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ABSTRACT
In this paper, We solved the system of differential-algebraic equation

(DAEs) of index one numerically with Heun's method and operational
matrices of Haar wavelet method, When we compared the results of the two
methods with the exact solution, show that the operational matrices of Haar
wavelet method is more efficiency and it's numerical results near to the
exact solution more than the Heun's method, and the solution accuracy of
this method is increasing and the error decreases when the number of mesh
points and size of matrices increase.

Keywords: Differential-Algebraic Equation, Heun's method, Haar wavelet
method.
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1. Introduction:
In this paper we consider implicit differential equations

f(y'(t), y(®.,t)=0 (1)
onan interval IcR. If 2—; is non singular, then it possible to formally solve

(1) for y’ in order to obtain an ordinary differential equation. However, if

g—; is singular, this no longer possible and the solution y has satisfy certain
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algebraic constraints. Thus equations (1) where 2_;' is singular are referred

to as differential algebraic equations (DAES)[6].

In this paper we take the special case of eq.(1) which is a semi-
explicit DAE

y1=F(tyny2) ...(2a)

0=9(t y1,Y2) ...(2b)

With conditions:

yato) = Ay and y,(t)) = A,
Where A and A, are constants.

The index is one if ;792 is non singular, because then on

differentiation of (2b) yields y/, in principle. [7].

1.1 Definition: Index of the DAE is the number of differentiations needed
for transformation the algebraic equation to differential equation. for
example, let q(t) be a given, smooth function, then the following problems
for y(t).

The scalar equation y=q(t) is trivial index-1 DAE, because it takes
one differentiation to obtain an ODE for y.

for the system

y1=4(t)

Y2=Y1
we differentia the first equation to get

Y2 =Y1=d(t)
and vy, =y/=q"(t)

The index is 2 because to differentiation of q(t) where needed [1].

Let equation (1) is DAEs, the index along a solution y(t) is the minimum
number of differentiations of the system which required to solve for y’

uniquely in terms of y and t (i.e. to define an ODE for y). Thus, the index

is defined in terms of the over determined system
F(t.y,y)=0

oF
E(tl y’ y'l y”) = O
. (3

PE
F(tv.‘/,y,w,y(p“)):o
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to be the smallest integer p so that y’ in (3) can be solved for in
termsof y and t.

Haar wavelets have become an increasingly popular tool in the
computational sciences. They have had numerous applications in a wide
rang of areas such as signal analysis, data compression and many others[8].

Wu and Chen (2003) [8] studied the numerical solution for partial
differential equations of first order via operational matrices , they used the
Haar wavelets in the solution with constant initial and boundary conditions.

Wu and Chen (2004) [9] studied the numerical solution for fractional
calculus and the fractional differential equation by using the operational
matrices of orthogonal functions. The fractional derivatives of the four
typical functions and two classical fractional differential equations solved
by the new method and they are compared the results with the exact
solutions, they are found the solutions by this method is simple and
computer oriented.

Lepik and Tamme (2007) [3] derived the solution of nonlinear
Fredholm integral equations via the Haar wavelet method, they are find that
the main benefits of the Haar wavelet method are sparse representation, fast
transformation, and possibility of implementation of fast algorithms
especially if matrix representation is used.

Lepik Uio (2007) [4] studied the application of the Haar wavelet
transform to solve integral and differential equations, he demonstrated that
the Haar wavelet method is a powerful tool for solving different types of
integral equations and partial differential equations. The method with far
less degrees of freedom and with smaller CPU time provides better solutions
then classical ones.

Numerical approaches for the solution of DAEs can be divided
roughly into two classes: direct discretizations of the given system and
methods which involve a reformulation (i.e. index reduction), combined
with a discretization [1].

In this paper, we will study the numerical solution for Differential-
Algebraic equations (DAEs) by using Heun's method and Haar wavelets
method and we will compare the results of these methods with the exact
solution.

2. Heun’s Method:

We will use the Heun’s Method to solve Eq.(2a) and (2b) [5]
Then the general steps of Heun’s Method to eq.(2a) and (2b) are

Y =f(t, Y1k Yax)

Pz = Yok +hf(te Yok Yax)
and
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Urer = Yox SINCE gty Y1k, Yox)=0
then

h
Yiksr =Yk + E[f(tk Yk Yax) Tt P Qk+l)] ~..(4)

Yokt = Yok T ks .(5)
where h is step size and t,, =t, + h. then we illustrate this method
in an example in numerical results

3. Review of the operational matrices and Haar wavelets:

The main characteristic of the operational method is to convert a
differential equation into an algebraic one, and the core is the operational
matrix for integration. The integral property of the basic orthonormal
matrix, ¢(t) . we write the following approximation:
ttt t

[ ] ] oltXat)¥ = Qfal) ...(6)

where  o(t)=[¢o(t) ¢,(t) ... $na®)]  in  which the  elements
Po(t) y(t)..., pm4(t) are the discrete representation of the basis functions
which are orthogonal on the interval [0,1) and Q, is the operational matrix
for integration of ¢(t) [8,9].

The operational matrix of an orthogonal matrix ¢(t), Q,can be expressed

by:
[ ]=lo)-[Qe] o] (D)
where [Q, ]is the operational matrix of the block pulse function:
12 1 .. .01
0 /2 1 .. 1
Qs, =2 0 V2 .1 ..(8)
0 .. 0 12 1
0 0 1/2

If the transform matrix [6] is unitary ,that is [o]™ =[¢]", then the equation
(7) can be rewritten as [8,9]:

[ ]=[o]- @6 - o] -9

The Haar functions are an orthogonal family of switched rectangular
waveforms where amplitudes can differ from one function to another. They
are defined in the interval [0,1] by [8,9]:

1

ho(t)—ﬁ
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J k-1 k-1/2
2 T<t

22 <t<
J 2 2 ...(10)
- =12 oSty
m
0 otherwise in [0)

where i=0,1,2,.....m-1, m=2% and o is a positive integer. J and k
represent the integer decomposition of the index i, i.e. i =2’ +k—1.
Any function y(t) which is square integrable in the interval 0<t<1

can be expanded into Haar series by:
y(©) =Y cihi(t) ..(11)
i=0

1
where ¢, - [y n) [8]
0

Usually the series expansion of equation (11 ) contains infinite terms
for a general smooth function y(t). However, if y(t) is approximated as
piecewise constant during each subinterval, equation (11) will be terminated
at finite terms, i. e. :

m-1
y() =D ci hi(®)
i=0
The equation (11) can be written into the discrete form by:
[Y]" =[C]"-[H(1)] ...(12)

where [\H(]Tz[y0 Y; ... Ymal is the discrete form of the continuous

function y(t), and m is the dimension and usually m=2“ « is a positive
integer.

[8]T =[c, ¢ ... cy4] iscalled coefficient vector of y(t) calculated by:
_4)_T N
c| =[Y1"[H]? ...(13)

Since the Haar wavelet matrix H is unitary, [H]* = [H]", Thus:
— _T —
| =IYI"HT

For deriving the operational matrix of Haar wavelets, we let [¢]=[H] in the
equation (9), and obtain:

[Qu]=[H]-[Qa]-HT' ..(14)

where [Q,,] is the operational matrix for integration of [H].
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For example, the operational matrix of the Haar wavelet in the case of m=4

IS given by:
[QH]: [H]4*4 '[QB]' [HEM
(11 1 1] 1 I
2 2 2 2 2 1113 2 2 2
i 1 1 1 1 I .
252122.10511.% 2122
— = 0 0 |40 0L 1/l -—= 0 o
V2o 2 2 V2 2
1 1 1 1 1
0 0 = -—= 000 ={|0 0 — ——
i 2 V2] L 2) | NFEEENFY
[ 05 -025 -0.0884 -0.0884
| 025 0 -0.0884 0.0884
10.0884 0.0884 0 0
10.0884 —0.0884 0 0

4. Haar wavelet method:

We will use the operational matrices of the Haar wavelets to solve
the differential-algebraic equations (1) numerically.
By using the equation (6), the integration of equation (12) with respect to
variable t yields [8]:

t t t

j[y(t)]T dt = J’[C]T H(t) dt = [C]" -jH(t) dt

0 0 0 ...(15)
~1C1"-[Qul [H]

Further the double integration of y(t) with respect to variable (t) and by

using equation (6), we get:

H[}(t)]T dt dit =jj[CTT- H(t) dt dit
00 00

-

=[C]"- | | H(t) dt dt ..(16)

[ S——
O —

=[C1"-[Qu J* - [H]

Now, we consider the differential-algebraic equations (DAES) (2a) and (2b)
of the form [2]:

y'()=F(ty1 (0, y, ()

0=g(ty;(),y.(®)
with

yl(to) :Al (17)

Ya(to) =A;
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where Azand Az are constants.
by mtegratmg equatlon (2a) with respect to (t), we get:

jyla)dt j (62 (0, y2 ()t
~gt12(0.%:0)
t
= (- y1(0)1=jf(t, y1(0).y (D)t --(182)

0
0=g(t.y1(t).y2(1)) ...(18b)
we transform the equations (18a) and (18b) into the matrices forms by using
equation (12), we get:

vl =]
vl -l

then
[Yl(to)]r If[ [cl H])d ...(19a)
O:g(ti,[cl]T- H],[CZ]T ~[H]J ..(19b)
such that by using the initial condition (17), we get:
o] =[a] (20
where
ti=i+i =012,
2Zm m

m is the dimension of the matrix.
Now, by using the integration (15), the equations (19a) and (19b) becomes:

el -] (o ] ub ] fou) 1) 21
o=t G:] Iz - [H) .21b)

such that the dimension for all matrices are mxm-[H] is Haar wavelets

matrix, [Q,] is the operational matrix of the Haar wavelets. [Q]T and [c_ﬂr
are the coefficient vectors of y,(t) and y,(t) respectively:

[ET_[CN Cu Cp - Cl(m—l)]

[C]T Czo Cy Cp - C2(m—l)]

To find the coefficient matrix [c_l']T and [Cj]T which have m of the
elements respectively, we solve the system (21a) and (21b) which given
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linear system of the equations such that the variables number are 2*m and
we will can be solved this linear system by Gauss-Jordan method, after this

we find the vectors solution [V{P and [72’]7 by using the equation (12) that

IS:
V] -] w
vl -l
5. Example :
we take the system of DAES bellow :
y1(t) =-y1 () +y (1) ...(22a)
Oz—%yl(t)+y2(t)—2 ...(22b)
with
nO-2
y,(0)=—
which has the analytic solutions [2]:
y () =4—(4-y; (0))e~ 72 ..(23a)
Y, () =4 (4-y,(0))e~ Y2 ...(23b)
by using the equation (21a) and (21b), the system (22a) and (22b) becomes:
el H-po] -] -Ral M w1 -.(24)
=—§[C1P' H]+[C2P'[H]_[§P ...(24b)
where
[—— 11 1
ol -5 5 -3l
and

NI

when m =4 then:
Cl]T = [Clo Cu Cp ClS]
C ]T [CZO CZl C22 C23]

DERES)
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[é]Tz[z 2 2 2]

from the equation (10), we get:

1 1 1 1
2 2 2 2
i1 11
M-l 3 0
V2 2 . .
° 7w
from the equation (14), we get:
05 -025 -0.0884 -0.0884
0.25 0 -0.0884 0.0884
[Qu)=| 00884 0.0884 0 0
0.0884 —0.0884 0 0

Now, by substitute the matrices [Q,] and [H] and the vectors
[cj]T[cj]T[m]T and [EP in the system (24a) and (24b) we get:

11 1 1
2 2 2 2
i 11
[Co Cu Ci Cil % 21 02 02 2 12 12 12
V22
1 1
0 0 = -
L V2 2]
(101 1 1]
05 —025 -00884 —o0oss4]| 2 2 % 2
0.25 0 -0088 00842 2 2 3
=1Co Cu Co Cul 0.0884 0.0884 0 o 1L -1 4 5
00884 —00884 0 o | V2 2 ) .
0 0 = -
L NN
11 1 1]
05 025 00884 -00ssdl| 2 2 4 4
0.25 0 —0088 00884 |2 2 2 ~3
+C Ca Co Ca 0.0884 0.0884 0 o |L X o o
0.0884 —00884 0 o |[v2 V2 L ..(253)
0 0 = -
L 2o 2]
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0=-05 [Cl() Cll ClZ C13]'

+[C20 Cu Cyp Czs]-

i1 11
2 2 2 2
o111
2 2 2 2
11
— - 2= 0 o0
NP
11
0o 0 = -—
I V2 o 2]
L1 1 1]
2 2 2 2
i1 11
2.2 2 20 p o
— -2 0 o
NG
11
0 0
2 2]

...(25b)

By solving the system (25a) and (25b) we get a linear system consist of 8

equations and 8 variables which are represents the vectors [Cl]Tand [02]r
respectively and by solving this system by Gauss-Jordan method, we obtain:

cl

Now, by using the equation (12), we get:

vl -

[ ]

=[2.48588978 - 0.68658182 - 0.27403446 - 0.21334863)
o] —[5.24204480 034320001 013701723 - 0.10667432]

0 70588235 1.09342561 1.43537553 1. 73709606]

YZP [c P [H]

—[2.35294118 254671280 2.71768777 2.86854803)
when m=8 and m =16 the results are illustration in the tables (1) and (2).

Table (1). A comparison between the operational matrix of the Haar
wavelets method and Heun's method with exact solution for DAEs (22a) and

(22b) with: m=8, v, (0) :%

The numerical The numerical
The value solution of Haar solution of Heun's The exact solution
of () wavelets method fory:
Y1 Y1
0.0625 0.6060606060606 | 0.605957031250000 | 0.60768367933280
0.1875 | 0.811753902662993 | 0.808345150668174 | 0.81321373516988
0.3125 | 1.004980938865236 | 0.998664786788180 | 1.00629135442402
0.4375 | 1.186497245600676 | 1.177635588023851 | 1.18767099208829
0.5625 | 1.357012564049120 | 1.345934289870578 | 1.35806139303847
0.6875 | 1.517193620773416 | 1.504197273819535 | 1.51812836146911
0.8125 | 1.667666734665936 | 1.653022973682860 | 1.66849736253779
0.9375 | 1.809020265898303 | 1.792974138428698 | 1.80975596638393
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Table (2). A comparison between the operational matrix of the Haar
wavelets method and Heun's method with exact solution for DAEs (22a) and

(22b) with: m=8 , y,(0) =§ .

The numerical The numerical
The value solution of Haar solution of Heun's | The exact solution
of (1) wavelets method for y»
Y2 Y2
0.0625 | 2.303030303030302 | 2.302978515625000 | 2.30384183966640
0.1875 | 2.405876951331496 | 2.404172575334087 | 2.40660686758494
0.3125 | 2.502490469432617 | 2.49933239394090 |2.50314567721201
0.4375 | 2.593248622800338 | 2.588817794011926 | 2.59383549604414
0.5625 | 2.678506282024559 | 2.672967144935289 | 2.67903069651924
0.6875 | 2.758596810386707 | 2.752098636909768 | 2.75906418073455
0.8125 | 2.833833367332967 | 2.826511486841430 | 2.83424868126890
0.9375 | 2.904310132949151 | 2.896487069214349 | 2.90487798319197

Table (3). A comparison between the operational matrix of the Haar
wavelets method and Heun's method with exact solution for DAEs (22a) and

(22b) with: m=16, y,(0) = 1

2

The numerical The numerical
The value of |  solution of Haar solution of Heun's | The exact solution for
® wavelets method Y1
Y1 Y1
0.03125 | 0.553846153846153 |0.553833007812500| 0.554262470481071
0.09375 | 0.659881656804733 |0.659027764988423| 0.660276669107841
0.15625 | 0.762654528903049 |0.761011436641680| 0.763029153743283
0.21875 | 0.862265158782955 |0.859882041632818 | 0.862620276776974
0.28125 | 0.958810846205018 |0.955734606782168| 0.959147303080049
0.34375 1.052385897091017 |1.048661258202313 | 1.052704504998162
0.40625 1.143081715642063 |1.138751309842622 | 1.143383254421811
0.46875 1.230986893622307 |1.226091349330951 | 1.231272112023964
0.53125 1.316187296895467 |1.310765321195007 | 1.316456913752130
0.59375 1.398766149298683 |1.392854607543371 | 1.399020854659346
0.65625 1.478804113935647 |1.472438106283725| 1.479044570155961
0.71875 1.556379371968396 |1.549592306953445| 1.556606214761560
0.78125 1.631567698984753 |1.624391364235466 | 1.631781538433949
0.84375 1.704442539015991 |1.696907169230061 | 1.704643960549745
0.90625 1.775075076277038 |1.767209418551028 | 1.775264641608818
0.96875 1.843534304699283 |1.835365681312723 | 1.843712552732626
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Table (4). A comparison between the operational matrix of the Haar
wavelets method and Heun's method with exact solution for DAEs (22a) and

(22b) with: m=16 , yz(O)zg .

The numerical The numerical
The value of | solution of Haar solution of Heun's | The exact solution
(t) wavelets method fory
Y2 Y2
0.03125 |2.276923076923076 | 2.276916503906250 |2.277131235240535
0.09375 |2.329940828402366 | 2.329513882494211 |2.330138334553920
0.15625 |2.381327264451524 | 2.380505718320840 |2.381514576871641
0.21875 |2.431132579391477 | 2.429941020816409 |2.431310138388487
0.28125 |2.479405423102508 | 2.477867303391084 |2.479573651540024
0.34375 |2.526192948545508 | 2.524330629101156 |2.526352252499081
0.40625 |2.571540857821030 | 2.569375654921311 |2.571691627210905
0.46875 |2.615493446811153| 2.613045674665476 |2.615636056011982
0.53125 |2.658093648447733 | 2.655382660597503 | 2.658228456876065
0.59375 |2.699383074649341 | 2.696427303771686 |2.699510427329673
0.65625 |2.739402056967823 | 2.736219053141862 |2.739522285077981
0.71875 |2.778189685984197 | 2.774796153476722 |2.778303107380780
0.78125 |2.815783849492376| 2.812195682117733 |2.815890769216974
0.84375 |2.852221269507995 | 2.848453584615030 |2.852321980274872
0.90625 |2.887537538138518 | 2.883604709275514 |2.887632320804409
0.96875 |2.921767152349641 | 2.917682840656362 |2.921856276366313

Figure (1). A comparison between the operational matrix of the Haar
wavelets method and Heun's method with exact solution for DAEs (22a) and

(22b) with: =8, y,0)=2 ,v,(0) =%

15

:

haar

yl
)

— huen

+  exact| |

0.5

2.8

— — haar | |
huen
+ exact | -

2.4r

22 r r r r r r r r r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure (2). A comparison between the operational matrix of the Haar
wavelets method and Heun's method with exact solution for DAEs (22a) and

(22b) with: m=16 , v, () :% +Y,(0) :%

":»'%*/t/“‘i‘
,;;;{—'@5::;{.;—,,
15 -
; // _
1r- M =T
% +  exact
4=

05 / : r r r r r r r r

0 0.1 0.2 0.3 0.4 0.5 0.6 - . . |
t

3 T T T T N L L | |
2.8 + |
ol //%s harr H
“ // +  exactf]

22 r r r r r r r r r

6. Conclusions:

The main goal of this paper was to demonstrate that the Haar
wavelet method can be used to solve differential-algebraic equations
(DAEs). The method is give results better then the classical (Heun's) method
with small computation costs, As shown in table (1) and (2) and figure (1),
when m=8, (m is size of matrices or mesh points).

When we increasing the values of (m) that obtained is more
accuracy, i.e. when m=16, the results that obtained with Haar wavelet
method it's show that in table (3) and (4) and figure (2) is more accurate and
near to exact solution and the error is decrease as (m) is large.

The numerical solutions of these equations had been found using
MATLAB which has the ability to approaches to the solution in high speed
and accuracy and in less possible time.
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