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ABSTRACT

The purpose of this work is to _s;udy the dynamics of the family of
nonlinear functions ={f, (x) = 2 ®=, x € R,x = 0,i > 0}. It is shown
that the bifurcation in the dynamics of £, (x) occurs at the critical parameter
value i, » 1.2203.
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1. Introduction
The last fifty years have been seen an explosion of interest in the
study on nonlinear dynamical systems. Scientists in all disciplines have
come to realize the power and the beauty of the geometric and qualitative
techniques developed during this period. More importantly, they have been
able to apply these techniques to a number of important nonlinear problems
ranging from physics and chemistry to ecology and economics. It is known
that many nonlinear systems come from biological, physical and
engineering problems[3]. The chaotic behavior of various systems and the
complexity in iterates of nonlinear functions, the challenges of their
theoretical study, and their wide ranging applications in science and
engineering; it has been a popular topic of exploration from mathematicians,
physicians and scientists in recent years[4]. Nice introduction to the
Quadratic map can be found in [1] and for other types of one parameter

81



Salma M. Faris

families can be found in [5]. In this work we suggest a family of nonlinear
functions & = {r =2 ?‘75“3 x € R,x = 0,4 > 0} and study the dynamics

of this family.

Let f be a non-constant function. Define £ (x) = x £t (x)
= F). FD ) = F(F(2), ., F () = (£ (x)),n = 1 Where £ denotes the
n-th iteration of f. The set {f™ (x):n € n} is called the orbit of x, and the
set of points {x: £ (x) = x, for some n € N} iS called the backward orbit
of x, . The point x, is called a fixed point of f if f(x,) =x, and it is
classified as:

@ 1f |f (x5)| < 1 then x, is called attracting.
(b) 1f |fd(xc,)| = 1 then x, is called rationally indif ferent.
€ 1r |f (xg)| = 1 then x, is called repelling.
|F ()| is called the multiplier of xg[2].
Let F={f, (x)=2"" remx=0i=0y be a family of

nonlinear functions with the real parameter 4. In this paper we study the real
dynamics of this family of nonlinear functions. We describe the existence
and the nature of the fixed points of the function £,(x) e #. We find two

critical ~ parameter  values of  f;, i, & 1.2203 and A, ¥ 0.1252"
where 1, = B(x,), 4, = B(x,) and B(x)= —~— . Finally we study the

sink® (x)
bifurcation in the dynamics of f;(x) € &. Recall that, bifurcation means a

division into two, splitting parts or a changes.

In dynamical systems, the bifurcation is to study the change that maps
undergo as parameter changes. These changes often involve the periodic
points structure but may involve other changes as well. We show that for
fi(x) € &, the bifurcation occurs at the critical parameter value 1 = 4,.

2. Dynamics and bifurcation of the functions in the family & :

Let F={f,(x) =,1$ A=0} be a one parameter family of
transcendental functions. In this section we study the dynamics and
bifurcation of the function f,. (x)E&. First we describe the fixed points of
fo(x) and their nature. Let fo(x) = x . This implies that 1 — —= . So the

sinh*lx
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fixed points of f, (x) are the solutions of p(x)=4 , where
ﬁ(x)z {sinh:(x} x#0
0 x=0

We give some properties of B(x)

1. £ iscontinuous in K.

2. B(x)—0asx — wandB(x) > 0asx = —u.

3. B(x)>0VxER.

4. B'(x) = (4x3sinh(x) — 2x*cosh(x))/ (sinh?(x)). Thus
£(0) =lim,_, £'(0),i.e. B iscontinuous in R,

5. B (x)=0 has a unique positive solution x, ~ 1.9150. Note that x, is a
solution of g'(x) Iff x5 is a solution of 2tanh(x) —x = 0and by
Newton-Raphson method we find x; . Also g'(x) = 0 has a unique
negative solution at X = —x;.

6. Since g"(x,) =0.Thus g(x)has exactly one maximum point at
x=x; in (0,20). It also follows, by property 2 ,that 8 strictly
increasing in (0, x,) and strictly decreasing in (x4,x) .

7. [ is symmetric around the y-axis.

Figure (1) gives the graph of £(x) .
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Figure (1)

Let A,= £(x,).We call it a critical parameter value of f;(x).

Proposition (2.1) The locations of the fixed points of f; € & are given as

follows :

1. For 0<A<A1, fy has two fixed points one of them in (0, x,) and the other
in(xy,20). Further, f, has two fixed points living in (—co,—x,)and
(—x4,0).
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2. For A=Ay, . has two fixed points at x = x; and x = —x;.
3. For >\, fi has no fixed points.

Proof: 1. For 0<A<A:1 , by properties 1,2 and 6, the line u=\ intersects the
graph of S(x) at exactly four points two of them at the right of the y-axis

and two at the left of the y-axis (see Fig 1). Using the properties 2,3 and 6,
and since [ (x;) =\ one of the solutions of S(x)=\ lies in the interval

(0,x,).. Also by 6, f(x) is decreasing in (x;,20) and £ (x1) =\1, thus the
other solution of B(x) = 4 lies in (x4,2). Therefore f;(x) has one fixed
point in (0,x,) and another one in (x;,00). By property 7, f;(x) has only
one fixed point in each of the intervals (—co, —x,) and (—x,,0).
2. For A=\, since £ (x4) =M , and x4 is the maximum point for f;(x) in
(0,00), thus the line u=\ intersects the graph of [(x) at x = x;.Thus
B(x) = 4 has only one solution at x = x; .
Hence f,. has a fixed points at x = x,. Again , by property 7 x = —x, is
the solution of the equation B(x) = 4, in the interval (—o2,0}. Thus ,
f3(x) has a fixed point, for \=4,, at x = —x,.
3. By property 6, 4, is the maximum value of £(x). Thus the line u=A does
not intersects the graph of B(x) at any point for each A = 4,. Hence £(x )=\
has no solutions for this case. Therefore f;(x) has no fixed points for each
A=Ay

To study the nature of the fixed points of the function f;(x),
put £ (x)| = 1. We have two equations, f (x) =1 and f (x) = —1.The
equation f (x) = 1 iff 2tanh(x) — x = 0. Therefore, it is equivalent to
£'(x) = 0, while the equation f (x) = —1 is equivalentto the equation
tanh(x)—x =0, thus we have another critical parameter value
A, = B(x,), where =x, is the solution of the equation
tanh(x) — x = 0. Numerically, x, % 0.3616 and A, &~ .1252.

The nature of the fixed points of f;(x) for various values of the
parameter A is described in the following:

Ein

Theorem (2.2): Let fi(x)= 2 ::':X} 2 # 0,4 >=0. Let x; be a solution

of B'(x)=0and A,= B(x,). Then

1. For 0<i<Mi , the fixed points a; € (0,x,) and —a; € (—x,;,0) are
attracting and the fixed points r; € (x4,0) and —r; € (—o0,—x, ) are
repelling.
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2. For A=)\, the two fixed points x, and —x, are rationally indifferent.

Proof: The derivative of the function f,(x) = Asl”E:':X} is given by
filx) = 2% S“’hEﬂmi’fﬂ_hmr(ﬂ and the fixed points of the function
fi(x) are the solutions of the equation A= mi:m . Thus the multiplier is
|f2 ()| of the fixed point x; is given by
|ﬁ[xf)| = |21f coth[xf) -3 | U ) P
2xcoth(x)—3 x=0
Define () =
-1 x=10

The function G (x) is differentiable and

2(coth(x) — x csch?(x)) x=0
G'(x) =

0 x=10

Since G (x)# 0forx=+0,6(0)=0and G(0)= 0 , then the function
G(x) has exactly one minimum at x = Oand the minimum value is — 1.
Since G'(x)>0 forx € (0,c0)and G'(x)<0 for x£(-00,0), then G(x) is
increasing from -1 to o as x increases from 0 to o2 and G(x) is decreasing
from @ to -1 as x increases from -2 to O . From these observations it
follows that |G (x) Isatisfies :

<1 for x€ (—xy, x;)
|E(-Tj|: =1 forx=1x,
=1 forx € (—o0,—x; JU (x,;,00)

See Figure (2).
Therefore, by (*), the multiplier | f; (x; )| satisfies

<1 for x € [—xini)..............(f-l]
|f,1:[xf)|= =1 forx=Z2x; i (B)
=1 forx e (—oo,—x; YU (2,00) e vven v e (€)
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Thus 1. For 0<A<As, by the equation (A) , the fixed points a; € (0,x, ) and
—a; € (—x,,0) are attracting and by (C) the fixed points
73 € (x4 ,0) and —r; € (—o0, x4 ) are repelling.
2.For A=\1 we have two fixed points x,; and -x, . By the equation (B),
both of them are rationally indifferent.

Figure (2): The graph of |G (x)| = |2xcoth(x) — 3]

In the following we study the dynamics  of
filx),xe B,x#0and A = 0. Also we show that the bifurcation in the

dynamics of f; (x) occurs when the parameter A crosses the critical
parameter value 4, = 1.2203,

Let T, be the set of points which are backward orbits of the pole x=0
of the function

filx) = Aji”::':x} . The dynamics of the functions in our family is studied
in the following:

Theorem(2.3) Let F={f, (x)=2 "% ‘e Rrx=0,A1> 0}

1For0<a<i, , i@l = aras n>ee for x € (em)/To

and f7(x) = —a; for x€ (—ry,—0)/Ty .For x € {(0,c) U (ry, c0) /Ty, F(x) = o0
and f*(x) = —oofer{(—co,—r;) U (—oc,0)} Where

o is a positive solution of the equation f,(x) = r;, a; iS an attracting
fixed point of £;(x) and r; is a repelling fixed point of f;(x) .

2.For A=Ay, ff(x) = x, forx € (wx,) /Tyand  f*(x) = —x, for
(—xy,—u)/Tp.
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Moreover, f*(x) — oo for x € {(0,u) U (x,,0)}/T, and f£*(x) - —oo for

x € {(—oo0,—x,) U (—n,0)}/T,, Where x,and — x, are the rationally
indifferent fixed points of f; (x) and
W is a positive solution of the equation f;(x) = x, .
3.For A=A, f*(x) = w0 for x€ (0,0 ) / T, and
f(x) > —o forx € (—=,0) / Ty
Proof: Define k,(x)= f(x)—x forx e R—{0}. It is clear that K;(x) is
continuous and differentiable on R -{0}. Further it is easy to see that the
solution of K;(x) = x is exactly the fixed points of f3(x).
1. For 0<A<4,, Theorem (2.2) shows that f;(x) has two fixed points in the

interval (0,00),
a, € (0,x,) which is attracting and r; € (x,,00) which is repelling.

From now on we write K (x)and f(x) instead of K;(x)and f;(x).
Since K'(a;) < 0and K'(x) is continuous in some neighborhood of a;.
ThusK’(x) =< 0 in some neighborhood of a; . Therefore K"(x) is decreasing
in a neighborhood of a;. But K(x) is continuous in (0,0). Thus for
sufficiently small &,,> 0, K(x) >0 in (a; —dy,a;) and K(x) < 0 in
(a;, a; +8,). Further, since K'(r;) = 0 and K’'(x) is continuous in some
neighborhood of ;,then K'(x) = 0 in some neighborhood of r;.Therefore
K (x)is increasing in a neighborhood of r;. By the continuity of K (x), for
sufficiently small §,>0, K(x) <0 in (r;—d&,7;) and K(x)>=0 in
(rpry+46,). But K(x)#0 in (0,2)/{a;, ). Thus K(x)=0 for
x € (0, &)U (ry, ) and K (x) < 0 for x € (ay, ;). Thus

=0 or X E(0,a; JU(F,00) v e e e o (%
K(x) = flx) == {{ 0 )_:"orx E([rxij"i:] (A j e oo (2%) -
See figure (3).
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Figure (3): The graph of K (x) = f(x) —x (0<i<i))
Now we have two cases:
Case (a). For x € (¢, 7)/T, and x € (—ry, —) /T,
Let x = x, be the minimum point of f(x) in the interval (a;, ;) . Then for
x € (x,,7;) the function increasing. Further ,by (#%) f(x) < x.
Thus for x> xy, >a; =0 we have
x = f(x) = f*(x) »--= f*(x) == ay, That is the sequence {f"(x)} is
decreasing and bounded below by a;. Thus f™(x) — a;asn— .
for x € ( xy,r;). But f(x) is decreasing in (o5, x, ) and f(o<) = r;. Thus
the function f maps the interval (o x, ) in to ( x, ,73). Thus
fi*(x) = a; for x € (o, 7)/T,. Since f is an odd function, then f*(x)
—+ —azasn— © for x € (—r, —x)/T,..
Case(b). For x € {(0,c¢) U (1, 00) U (—o0,—r;) U (—oc ,0)}/T,.

By (*) , f(x)=x in each point of the intervals
(0,0¢) U (ry,00).Sincef(x) = Ofor x =0 and

f is strictly increasing in (r5.00), then 0<
7y < flx) < f3(x) <---< f*(x) <---- - Thus the sequence {f™(x)} is

increasing and not bounded above for each x & (r;,o0). Therefore
ff(x) = as n—=oo for x € (r;,00)/T,. But f(x) is decreasing in
(0,0c) and f(o) =r;. Thus f(x) maps (0,o<)in to (3, 0). Thus
fif(x) 2 was n— oo for x € {(0,00) U (ry,00)}/T,. Since f is an odd
function, then f*(x) = —c0 as n — oo for x € {(—o0,—r;) U (—ox ,0)}/ T,
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2. For A = 4, . By the same arguments used in part (1), we can prove this

case.
See figure (4).
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Figure (4): The graphof K(x) = f(x) —x (A=4,)

3. For 2>\4, the function f(x) has no fixed points by proposition (2.1).
Moreover in this case f(x) = x forx € (0,00 ) (see Figure 5).

Thus for any x€ (0,00) /T, ,0<x < fx) < < f*(x) <.
Therefore, the sequence {f™(x)} is increasing and not bounded above. Thus
fi*(x) = oo for x € (0,0) /T,. Again since f(x) is an odd function, then
fif(x) = —oo forx € (—0,0) /T,

Figure (5): The graph of K(x) = f(x) —x (A= 4,)
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It follows from Theorem (2.3), that the bifurcation in the dynamics
of the function f£, (x)=2 % yeRrx=o00ccurs at the critical

3

2’4

parameter value A= T Wwhere x,,1.9150 is a positive solution of the

equation 2tanh(x)-x =0, and the approximated critical
Value is 417%1.2203.

Remark:

At the critical parameter value, A, = £(x,), where x, is the solution
of the equation ’
tnnh(x)=x, coming from putting f (x)=—1 (x,* 0.3616 and
A, % .1252). By Theorem
(2.3), at this value of the parameter the dynamics of the function f; (x)
does not change.
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