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ABSTRACT 

 In this paper, We solved the system of differential-algebraic equation 

(DAEs) of index one numerically with Heun's method and operational 

matrices of Haar wavelet method, When we compared the results of the two 

methods with the exact solution, show that the operational matrices of Haar 

wavelet method is more efficiency and it's numerical results near to the 

exact solution more than the Heun's method, and the solution accuracy of 

this method is increasing and the error decreases when the number of mesh 

points and size of matrices increase. 

Keywords: Differential-Algebraic Equation, Heun's method, Haar wavelet 

method. 

 مقارنة بين طريقة هيون وطريقة موجة هار لحل المعادلات التفاضلية الجبرية
 احمد فاروق قاسم                                           بيانيژ عبدالغفور محمد امين الرو 

 كلية علوم الحاسوب والرياضيات/جامعة الموصل/العراق 
 4/10/2009تاريخ قبول البحث:                          29/4/2009تاريخ استلام البحث:

 الملخص
في هذا البحث تم حل نظام من المعادلات التفاضلية الجبرية ذات الدليل الواحد عدديا   

القصيرة وبعد مقارنة نتائج  Haarوكذلك طريقة مصفوفات العوامل لموجات  Heunباستخدام طريقة 
ذات كفاءة عالية   Haarامل لمويجة الطريقتين مع الحل المضبوط تبين أن طريقة مصفوفات العو 

, وان دقة الحل لهذه الطريقة تزداد   Heunونتائجها العددية اقرب إلى الحل المضبوط من طريقة 
 .(m)والخطأ يتناقص كلما ازدادت عدد نقاط الشبكة أو سعة المصفوفة  

 . المعادلات التفاضلية الجبرية, طريقة هيون, طريقة موجة هار الكلمات المفتاحية:
1. Introduction: 

 In this paper we consider implicit differential equations 

 ( ) 0ty(t),(t),yf =        …(1) 

on an interval RI  . If 
y

f




 is non singular, then it possible to formally solve 

(1) for y  in order to obtain an ordinary differential equation. However, if 

y

f




 is singular, this no longer possible and the solution y  has satisfy certain 
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algebraic constraints. Thus equations (1) where 
y

f




 is singular are referred 

to as differential algebraic equations (DAEs)[6]. 

 In this paper we take the special case of eq.(1) which is a semi-

explicit DAE 

 )y,y,t(fy 211 =        …(2a) 

   )y,yg(t,0 21=        …(2b) 

With conditions: 

 101 A)(ty =  and 202 A)(ty =  

Where 1A  and 2A  are constants. 

 The index is one if 
2y

g




 is non singular, because then on 

differentiation of (2b) yields 2y  in principle. [7]. 

1.1 Definition: Index of the DAE is the number of differentiations needed 

for transformation the algebraic equation to differential equation. for 

example, let )t(q  be a given, smooth function, then the following problems 

for )t(y . 

 The scalar equation )t(qy =  is trivial index-1 DAE, because it takes 

one differentiation to obtain an ODE for y . 

 for the system 
 )t(qy1 =  

 12 yy =  

we differentia the first equation to get 
 )t(qyy 12 ==  

and      )t(qyy 12 ==  

 The index is 2 because to differentiation of )t(q  where needed [1]. 

Let equation (1) is DAEs, the index along a solution y(t) is the minimum 

number of differentiations of the system which required to solve for y  

uniquely in terms of y  and t (i.e. to define an ODE for y ). Thus, the index 

is defined in terms of the over determined system  

  

0)y,,y,y,t(
t

F

0)y,y,y,t(
t

F

0)y,y,t(F

)1p(

p

p

=




=




=

+


     …(3) 
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 to be the smallest integer p  so that y  in (3) can be solved for in 

terms of y  and t . 

 Haar wavelets have become an increasingly popular tool in the 

computational sciences. They have had numerous applications in a wide 

rang of areas such as signal analysis, data compression and many others[8]. 

 Wu and Chen (2003) [8] studied the numerical solution for partial 

differential equations of first order via operational matrices , they used the 

Haar wavelets in the solution with constant initial and boundary conditions. 

 Wu and Chen (2004) [9] studied the numerical solution for fractional 

calculus and the fractional differential equation by using the operational 

matrices of orthogonal functions. The fractional derivatives of the four 

typical functions and two classical fractional differential equations solved 

by the new method and they are compared the results with the exact 

solutions, they are found the solutions by this method is simple and 

computer oriented. 

 Lepik and Tamme (2007) [3] derived the solution of nonlinear 

Fredholm integral equations via the Haar wavelet method, they are find that 

the main benefits of the Haar wavelet method are sparse representation, fast 

transformation, and possibility of implementation of fast algorithms 

especially if matrix representation is used. 

 Lepik Uio (2007) [4] studied the application of the Haar wavelet 

transform to solve integral and differential equations, he demonstrated that 

the Haar wavelet method is a powerful tool for solving different types of 

integral equations and partial differential equations. The method with far 

less degrees of freedom and with smaller CPU time provides better solutions 

then classical ones. 

Numerical approaches  for the solution of DAEs can be divided 

roughly into two classes: direct discretizations of the given system and 

methods which involve a reformulation (i.e. index reduction), combined 

with a discretization [1]. 

In this paper, we will study the numerical solution for Differential-

Algebraic equations (DAEs) by using Heun's method and Haar wavelets 

method and we will compare the results of these methods with the exact 

solution. 

2. Heun’s Method: 

 We will use the Heun’s Method to solve Eq.(2a) and (2b) [5] 

Then the general steps of Heun’s Method to eq.(2a) and (2b) are 
 )y,y,t(fy k,2k,1k=  

 )y,y,t(hfyp k,2k,1kk,11k +=+  

and 
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 k,21k yq =+  since 0)y,y,t(g k,2k,1k =  

then 

  )q,p,t(f)y,y,t(f
2

h
yy 1k1k1kk,2k,1kk,11k,1 ++++ ++=   …(4) 

 1k1k,11k,2 tyy +++ +=       …(5) 

 where h  is step size and htt k1k +=+ . then we illustrate this method 

in an example in numerical results 

3. Review of the operational matrices and Haar wavelets: 

 The main characteristic of the operational method is to convert a 

differential equation into an algebraic one, and the core is the operational 

matrix for integration. The integral property of the basic orthonormal 

matrix, ( )t  . we write the following approximation: 

( )( ) ( )     

t

0

t

0

t

0

t

0

kk
tQdtt......       …(6) 

where ( ) ( ) ( ) ( ) T1m10 tttt −=





 in which the elements 

( ) ( ) ( )t,,t,t 1m10 −





 are the discrete representation of the basis functions 

which are orthogonal on the interval [0,1) and Q  is the operational matrix 

for integration of ( )t  [8,9]. 

The operational matrix of an orthogonal matrix ( )t , Q can be expressed 

by: 

        1
BQQ

−
 =        …(7) 

where  BQ is the operational matrix of the block pulse function: 























=

2/100

12/100

12/10

112/10

112/1

m

1
Q

mB











     …(8) 

If the transform matrix    is unitary ,that is    T1
=

−
, then the equation 

(7) can be rewritten as [8,9]: 

       TBQQ =        …(9) 

 The Haar functions are an orthogonal family of switched rectangular 

waveforms where amplitudes can differ from one function to another. They 

are defined in the interval [0,1] by [8,9]: 

( )
m

1
th0 =  
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( )


















−

−

−


−

=

)1,0[inotherwise0

2

k
t

2

2/1k
2

2

2/1k
t

2

1k
2

m

1
th JJ

2

J

JJ
2

J

i

      …(10) 

where i=0,1,2,…..,m-1, = 2m  and   is a positive integer. J and k 

represent the integer decomposition of the index i , i.e. 1k2i J −+= . 

 Any function )t(y  which is square integrable in the interval 1t0   

can be expanded into Haar series by: 




=

=

0i

ii )t(hc)t(y         …(11) 

where =
1

0

ii )t(h)t(yc  [8]. 

 Usually the series expansion of equation (11 ) contains infinite terms 

for a general smooth function y(t). However, if y(t) is approximated as 

piecewise constant during each subinterval, equation (11) will be terminated 

at finite terms, i. e. : 


−

=

=

1m

0i

ii )t(hc)t(y    

The equation (11) can be written into the discrete form by: 

)]t(H[]C[]Y[ TT =
→→

       …(12) 

where ]yyy[]Y[ 1m10
T

−

→

=   is the discrete form of the continuous 

function y(t), and m is the dimension and usually = 2m    is a positive 

integer. 

]ccc[]C[ 1m10
T

−

→

=   is called coefficient vector of )t(y  calculated by: 

  1T

T

H]Y[C
−

→→

=







       …(13) 

Since the Haar wavelet matrix H is unitary,    T1
HH =

−
, Thus: 

 TT

T

H]Y[C

→→

=







 

For deriving the operational matrix of  Haar wavelets, we let    H=  in the 

equation (9), and obtain: 

       TBH HQHQ =          …(14) 

where  HQ  is the operational matrix for integration of  H . 
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For example, the operational matrix of the Haar wavelet in the case of m=4 

is given by: 

       



















−

−

−−−

=





























−

−

−−



























































−

−

−−

=

=

000884.00884.0

000884.00884.0

0884.00884.0025.0

0884.00884.025.05.0

2

1

2

1
00

00
2

1

2

1
2

1

2

1

2

1

2

1
2

1

2

1

2

1

2

1

2

1
000

1
2

1
00

11
2

1
0

111
2

1

4

1

2

1

2

1
00

00
2

1

2

1
2

1

2

1

2

1

2

1
2

1

2

1

2

1

2

1

HQHQ

T

T
4*4B4*4H

 

4. Haar wavelet method: 

 We will use the operational matrices of the Haar wavelets to solve 

the differential-algebraic equations (1) numerically. 

By using the equation (6), the integration of equation (12) with respect to 

variable t yields [8]: 

   HQ]C[

dt)t(H]C[dt)t(H]C[dt)]t(y[

H
T

t

0

t

0

t

0

TTT

=

==

→

→→→

  
     …(15) 

Further the double integration of y(t) with respect to variable (t) and by 

using equation (6), we get: 

   HQ]C[

dtdt)t(H]C[

dtdt)t(H]C[dtdt)]t(y[

2
H

T

t

0

t

0

T

t

0

t

0

T

t

0

t

0

T

=

=

=

→

→

→→

 

  

     ...(16) 

Now, we consider the differential-algebraic equations (DAEs) (2a) and (2b) 

of the form [2]: 
 ( ))t(y),t(y,tf)t(y 21=       

 ( )(t)y(t),yt,g0 21=     

with 

 
202

101

A)(ty

A)(ty

=

=
       …(17) 
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where A1 and  A2  are constants. 

by integrating equation (2a) with respect to (t), we get: 

 ( ) =

t

0

t

0

211 dt)t(y),t(y,tfdt)t(y  

           ( ))t(y),t(y,tg0 21=  

   ( )=−

t

0

2111 dt)t(y),t(y,tf)0(y)t(y      …(18a) 

           ( ))t(y),t(y,tg0 21=      …(18b) 

we transform the equations (18a) and (18b) into the matrices forms by using 

equation (12), we get: 

      HCY
T

1

T

1 =  

      HCY
T

2

T

2 =  

then 

               dtHC,HC,tf)t(YHC

t

0

T

2

T

1i

T

01

T

1  







=−   …(19a) 

                 







= HC,HC,tg0

T

2

T

1i   …(19b) 

such that by using the initial condition (17), we get: 

    T1

T

01 A)t(y =       …(20) 

where 

 
m

i

m2

1
t i +=   ,2,1,0i =  

m  is the dimension of the matrix. 

Now, by using the integration (15), the equations (19a) and (19b) becomes: 

                 







=− HQC,HQC,tfAHC H

T

2H

T

1i

T

1

T

1    …(21a) 

          







= HC,HC,tg0

T

2

T

1i    …(21b) 

such that the dimension for all matrices are  Hmm   is Haar wavelets 

matrix,  HQ  is the operational matrix of the Haar wavelets.  T1C and  T2C  

are the coefficient vectors of )t(y1  and )t(y1  respectively: 

    )1m(1121110

T

1 CCCCC −=   

    )1m(2222120

T

2 CCCCC −=   

 To find the coefficient matrix  T1C and  T2C  which have m  of the 

elements respectively, we solve the system (21a) and (21b) which given 
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linear system of the equations such that the variables number are m2   and 

we will can be solved this linear system by Gauss-Jordan method, after this 

we find the vectors solution  T1Y  and  T2Y  by using the equation (12) that 

is: 

      HCY
T

1

T

1 =  

      HCY
T

2

T

2 =  

5. Example : 

 we take the system of DAEs bellow : 

 

)t(y)t(y)t(y 211 +−=        …(22a) 

     2)t(y)t(y
2

1
0 21 −+−=       …(22b) 

with 

2

1
)0(y1 =  

4

9
)0(y2 =  

which has the analytic solutions [2]: 
t/2(0))e1y(44(t)1y −−−=       …(23a) 

t/2(0))e2y(44(t)2y −−−=       …(23b) 

by using the equation (21a) and (21b), the system (22a) and (22b) becomes: 

                 HQCHQC)0(yHC H

T

2H

T

1

T

1

T

1 +−=−    …(24a) 

                TT

2

T

1 2HCHC
2

1
0 −+−=    …(24b) 

where 

  
1m

T

1
2

1

2

1

2

1
)0(y

−








=   

and 

     1m

T

2222 −=   

when 4m =  then: 

    13121110

T

1 CCCCC =  

    23222120

T

2 CCCCC =  

   







=

2

1

2

1

2

1

2

1
)0(y

T

1  
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    22222
T

=  

from the equation (10), we get: 

 





























−

−

−−

=

2

1

2

1
00

00
2

1

2

1
2

1

2

1

2

1

2

1
2

1

2

1

2

1

2

1

H  

from the equation (14), we get: 

 



















−

−

−−−

=

000884.00884.0

000884.00884.0

0884.00884.0025.0

0884.00884.025.05.0

QH  

Now, by substitute the matrices  HQ  and  H  and the vectors 

 T1C ,  T2C ,  T1 )0(y  and  T2  in the system (24a) and (24b) we get: 

   

 

 





























−

−

−−



















−

−

−−−

+





























−

−

−−



















−

−

−−−

−=

−





























−

−

−−

2

1

2

1
00

00
2

1

2

1
2

1

2

1

2

1

2

1
2

1

2

1

2

1

2

1

.

000884.00884.0

000884.00884.0

0884.00884.0025.0

0884.00884.025.05.0

.CCCC

2

1

2

1
00

00
2

1

2

1
2

1

2

1

2

1

2

1
2

1

2

1

2
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   …(25b) 

By solving the system (25a) and (25b) we get a linear system consist of 8 

equations and 8 variables which are  represents the vectors  T1C and  T2C  

respectively and by solving this system by Gauss-Jordan method, we obtain: 

    21334863.027403446.068658182.048588978.2C
T

1 −−−=  

    10667432.013701723.034329091.024294489.5C
T

2 −−−=  

Now, by using the equation (12), we get: 

      HCY
T

1

T

1 =  

          73709606.143537553.109342561.170588235.0=  

      HCY
T

2

T

2 =  

           86854803.271768777.254671280.235294118.2=  

when 8m =  and 16m =  the results are illustration in the tables (1) and (2). 
 

Table (1). A comparison between the operational matrix of the Haar 

wavelets method and Heun's method with exact solution for DAEs (22a) and 

(22b) with: m=8 , 
2

1
)0(y1 =    . 

 

The value 

of (t) 

The numerical 

solution of Haar 

wavelets 

y1 

The numerical 

solution of Heun's 

method 

y1 

 

The exact solution 

for y1 

0.0625 0.6060606060606 0.605957031250000 0.60768367933280 

0.1875 0.811753902662993 0.808345150668174 0.81321373516988 

0.3125 1.004980938865236 0.998664786788180 1.00629135442402 

0.4375 1.186497245600676 1.177635588023851 1.18767099208829 

0.5625 1.357012564049120 1.345934289870578 1.35806139303847 

0.6875 1.517193620773416 1.504197273819535 1.51812836146911 

0.8125 1.667666734665936 1.653022973682860 1.66849736253779 

0.9375 1.809020265898303 1.792974138428698 1.80975596638393 



Comparison between the Heun's and Haar Wavelet Methods for… 
 

 

 193 

Table (2). A comparison between the operational matrix of the Haar 

wavelets method and Heun's method with exact solution for DAEs (22a) and 

(22b) with: m=8 , 
4

9
)0(y2 =   . 

 

The value 

of (t) 

The numerical 

solution of Haar 

wavelets 

y2 

The numerical 

solution of Heun's 

method 

y2 

 

The exact solution 

for  y2 

0.0625 2.303030303030302 2.302978515625000 2.30384183966640 

0.1875 2.405876951331496 2.404172575334087 2.40660686758494 

0.3125 2.502490469432617 2.49933239394090 2.50314567721201 

0.4375 2.593248622800338 2.588817794011926 2.59383549604414 

0.5625 2.678506282024559 2.672967144935289 2.67903069651924 

0.6875 2.758596810386707 2.752098636909768 2.75906418073455 

0.8125 2.833833367332967 2.826511486841430 2.83424868126890 

0.9375 2.904310132949151 2.896487069214349 2.90487798319197 

 

Table (3). A comparison between the operational matrix of the Haar 

wavelets method and Heun's method with exact solution for DAEs (22a) and 

(22b) with: m=16 , 
2

1
)0(y1 =    . 

 

The value of 

(t) 

 

The numerical 

solution of Haar 

wavelets 

 y1 

The numerical 

solution of Heun's 

method  

y1 

 

The exact solution for 

y1 

0.03125 0.553846153846153 0.553833007812500 0.554262470481071 

0.09375 0.659881656804733 0.659027764988423 0.660276669107841 

0.15625 0.762654528903049 0.761011436641680 0.763029153743283 

0.21875 0.862265158782955 0.859882041632818 0.862620276776974 

0.28125 0.958810846205018 0.955734606782168 0.959147303080049 

0.34375 1.052385897091017 1.048661258202313 1.052704504998162 

0.40625 1.143081715642063 1.138751309842622 1.143383254421811 

0.46875 1.230986893622307 1.226091349330951 1.231272112023964 

0.53125 1.316187296895467 1.310765321195007 1.316456913752130 

0.59375 1.398766149298683 1.392854607543371 1.399020854659346 

0.65625 1.478804113935647 1.472438106283725 1.479044570155961 

0.71875 1.556379371968396 1.549592306953445 1.556606214761560 

0.78125 1.631567698984753 1.624391364235466 1.631781538433949 

0.84375 1.704442539015991 1.696907169230061 1.704643960549745 

0.90625 1.775075076277038 1.767209418551028 1.775264641608818 

0.96875 1.843534304699283 1.835365681312723 1.843712552732626 
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Table (4). A comparison between the operational matrix of the Haar 

wavelets method and Heun's method with exact solution for DAEs (22a) and 

(22b) with: m=16 , 
4

9
)0(y2 =   . 

 

The value of 

(t) 

 

The numerical 

solution of Haar 

wavelets 

y2 

The numerical 

solution of Heun's 

method 

y2 

 

The exact solution 

for y2 

0.03125 2.276923076923076 2.276916503906250 2.277131235240535 

0.09375 2.329940828402366 2.329513882494211 2.330138334553920 

0.15625 2.381327264451524 2.380505718320840 2.381514576871641 

0.21875 2.431132579391477 2.429941020816409 2.431310138388487 

0.28125 2.479405423102508 2.477867303391084 2.479573651540024 

0.34375 2.526192948545508 2.524330629101156 2.526352252499081 

0.40625 2.571540857821030 2.569375654921311 2.571691627210905 

0.46875 2.615493446811153 2.613045674665476 2.615636056011982 

0.53125 2.658093648447733 2.655382660597503 2.658228456876065 

0.59375 2.699383074649341 2.696427303771686 2.699510427329673 

0.65625 2.739402056967823 2.736219053141862 2.739522285077981 

0.71875 2.778189685984197 2.774796153476722 2.778303107380780 

0.78125 2.815783849492376 2.812195682117733 2.815890769216974 

0.84375 2.852221269507995 2.848453584615030 2.852321980274872 

0.90625 2.887537538138518 2.883604709275514 2.887632320804409 

0.96875 2.921767152349641 2.917682840656362 2.921856276366313 
 

Figure (1). A comparison between the operational matrix of the Haar 

wavelets method and Heun's method with exact solution for DAEs (22a) and 

(22b) with: m=8 , 
2
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Figure (2). A comparison between the operational matrix of the Haar 

wavelets method and Heun's method with exact solution for DAEs (22a) and 

(22b) with: m=16 , 
2
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6. Conclusions: 

 The main goal of this paper was to demonstrate that the Haar 

wavelet method can be used to solve differential-algebraic equations 

(DAEs). The method is give results better then the classical (Heun's) method 

with small computation costs, As shown in table (1) and (2) and figure (1), 

when m=8, (m is size of matrices or mesh points). 

 When we increasing the values of (m) that obtained is more 

accuracy, i.e. when m=16, the results that obtained with Haar wavelet 

method it's show that in table (3) and (4) and figure (2) is more accurate and 

near to exact solution and the error is decrease as (m) is large.  

The numerical solutions of these equations had been found using 

MATLAB which has the ability to approaches to the solution in high speed 

and accuracy and in less possible time. 
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