DL method New method 

function NOF   NOI NOF   NOI NOF   NOI NOF   NOI 

Powell 180        60 131        48 143       49 123       40 

Wood 103        49 103        49 103       49 71        25 

Powell3 43         20 32        15 48       23 35        14 

Helical 250      123 246      121 250     123 82        33 

Edger 16          6 14          5 16         6 15          6 

Recip 31        11 27        10 31       11 16          5 

Tolal 623       269 553      248 591      261 342     123 

 

Table (6.1B) 

Performance Percentage for the new pair CG algorithm compared with 

others and for n=100 

Tools % HS method Perry method DL method New method 

NOF % 100 % 86  95 55 

NOI % 100 % 92  97 55 

 

Table (6.2A) 

Numerical comparisons of the new CG method with n=1000 

 HS method Perry method DL method New method 

Function NOF   NOI NOF   NOI NOF   NOI NOF   NOI 

Powell 219        66 131       48 143        49 140       41 

Wood 103        49 103       49 103        49 77        27 

Powell3 49         23 35        16 52         25 35        14 

Helical 270      133 268     123 272      134 82        33 

Edger 18           7 17          6 18           7 15          6 

Recip 33         12 33        12 33         12 16          5 
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Tolal 692      290 587       254 621       276 365      126 

 

Table (6.2B) 

Performance Percentage for the new pair CG algorithm compared with 

others and for n=1000 

Tools % HS method Perry method DL method New method 

NOF % 100 % 92  90 53 

NOI % 100 % 88  95  43 

 

Table (6.3A) 

Numerical comparisons of the new CG method with n=10000 

 HS method Perry method DL method New method 

Function NOF   NOI NOF   NOI NOF   NOI NOF   NOI 

Powell 253         72 133       49 178        57 186       47 

Wood 105         50 105       50 105        50  77        27 

Powell3  51          24  37       17  52         25  35        14 

Helical 249       145 290     143 294        145  82        33 

Edger  18            7  17          6  18            7  15          6 

Recip  33          12  33        12  33          12  16          5 

Tolal 709       310 615      277 680        296 411      123 

 

Table (6.3B) 

Performance Percentage for the new pair CG algorithm compared with 

others and for n=10000 

Tools % HS method Perry method DL method New method 

NOF % 100 % 87 96 60 

NOI % 100 % 89 95 40 
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Appendix: 

 These test functions are famous and form general literature  

1- Generalized Powell function: 
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2- Generalized Wood function: 
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3- Generalized Edeger function: 
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4- Generalized Powell3 function: 
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5- Generalized Helical function:  
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6- Generalized Recip function:  
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