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ABSTRACT
Conjugate gradient methods are wildly used for unconstrained
optimization especially when the dimension is large. In this paper we
propose a new kind of nonlinear conjugate gradient methods which on the
study of Dai and Liao (2001), the new idea is how to use the pair conjugate
gradient method with this study (new cojugacy condition) which consider an
inexact line search scheme but reduce to the old one if the line search is
exact. Convergence analysis for this new method is provided. Our numerical
results show that this new methods is very efficient for the given ten test
function compared with other methods.
Keywords: Unconstrained optimization, conjugate gradient methods.
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1.Introduction
We are concerned with the following unconstrained minimization
problem:
minimize f (x) ..(1)

where f:R" — Ris smooth and its gradient g(x)=Vf(x) is exist. There are

several kinds of numerical methods for solving (1), which include the
steepest descent method, the Newton method and quasi-Newton methods,
for example. Among them the conjugate gradient method is one choice for
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solving large-scale problems, because it does not need any matrices.
Conjugate gradient methods are iterative methods of the form
Xk = kal +akdk71 .o (2)
-0y fork=1
dk_{—  FAcd fork >2 ---(3)
where g, denotes vf(x,) and B, isa scalar.
If f(x) isa strictly convex quadratic function:

f(x):%xTGx+bTx+c ...(4)
where G e R™"is asymmetric positive definite matrix, and ¢, is given by:
2
o]
ap =——— ...(5
k dJAdk ( )

then the method (2)-(3) is called the linear conjugate gradient method,
where ||| denotes the Euclidean norm. The linear conjugate gradient method

was originally proposed by Hestenes and Stiefel (1952) for solving linear
system of equations

Gx=b ...(6)
within the framework of linear conjugate gradient methods, the conjugacy
condition is defined by

diGd; =0,  fori= ] ..(7)
for search directions, and this condition guarantees the finite termination of
the linear conjugate gradient methods.
On the other hand, the method (2)-(3) is called nonlinear conjugate gradient
method for general unconstrained optimization problem (general nonlinear
function). The nonlinear conjugate gradient method was first proposed by
Fletcher and Reeves (Fletcher and Reeves, 1964). Within the framework of
nonlinear conjugate gradient methods, the conjugacy condition is replaced
by

dy Vg =0 ---(8)
Where

Yk-1 =0k —9ka (9
for search direction, because the relations.

0] Gl 5 =—— Ay Gx, Xy 1) = ——0] (G4 ~ Gy 1) = —— ] Yy

Oy & Oy
Hold for the strictly convex quadratic objective function.

Multiplying y,_; in (3) and using (8), we can deduce a formula for the scalar

By, as:
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]
= DYt ..(10)

d;-—lyk—l
This is the so-called HS formula, which was given by Hestenes and Stiefel
(1952), also there is well-known formulae for p, are the Fletcher-Reeves
(FR), (Fletcher, 1964) and Polak Ribiere (PR), (Polak,1969) and (Polyak,
1969) they are given by

2
B o ...(11)
gl
T
prR =AY .. (12)
gl

To establish the convergence results methods mentioned above, it is usually
required that the step «, should satisfy the following strong Wolfe
conditions
f(x +ady) - f(x) <59y dy ...(13)
g(Xk +akdk)Tdk|S—O_ g;—dk e (14)

where 0<5<o<1. On the other hand, many numerical methods (e.g. the
steepest descent method and quasi-Newton methods) for unconstrained
optimization are proved to be convergent under the Wolfe conditions:

f(x + o dy)— F(x) <S50y d, ...(15)

9(x +ady )" dy >0 gpd, ...(16)
Thus it is an important issue to study global convergence of conjugate
gradient methods under the Wolfe conditions instead of the strong Wolfe
conditions.

2. The Dai and Liao method

As stated in section 1, the conjugacy condition which may be
represented by the
form:

dly,,=0 ...(17)

for nonlinear conjugate gradient methods. The extension of the conjugacy
condition was studied by Peery and also Shanno (Peery,1978) and (Shanno,
1978). However, both the conjugacy conditions (7) and (17) depend on the
exact line searchs. In practical computation, one normally carries out inexact
line search instead of exact line searches. In the case when g/,,d, #0, the
conjugacy conditions (7) and (17) may have some disadvantages, for this
reason the extension of the conjugacy condition studied by Perry (1978), he
tried to accelerate the conjugate gradient method by incorporating the secod-
order information into it, specifically, he used the quasi-Newton condition
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Hi Y1 =Ska ...(18)
where H, is nxnsymmetric and positive definite matrix and s, ; = o, 4d, ;-
For quasi-Newton methods, the search direction d, can be calculated as:

dk :_Hkgk ...(19)
by (18) and (19), we have that
d¢ Vi =—(He9)" Vs = =9k (Hy Vi) = =0k Scs ... (20)

eq(20) is called Perry condition, which implies (17) holds if the line search
is exact since, in this case gys,, =0. However, practical algorithms
normally adopt inexact line searches instead of exact line searches. For this
reason Dai and Liao (2001) replaced the conjugacy condition (17) with the
condition:

Ay Ya = —tOKSk ...(21)
where t>0 is a scalar. In the case t=0, (21) reduces to the usual conjugacy
condition (17). On the other hand, in the case t=1, (21) becomes Perry’s
condition (20). To ensure the search direction d, satisfies condition (21), by

substituting (3) in to (21), they had obtained
— Ok Vit + Bk aYir = 0 Ska ...(22)
this gives the Dai and Liao formula

pPt - P ) ...(23)
A1 Vi
we note that the case t =1 reduces to Perry formula:
P Ok (Vi —Ska)
B R ...(24)
k-1Yk-1
the equation (23) can be written by:
T
e e .(25)
diaYea

for which we see that formula (23) with t<[0,.0) really defines aclass of

nonlinear conjugate gradient methods. Similarly, we call the method defined
by (2)-(3) with 3, from (23), method (DL), the aim of Dai and Liao is how

to fined the best value of tto give the best nonlinear conjugate gradient
method. For any t>0, denote d, and d, to be the search directions given
by method (23) and the HS method, respectively, namely:
dy ==y + B diy ...(26)
dy =gy + B dyy ...(27)
Assume that g;d, <0. Then from (26), (27), (25) and d;,y,, >0, we also
have g;d, <0. Thus if the direction generated by the HS method is descent,
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and if the line search provides the relation d{ ,y,, >0, then the direction
give by DL method (23) must also be a descent direction. Denote also «,
and &, to be one-dimensional minimize of f along the directions d, and
d, respectively. Consider the following Lemma for quadratic functions (Dai
and Liao, 2001).

2.1 Lemma

Suppose that f is quadratic function given in (4); then we have
that:

f(x +ady) = f(x + & dy) =

T(gldk—l)zt: (z—ﬁk)glak _ (g_l-_l[sk—l)z
2(dy4Gd, ;)(dGdy )| 't Sk-1Yka
...(28)
The prove of this Lemma is defined in (Dai and Liao, 2001).
from Lemma Dai and Liao obtained the best value of t which defined by:

g = Qe ..(29)
Tk
Where
_ 1= (98 k)’
Tk:akg;(rdk +.:f¢<0 ...(30)
Sk-1Yk-1

3.New nonlinear conjugacy gradient method using pair direction

In this section we find the new value of t by using pair direction U
and V, before that we give some definitions.

3.1 Definition
Vectors p,, p,.....p, € R"are called left conjugate direction vectors
(LCD) of a nxn real nonsingular matrix G if
pi Gp; =0 fori< j
{piTGpj;tO fori = j

...(31)

thatis P'GP=L=( ),
where P=[p,, p,,....p,]. (Yuan and Golub, 2003).

3.2 Definition
Vectors p,, p,,....p, € R"are called right conjugate direction vectors
(RCD) of a nxn real nonsingular matrix G if
pi Gp; =0 fori> j
pi Gp; =0 fori = j

...(32)

thatis P'GP=U=( ),
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where P=[p,, p,.....p,]. (Yuan and Golub, 2003).

3.3 Definition
Vectors p,, p,.....p, € R"are called conjugate gradient vectors (CG)

of nxn real nonsingular matrix G if
pi Gp; =0 fori = j

. ...(33)
p;i Gp;j =0 fori=j

thatis PTGP=D=(0\0),

where P=[p,, p,.....p,]. (Yuan and Golub, 2003).

3.4 Definition
Vectors p,,p,.....p, € R"are called semi-conjugate vectors (SCD) of

G if they are LCD vectors or RCD vectors of G. (Yuan and Golub, 2003).

3.5 Remark

If G is symmetric and nonsingular, then we observe that the left
conjugate direction vectors of G are also right direction vectors of G. In this
case, we call the vectors conjugate gradient vector of G. In terms of
Stewart’s definition (Stewart, 1973), U and V are G-conjugate if VTGU is
Lower triangular. Of course Stewart’s G-conjugate direction is the Left
conjugate direction when U=V=P. (Yuan and Golub, 2003).

3.6 Definition
Let G, U and V be nonsingular nxn matrices. Then (U,V)is an G-
conjugate pair if L=v'GU is Lower triangular (Wyk, 1977).

3.7 New delimitative for finding the value of t for pair conjugate
gradient method.
Suppose that f is given in (4). Then we have that :
F (e +anvid) = F O+ @) =L (0 +avi) = F o)=L (0 + @) = F (%))
+f (Xiw) = F (Xew)
...(34)
by the definitions of o, and a, for the pair direction, it is easy to show
that

T T
o == and 7, = It ... (35)
v, Gv, v, Guy
and by the strong Wolfe condition (13), we have
[ £ +ady) = F(x) < S gy dy ]

then (34) becomes
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. —glv —g'v
F X + @) — F (% + @) < Sy gl — (=

-
Vi GV Vi G Uy

) g+ (%) — F (%)
..(36)

since 0< & <1 then we can take 5=%,

T T
- V| 1 - Vv
%y glv - = ( ng ) gl + () — F ()

* J— 1
f (X + o v ) = F (X +auy) == (

2°v Gv, 2°v; Gu,
...(37)
_1fekvie |y L[ (eevid)® )
_Z{VIGUk]gkUk Z[VIGVK + (%) = F (%)
...(38)
r
= f —f ... (39
2(VI Gvk)(vl Guy) + F(X) (Xku) ( )
where
F=(91Vk)(gguk)(VI GVk)—(gIVk)Z(VI Guy) ---(40)
since
Vk :_gk cee (41)
U, =V, + 82U, 4 ...(42)
T
Where g is defined in (25) [ g°* = g/ —t%]
dy 1Y
. —gTs
and define p, =L ...(43)
U Yxa
then (42) becomes
U =V + I8¢ + g Jui ... (44)
U =V, + 850 +t U, ...(45)

Now substitute (45) in (40) to get

T = (ki)W GV)Gk (Vi + B U+ 1)) = (ki) * (v G (v + AU+ y))
... (46)
since  (vy Gu,,)=0 (from the definition of the semi conjugate direction )
then (46) is becomes :
T = (9 i)Wk GVi(Gk Vi + A O Uy +t a4y O Ug) =
(9 Vi) (Vi GV + BBV Guyg +t Vg Gy y)
= (9k Vi)V GViO(Gk Vi + B> I Uyg +t a9k U 1) — (G Vi) (Ve G V)
= 9k Vi)V G VLG Vi + B g Uy g+t 21 Oy Uy g — I V]
= (9 Vi)V GVOIA® gklis +t a1 O Uyl ..(47)
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from (39) we have
_ (@) GV)LA® Gy +t 4 Gy U]
2(vk G Vi )(v¢ Guy)

+ (%) = T (Xuw)

_ (@eVviDIB" 9RUies +t 44 Gx U]
2v Guy)

+ f (ka) - f (Xku)

2(v] Gu
B gru g+t gy = (X)) - f(ka)(%J
k Vi

—C_lk

(Be® +t 1) Ok U y) = T (%) — f(ka)[ 2 J

(B +t )= f (%) — f(xkv)[;J

~ & (95 Uy y)

t e = f () - f(xkv)[;]—ﬂk’“

—ay (QEUH)

t=f(xku)—f(xkv)( 2U81Yica) }(glyk_l) .(49)

@ (9xUk1)(9k k1) ) (9K Ska)
where t>0 is a scalar. In practical if we have to take f:% which give the

best result, then the new formula for the pair conjugate gradient method is
defined by:

.
B = B —f(—%k e J ... (49)
Uk-1Yk-1
we call this new formula (49) with (2)-(3) by the new pair method.
4.The algorithm of the new pair conjugate gradient method
We list bellow the out lines of the new method
For an initial point X,:
Step (1): set k=1, v, ; =0, ;-
Step (2): set x, =x,; +a V4, Where o, is a scalar chosen in such a way such
that f, < f, ;.
Step (3): check for convergence, i.e. if |f|<e, where e is small positive
tolerance, stop; otherwise continue.
Step (4): if k>2 go to step (5), else go to step (8).

;
Step (5): compute x, = X, ; + &, U, , Where @, :—ak(Tg*k—VkJ.
Uy (91— 9k)
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Step (6): check for convergence, i.e. if |g,,,|<e, where < is small positive

tolerance, stop; otherwise continue.
Step (7): compute the value of t where t becomes

le/[ f (Xku) _f (ka)[ Z(UI_lyk_l) J_'_ (g;(r yk—l):l )

@ (Ik Uk1)(Ok Ska) ) (9K Ske)

Step (8): Compute the new search direction u, =-g, + " u,_,, where g, is
t‘ g-ll—sk—l

—

Uk-1Yka
Step (9): if k=n or if |ofg,[>02Jg|" is satisfied go to step (1), else, set
k=k+1, and go to step (2).
5. Generalized conjugate directions

We will now formulate the analogous generalized conjugate
direction method for the minimization of function f(x) . Suppose that U and

V form a conjugate pair. Set x, = arbitrary, g, = g(x,),
for 1=0,1,---,compute:

computed by the following formula gNe" = g -

X1 = X + oy Vi ...(50.a)
where o, minimizes f(x, +e,v,)as a function of «, and let
gk = g(xk)’ g:;+l = g(xi{L) ’ (50b)
T

- Gk Vi

Ay =—Q| =7 ...(50.C)
‘ k[ul(gkﬂ_gk)]

X1 = Xic + @ Uy ...(50.d)

Before we prove that this algorithm will find the minimum of quadratic
function in n steps, then we show that if f is quadratic then «," in (35) are
T
~ 9k Vk

vy Gu,

a;* =—ay L =ay VI(9:+1_gk)
Uk (91— 1) Ul (91— 9y

1 *
} Ve —G (Xgia = %)
a
=a

the same as the a, = , In fact

- N
Vi G (X1 — %) K

=0 5 "

_ 1 *

[ Ui G (X =) UI;G(XkH_Xk)
k

Vi GV, Veg, |Gy, | _
SN T e |TNT T - %
| U Gu, Vi Gy |

(see, Wyk, 1977).
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6. Theorem

If the iteration (50)is applied to the quadratic function where
(U,V) form a G-conjugate pair, the minimum is found in at most n

iterations, moreover, x, lies in the subspace generated by x, and
(Y75 VA VR
Proof:
The first result is established by proving that
Ty

9i,aVj =0
for all i<n and j=0,1,...,i, by induction. For i=0,

97 Vo = (Gx +b)T vy =[G(%y +; Uy +b]"v

=goVo +a; ujGv,
T JoVo

=ggvy—( WGV, =0
0o~ (U1 gy, 1o Yo

now suppose that
giTVj =0
for some i and j=0,1,...,i-1, then for j=0,1,...,i
giT+1Vj =g/ v+ Vi Gu;.
Due to the induction hypothesis and the conjugacy,
gv; =0=V Gu
for all j<i, and for the case j=i
T
gy, —(%)vreui 0, (see, Wyk, 1977).
\YA .

I 1
7. Numerical results

We tested the HS method (10), Perry method (24), DL method (25)
and our new pair conjugate gradient method (49) All results are obtained
using Pentium 4 workstation and all programs are written in Fortran
language. Our line search subroutine computes o, such that the strong
Wolfe condition (13)-(14) hold with §=0.001 and ¢=0.9. The initial value
of a, is always compute by a cubic fitting procedure which was described
in details by Bunday (Bunday, 1982) used as a line search procedure.
Although our line search cannot always ensure the descent property of d,

for all three methods, uphill search directions seldom occur in our numerical
experiments. In the case when an uphill search direction does occur, we
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restart the algorithm by setting d, =g, . For the DL method (25) t=0.1 is
selected. (see Dai and Liao, 2001).

We have test ten function with different dimension n=100, 1000 and
10000. The numerical results are given in the form of NOF and NOI where
NOF denote the numbers of function evaluations, and NOI denote the
numbers of iterations. The stopping condition is |g,.,[<1*107°.

Comparing the new pair method (49) with HS method, Peery method, DL
method we could say that the new method is more efficient than all
especially for Powell function, Wood function, Helical function, Powell3
function, Helical function, Edeger function and Resip function from the ten
function test in this section as we see from the Tabel (7.1), (7.2), (7.3).

Table (6.1A)

Numerical comparisons of the new CG method with n=100
HS method Perry method | DL method New method
function | NOF NOI NOF NOI NOF NOI NOF NOI

Powell 180 60 131 48 143 49 123 40
103 49 103 49 103 49 71 25
Powell3 | 43 20 32 15 48 23 35 14
Helical | 250 123 246 121 250 123 82 33

Edger 16 6 14 5 16 6 15 6
Recip 31 11 27 10 31 11 16 5

Tolal 623 269 553 248 591 261 | 342 123

Table (6.1B)
Performance Percentage for the new pair CG algorithm compared with
others and for n=100

Tools %

HS method

Perry method

DL method

New method

NOF %

100 %

86

95

55

NOI %

100 %

92

Table (6.2A)

97

55

Numerical comparisons of the new CG method with n=1000

HS method

Perry method

DL method

New method

Function

NOF NOI

NOF NOI

NOF NOI

NOF NOI

Powell

219 66

131 48

143 49

140 41

Wood

103 49

103 49

103 49

77 27

Powell3

49 23

35 16

25

35 14

Helical

270 133

268 123

272

134

82 33

Edger

18 7

17 6

7

15 6

Recip

33 12

33 12

31

12

16 5




Abbas Y. Al-Bayati and Huda I. Ahmed

692 290 | 587 254 |621

Table (6.2B)

276

365 126

Performance Percentage for the new pair CG algorithm compared with
others and for n=1000

Tools %

HS method

Perry method

DL method

New method

NOF %

100 %

92

90

53

NOI %

100 %

88

Table (6.3A)

95

43

Numerical comparisons of the new CG method with n=10000

HS method

Perry method

DL method

New method

Function

NOF NOI

NOF NOI

NOF NOI

NOF NOI

Powell

253 72

133 49

178 57

186 47

105 50

105 50

105 50

77 27

Powell3

51 24

37 17

52 25

35 14

Helical

249 145

290 143

294 145

82 33

Edger

18 7

17 6

18 7

15 6

Recip

33 12

33 12

33 12

16 5

Tolal

709 310

615 277

Table (6.3B)

680 296

411 123

Performance Percentage for the new pair CG algorithm compared with
others and for n=10000

Tools %

HS method

Perry method

DL method

New method

NOF %

100 %

87

96

60

NOI %

100 %

89

32

95

40
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Appendix:

These test functions are famous and form general literature

1- Generalized Powell function:
n/4

f(x)= Z[(X4i—3 +10X4i—2)2] +5(Xgiq — X4 )%+ (Xai2 — 2X4i—l)4 +10(X4i_3 — Xai )*]
i=1

% =B-10L...)" .

2- Generalized Wood function:
n/4

F(X) = D" 100[(xgip X§i5) "1+ (L= X4i5)* +90(kgs —Xji1)? + (L= Xgig)°
i=1

+10.1((Xgi_p — D)% + (Xg —1)?) +19.8(X45_» —1)(X4; —1),
Xo = (-3-1-3-1...)".
3- Generalized Edeger function:
F00 =D [0ia =" + (a1 =22 *Xgi” + (X +1)°],
i=1

X = (10;...)" .
4- Generalized Powell3 function:

f(x)= Z{ Xl—le)] Sln( Xai 3') exp[( x2i -2) ]}

Xo=(012;...)" .
5- Generalized Helical function:

f (x) =100(x4;) - 10( atan( 3'-1)) +100(y/x2_, + X2 5 —1)% +x3

xoz(—l,0,0,...) .
6- Generalized Recip function:
n/3 2
f(x) = 1 —5)2 + x5 X ,
(x) ;{(X&l )2+ X§ 1+((X3i1_X3i2)2}
Xo=(251..).
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