Solving Multi-Objective Complementary Programming Problem (MOCPP) by using Optimal Average

Najmaddin A. Sulaiman

Abdul-Qader O. Hamadamin

College of Education University of Salahaddin

College of Sciences University of Koya

Received on: 21/10/2007

Accepted on: 11/06/2008

ABSTRACT

In this paper, we suggested an approach to solve Multi-Objective Complementary Programming Problem (MOCPP) by using optimal average (O_{AV}). The computer application of algorithm also has been demonstrated by flow-chart and solving a numerical examples by using MATHLABR2006a, and shown results in tables.

Key words: Solving (MOCPP) by using Optimal Average (O_{AV}).

حل مسألة البرمجة التكميلية متعددة الأهداف (MOCPP) باستخدام المعدل الامثل

عبد القادر حمد امين

نجم الدين سليمان

كلية العلوم، جامعة كوبا

كلية التربية، جامعة صلاح الدين

تاربخ القبول: 2008/06/11

تاريخ الاستلام: 2007/10/21

الملخص

في هذا البحث اقتراحنا تقنية لحل مسائل البرمجة التكميلية لمتعددة الأهداف باستخدام المعدل الامثل (O_{AV}) . مع تطبيق بعض الأمثلة العددية لهذه الخوارزمية المسندة والمدعومة ب(فلو-كارت) وعلى الحاسوب (MATLAB R2006a).

الكلمات المفتاحية: البرمجة التكميلية متعددة الأهداف، المعدل الأمثل.

1. Introduction:

In (1971), Ibaraki, T. defined a new type of optimization, known as complementary problem with the addition (u.v=0) as follows [4], [7]:-

Maximize.Z=d.x+e.u+f.v

Subject to:

 $A.x+B.u+C.v \le g$

u.v=0

 $x, u, v \ge 0$

Where x, u.v are n, m and m dimensional vectors of variables respectively; d, e, f are n, m and m dimensional vectors of constants respectively; g is p-dimensional vectors of constants; A, B and C are $p \times n$, $p \times m$ and $p \times m$ matrices of constants, without the complementary condition (u.v=0) the above problem is an ordinary linear programming problem.

In (1984), Gary, K.C. & K.Swarup defined complementary programming with extreme point optimization [3].

In (1997), Sulaimam, N.A. searched and defined Upper-Bound cut for Extreme point Multi-Objective Complementary Problem [7].

In order to extend this work, we have defined a Multi-Objective Complementary Programming Problem (MOCPP), and investigated the algorithm to solve it, by using a new technique with optimal average (O_{AV}). The computer application of our algorithm also has been discussed by solving numerical examples. Also, we have been shown results in tables.

2. Mathematical Form of the Multi-Objective Complementary Programming Problem (MOCPP):

A Multi-Objective Linear Programming Problem (MOLPP) is solved by Chandra Sen in (1983) [5]; Sulaiman& Othman (2007) [8] and suggested an approach to construct the multi-objective function.

As pointed in section (1), Ibaraki [4], defined a new type of optimization problem, known as complementary problem with the addition complementary condition (u.v=0); in addition to this we have Sulaimam, N.A.'s work[7].

By depending and searching of those scientists, experts researches the mathematical form of this type of problem (MOPP) is given as follows:

Subject to:

$$A.x+B.u+C.v=b$$
 ... (1.2)
 $u.v=0$... (1.3)
 $x, u, v \ge 0$... (1.4)

Where; r is the number of objective functions to be maximized; s is the number of objective functions to be maximized and minimized, s-r is the number of objective functions to be minimized, x, u, v are n, m, and m dimensional vectors of variables respectively; d_i, c_i and f_i are vectors of

constants; \forall i= 1, 2,..., r, r+1,..., s; b is p-dimensional vector of constants; A, B and C are p×n, p×m and p×m matrices of constants respectively.

3. Formulation of Multi-Objective Complementary Programming Problem Functions:

The formulation of multi-objective complementary programming problem functions given in the form: (1.1), subject to: (1.2), (1.3) & (1.4) is obtaining as; suppose we obtained a single value corresponding to each of objective functions of it being optimized individually as follows:-

$$Max.Zi = \phi i; \forall i = 1,2,...,r$$

 $Min.Zi = \phi i; \forall i = r+1, r+2,...,s$

$$...(1.5)$$

Where; $\phi = 1,2,...,r,r+1,r+2,...,s$ the decision variables may not necessarily be common to all optimal solutions in the presence of conflicts among objectives [6]. But the common set of decision variables between objective functions is necessary in order to select the best compromise solution [2]. We can determine the common set of decision variable from the following combined objective function[5],[6],[1] which formulate the MOCPP given in (1.1) as:-

Max.Z=
$$\sum_{k=1}^{r} Zk / |\phi k| - \sum_{k=r+1}^{s} Zk / |\phi k|$$
, $\forall \phi k \neq 0$. (1.6)

Subject to the same constraints (1.2), (1.3) & (1.4), and the optimum value of $\phi k \in R$ - {0}, where R is the set of real numbers.

The equation (1.6) can be solving by Chandra Sen (C_A), [5], [1]; Sulaiman& Othman (2007) [8] Approach the solution of MOLPP (MOCPP without u.v=0... (1.3)) by using optimal average (O_{AV}) is better than the solution by C_A ; so we solve (1.6) subject to the same constraints; (1.2), (1.3) & (1.4), by using O_{AV} .

4. Solving the MOCPP by using Optimal Average (O_{AV}):

Optimal Average (O_{AV}), defined in [8] as:

 $O_{AV} = (m_1 + m_2)/2$; where:

 m_1 = min of the absolute value of the maximum value of Z_i , for all i= 1, 2... r.

 m_2 = min of the absolute value of the minimum value of Z_i , for all i= r+1, r+2... s.

The (MOPP) s solution by using O_{AV} , is obtained by replacing O_{AV} in state of $|\phi_k|$, in Eq. (1.6), subject to the same constraints ;(1.2), (1.3) & (1.4). Thus the formulation become as follows:-

Max.Z=
$$(\sum_{i=1}^{r} Max.Zi - \sum_{i=r+1}^{s} Min.Zi)/O_{AV} \Rightarrow$$

$$Max.Z=d.x+e.u+f.v ... (1.7)$$

Where; x, u, v are n, m and m dimensional vectors of variables respectively; d, e, f are n, m and m dimensional vectors of constants respectively.

As, defined and known [4], [7] this type of optimization problem separable, that means without the complementary condition (u.v=0... (1.3)); the problem (1.7), subject to; ;(1.2), (1.3) & (1.4) is an ordinary LPP which can be solving by simplex method; after that verify or to checkout of the complementary condition (u.v=0... (1.3)) may be searching for.

5. Program Notations:

In this work we used the same notations in section (5.3) in [8], with external the complementary notations as:

Max.Z= d_1 , with 0.v=0.and Max.Z= d_2 , with u.0=0.

6. Algorithm:

The following algorithm is to obtain the optimal solution for MOCLPP defined previous can be summarized as follows:-

<u>STEP1</u>: Find the value of each of individual objective functions which is to be maximized or minimized.

STEP2: Solve the first objective problem by simplex method.

<u>STEP3:</u> Check the feasibility of the solution in step2. If it is feasible then go to step 4, otherwise, use dual simplex methods to remove infeasibility.

STEP4: assign a name to the optimum value of the first objective function $Z_1 \text{ say } \phi A_1$

<u>STEP5:</u> Repeat the step2; i=1,2,3,4 for the k^{th} objective problem, $\forall k=2,3,...,r,r+1,...s$.

STEP6: Select
$$m_1 = \min \{ \phi A_i \}, \forall i = 1, 2... r.$$

$$m_2 = \min \{ \phi A_i \}, \forall i = r+1, r+2... s$$

Calculate O
$$_{AV} = \frac{1}{2} (m_1 + m_2).$$

<u>STEP7:</u> Optimize the combined objective function order the same constraints; (1.2), (1.3) and (1.4) as:

Max.Z=
$$\left(\sum_{i=1}^{r} Max.Zi - \sum_{i=r+1}^{s} Min.Zi\right)/O_{AV}$$
, say:

Max.Z=d.x+e.u+f.v...(1.7).

STEP8: Solve (1.7) subject to: (1.2), and (1.4), by simplex method.

<u>STEP9</u>: If u.v=0, the optimal solution obtained and print Max.Z, x, u, and v; otherwise go to STEP10.

<u>STEP10:</u> Satisfy u.v=0, once by putting u=0 and print Max.Z= d_1 (say); others by putting v=0 and print Max.Z= d_2 (say); if $d_1 > d_2$ that means Max.Z,

with the complementary condition u=0and v has its values is the optimal solution and vice versa.

7. Flow-Chart:

8: Numerical Examples:

Example (1): solve the following MOCPP:

First we solve each objective function in (1.8), subject to the given constraints without the complementary condition $x_1.x_2=0$ individually the results as in the table (1) below:

i	Z_{i}	X_{i}	ϕi	AA_i	AL_i	m_1	m_2	O _{AV}
1	8	(3,2)	8	8				
2	12	(3,0)	12	12				
3	11	(1,5)	11	11				
4	11	(3,2)	11	11				
5	14	(2,4)	14	14				
6	6	(3,0)	6	6		6	3	4.5
7	-3	(3,0)	-3		3			
8	-5	(0,5)	-5		5			
9	-8	(3,2)	-8		8			
10	-15	(0,5)	-15		15			

Table:(1);Results of the values of the objective functions, and the value of O_{AV}.

Now; by using (1.7) subject to the given constraints we get:

$$Max.Z = 3.5556x1 + 1.3333x2$$
s.t.
$$1x1 + 1x2 \le 6$$

$$8x1 + 4x2 \le 32$$

$$1x1 + 0x2 \le 3$$

$$0x1 + 1x2 \le 5$$

$$x1.x2 = 0$$

$$x1, x2 \ge 0, \& \text{ int }.$$

$$...(1.9)$$

Let's, solve (1.9), without the complementary condition $(x_1.x_2=0)$, by simplex method we get that:

>> simplex('max',[3.5556 1.3333],[1 1;8 4;1 0;0 1],[6;32;3;5],'y')

Tableaux of the Simplex Algorithm

mina	tableau					
A =						
1.0000	1.0000	1.0000	0	0	0	6.0000
8.0000	4.0000	0	1.0000	0	0	32.0000
1.0000	0	0	0	1.0000	0	3.0000
0	1.0000	0	0	0	1.0000	5.0000
-3.555	6 -1.3333	0	0	0	0	0

Press any key to continue...

 $\mathbf{x} =$

3 2

Final tableau

Initial tableau

A =

0	0	1.0000	-0.2500	1.0000	0	1.0000
0	1.0000	0	0.2500	-2.0000	0	2.0000
1.0000	0	0	0	1.0000	0	3.0000
0	0	0	-0.2500	2.0000	1.0000	3.0000
0	0	0	0.3333	0.8890	0	13.3334

Press any key to continue...

Max.Z= 13.3334 at the extreme point (3, 2). Since $x_1.x_2 \neq 0$, hence this result isn't optimal solution to the MOCPP.

If $x_1=0$, $x_2=2 \Rightarrow Max.Z=2.6666$.

If $x_2=0$, $x_1=3 \Rightarrow Max.Z=10.6668$.

Since 10.6668>2.6666, hence Max.Z=10.6668 at the extreme point (3, 0) is optimal solution to the MOCPP.

Example (2): solve the following MOCPP:-

$$\begin{aligned} & \textit{Max.Z1} = 12x1 + 20x2 + 18x3 \\ & \textit{Max.Z2} = 20x1 + 12x2 + 18x3 \\ & \textit{Max.Z3} = 12x1 + 18x2 + 20x3 \\ & \textit{Min.Z4} = 18x1 - 20x2 - 12x3 \\ & \textit{Min.Z5} = -18x1 + 20x2 - 12x3 \\ & \textit{st}: \\ & \text{1x1} + 3x2 + 2x3 \le 9 \\ & 3x1 + 2x2 + 1x3 \le 8 \\ & 2x1 + 1x2 + 3x3 \le 7 \\ & x2.x3 = 0 \\ & xi \ge 0 \& \text{ int } :; \forall i = 1,2,3. \end{aligned}$$

Solution: First we solve each objective function in (1.10), subject to the given constraints without the complementary condition $x_2.x_3=0$ individually the results as in the table (2) below:

i	Z_{i}	$X_i(x_1,x_2,x_3)$	ϕi	AA_i	AL_i	m_1	m_2	O_{AV}
1	70	(1,2,1)	70	70				
2	62	(1,2,1)	62	62				
3	68	(1,2,1)	68	68		62	52. 2857	57. 1428
4	-60	(0,3,0)	-60		60			
5	-52. 2857	(2.4286, 0,0.7143)	-52. 2857		52. 2857			

Table: (2); Results of the values of the objective functions, and the value of O_{AV} .

Now; by using (1.7) subject to the given constraints we get:

$$Max.z = 0.77x1 + 0.875x2 + 1.4x3$$
st:
$$1x1 + 3x2 + 2x3 \le 9$$

$$3x1 + 2x2 + 1x3 \le 8$$

$$2x1 + 1x2 + 3x3 \le 7$$
st: $i \ge 0$, & int:; $\forall i = 1,2,3$.

Let's, solve (1.11), without the complementary condition $(x_2.x_3=0)$, by simplex method we get that:

>> Simplex ('max',[0.77 0.875 1.4],[1 3 2;3 2 1;2 1 3],[9;8;7],'y')

T 11 C 1 C 1 A1 'd

Tableaux of the Simplex Algorithm

Initial tableau

Α =

1	4 =						
	1.0000	3.0000	2.0000	1.0000	0	0	9.0000
	3.0000	2.0000	1.0000	0	1.0000	0	8.0000
	2.0000	1.0000	3.0000	0	0	1.0000	7.0000
	-0.7700	-0.8750	-1.4000	0	0	0	0

Press any key to continue...

x =

0 1.8571 1.7143

Final tableau

0.1050

A =						
-0.1429	1.0000	0	0.4286	0	-0.2857	1.8571
2.5714	0	0	-0.7143	1.0000	0.1429	2.5714
0.7143	0	1.0000	-0.1429	0	0.4286	1.7143

Press any key to continue...

0

Max.Z= 4.0250 at the point (0, 1.8571, 1.7143), which is fractional in x_2 and x_3 .

0.1750 0

0.3500

4.0250

So, the best integral solution which we can obtain by using the Branch-and-Bound Procedure (Method) is:

$$>> Max.Z=0.77*1+0.875*2+1.4*1$$

Max =

Z: 3.9200, at the extreme point (1, 2, 1).

0

Now, we are going to satisfy the complementary condition $(x_2.x_3=0)$, because $x_2.x_3\neq 0$.

If $x_2=0$, then:

>> Max.Z=0.77*1+0.875*0+1.4*1

Max =

Z: 2.1700, at the point (1, 0, 1).

If $x_3=0$, then:

>> Max.Z=0.77*1+0.875*2+1.4*0

Max =

Z: 2.5200, at the point (1, 2, 0).

Since, 2.52>2.17, hence the optimal solution is:

Z: 2.5200, at the point (1, 2, 0).

Example (3): solve the following MOCPP:-

Let:
$$x = (x1), u = (x2), v = (x3, x4)$$

 $Max.Z1 = 2x1 + 1x2 + 4x3 + 1x4$
 $Max.Z2 = -5x1 + 8x2 - 3x3 + 2x4$
 $Max.Z3 = 1x1 + 10x2 + 7x3 - 3x4$
 $Max.Z4 = 4x1 + 1x2 + 3x3 + 4x4$
 $Max.Z5 = 6x1 + 3x2 + 1x3 + 2x4$
 $Min.Z6 = 4x1 - 7x2 + 1x3 - 1x4$
 $Min.Z7 = 1x1 + 4x2 - 2x3 - 3x4$
 $s.t:$
 $2x1 + 3x2 - 1x3 + 1x4 \le 18$
 $-3x1 + 1x2 + 2x3 + 4x4 \le 12$
 $1x1 + 1x2 + 1x3 + 5x4 \le 22$
 $2x1 + 3x2 + 4x3 - 2x4 \le 14$
 $u.v = 0$
 $x, u, v \ge 0$ & int.

Solution: After solving each objective function in (1.12), without the complementary condition (u.v=0) individually, subject to the given constraints by simplex method, results obtained as following in table (3) below:

i	\mathbf{Z}_{i}	$X_i(x_1, x_2, x_3, x_4)$	ϕi	AA_i	AL_i	m_1	m_2	O_{AV}
1	23.	(2.6531,0,	23.	23.				
	3673	3.7347,3.1224)	3673	3673				
2	47.	(0,5.5556,0,	47.	47.				
	1111	0,1.3333)	1111	1111				
3	51.	(0,5.5556,0,	51.	51.				
3	5556	0,1.3333)	5556	5556				
4	45.	(8.0741,0,	45.	45.		23.	14.	18.
4	1481	0.7778,2.6296)	1481	1481		3673	1837	7755
5	54.	(8.0741,0,	54.	54.				
3	4815	0.7778,2.6296)	4815	4815				
6	-40.	(0,5.5556,0,	-40.		40.			
U	2222	0,1.3333)	2222		2222			
7	-14.	(2.6531,0,	-14.		14.			
/	1837	3.7347,3.1224)	1837		1837			

Table: (3); Results of the values of the objective functions, and the value of O_{AV}.

Now; by using (1.7) subject to the given constraints we get:

Let:
$$x = (x1), u = (x2), v = (x3, x4)$$

 $Max.Z = 0.1598x1 + 1.3848x2 + 0.6924x3 + 0.5326x4$
st:
 $2x1 + 3x2 - 1x3 + 1x4 \le 18$
 $-3x1 + 1x2 + 2x3 + 4x4 \le 12$
 $1x1 + 1x2 + 1x3 + 5x4 \le 22$
 $2x1 + 3x2 + 4x3 - 2x4 \le 14$
 $u.v = 0$
 $x, u, v \ge 0 \& \text{ int }.$

Let's, solve (1.13), without the complementary condition (u.v=0), by simplex method we get that:

>> simplex('max',[0.1598 1.3848 0.6924 0.5326],[2 3 -1 1;-3 1 2 4;1 1 1 5;2 3 4 -2],[18;12;22;14],'y')

>>_____

Tableaux of the Simplex Algorithm

Initial tableau										
A =										
2.0000	3.0000	-1.0000	1.0000	1.0000	0	0	0	18.0000		
-3.0000	1.0000	2.0000	4.0000	0	1.0000	0	0	12.0000		
1.0000	1.0000	1.0000	5.0000	0	0	1.0000	0	22.0000		
2.0000	3.0000	4.0000	-2.0000	0	0	0	1.0000	14.0000		
-0.1598	-1.3848	-0.6924	-0.5326	0	0	0	0	0		
Press any 1	kev to cor	ntinue								

 $\mathbf{x} =$

Final tableau

A =

-0.7237	0	0	1.0	000 0.0263	0.1974	0	-0.0921	1.5526
-0.4342	0	1.00	000	-0.1842	0.1184	0	0.1447	0.1316
4.2895	0	0	0	-0.2105	-1.0789	1.00	000 0.2368	8.5789
0.7632	1.0	0000	0	0.2632	-0.0263	0	0.0789	5.5263
0.2109	0	0	0	0.2509	0.1507	0	0.1605	8.5709

Press any key to continue...

Max.Z= 8.5709 at the point (0, 5.5263, 0.1316, 1.5526), which is fractional in x_2 , x_3 and x_4 .

So, the best integral solution which we can obtain by using the Branch-and-Bound Procedure (Method) is:

>> Max.Z=0.1598*2+1.3848*4+0.6924*1+0.5326*3

Max =

Z: 8.1490, at the extreme point (2, 4, 1, 3).

Now, we are going to satisfy the complementary condition (u.v=0), because $u.v\neq 0$.

If, $u=(x_2)=0$, then:

>> Max.Z=0.1598*2+1.3848*0+0.6924*1+0.5326*3

Max =

Z: 2.6098, at the (2, 0, 1, 3).

If, $v=(x_3, x_4) = 0$, then:

>> Max.Z=0.1598*2+1.3848*4+0.6924*0+0.5326*0

Max =

Z: 5.8588, at the (2, 4, 0, 0).

Since, 5.8588 > 2.6098, hence the optimal solution is:

Z: 5.8588, at (2, 4, 0, 0).

9: Comparing Results:

We compare the results which were obtained by solving the numerical examples as ordinary MOLPP, MOPP with integer variables and MOCPP as following in the table (4):

Example	MOI DD		MOLPP	МОСРР				
ıple	MOLPP		with integer variables					
	Max.Z	X	Max.Z	X	Max.Z	X		
(1)	13. 3334	(3,2)	13. 3334	(3,2)	10. 6668	(3,0)		
(2)	4. 0250	(0,1.8571, 1.7143)	3. 9200	(1,2,1)	2. 5200	(1,2,0)		
(3)	8. 5709	(0,5.5263, 0.1316,1.5526)	8. 1490	(2,4,1,3)	5. 8588	(2,4,0,0)		

Table (4) Comparing results between: MOLPP and MOLPP& MOCPP with integer variables.

REFERENCES

- [1] Abdil-Kadir, M. S. & Sulaiman, N. A. (1993) "An Approach for Multiobjective Fractional Programming" Journal of College of Education, Uni. Salahaddin, Vol.3, No.1, pp (1-5).
- [2] Cheney, W. & Kincaid, D. (2004) "Numerical Mathematics and Computing" Fifth Edition, Thomson.
- [3] Gary, K. C. & Swarup, K. (1983) "Complementary with Extreme Point Optimization", Proceeding Operations Research Society of India.
- [4] Ibaraki, T. (1971) "Complementary Programming" Operational Research, Vol.19, No.6, pp (1523-1529).
- [5] Sen, Ch. (1983) "A new approach objective planning", The Indian Economic Journal Vol.30, no.4, pp (91-96).
- [6] Sulaiman, N. A.& Sadiq, G. W.(2006) "Solving the Multiobjective Programming Problem; Using Mean and Median Value" Ref. J. of Com.& Math's, Vol.3, No.1.
- [7] Sulaiman, N. A. (1997) "Upper-Bound Cut for Extreme Point Multi-Objective Complementary Problem", Zanco special Issue (1) proceeding of Third scientific.
- [8] Sulaiman, N.A. & Othman, A.H. (2007)" Optimal Transformation Technique for Solve Multi-Objective Linear Programming Problems (MOLPP)", Journal of University of Kirkuk, Vol.2, No.2.