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ABSTRACT 

 In this paper a new low-storage VM-algorithm for constrained 

optimization is investigated both theoretically and experimentally. The new 

algorithm is based on both the well-known Fletcher's low storage algorithm 

which generates columns Z spanned on the gradient vectors g1, g2, ... gn  

and the idea of both Buckley and LeNir of combined variable storage-

conjugate gradient method. The well-known SUMT algorithm is adapted to 

implement the new idea. The new algorithm is very robust compared with 

the standard low-storage Fletcher algorithm and the standard SUMT 

algorithm which was designed for solving constrained problems, of the    

numerical results of application very promising. 
Keywords: constrained, low storage, SUMT. 

 خوارزمية جديدة لتقليل الخزن للمتري المتغير في الأمثلية المقيدة

 همسة ثروت جلميران   عباس يونس البياتي

 كلية علوم الحاسوب والرياضيات
 جامعة الموصل

 4/9/2005تاريخ قبول البحث:                                     13/4/2005تاريخ استلام البحث: 

 ملخصال

 المقيدة للأمثلية المتغير المتري  في الخزن  لتقليل جديدة خوارزمية استحداث تم البحث هذا في 

 الخزن  لتقليل القياسية Fletcher  خوارزمية على تعتمد الجديدة الخوارزمية وعمليا. نظريا   دراستها وتم

 لفكرة جينيةاله الخوارزمية  n,…g2,g1g.المترافقة المتجهات من المكونة 1Z أعمدة تولد التي

Buckley & LeNir المترافقة المتجهات بخوارزمية المتغير المتري  خوارزميتي تربط التي . 

 الخوارزمية وهذه . الجديدة للخوارزمية  مناسبه تكون  لكي تطويرها تم  SUMT المعروفة الخوارزمية

 وخوارزمية الخزن  لتقليل القياسية Fletcher خوارزميات مع مقارنتيها وتم وعمليا   نظريا   نشطه

SUMT  جدا   مشجعة نتائج على الحصول مع القياسية. 
 . SUMTمقيدة، خزن قليل، الكلمات المفتاحية: 
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1. Interior point method (Barrier function): 

 In the interior penalty function method, the Barrier term is defined to 

keep the solution from leaving the feasible region. It is impossible to 

directly handle equality constraints in this method. Thus the original 

problem for this method is defined as follows:  
 

          

for i= 1,……,m     ...(1) 

 

Two commonly used interior penalty functions are defined as follows: 

-Logarithmic barrier function 

  

          ...(2) 

 

-Inverse barrier function 

  

              ...(3) 

 

Where   is a positive constant , known as the barrier parameter. It is chosen  

that the inequality constraints are satisfied( >0) always ,and a positive term 

is added to the objective function. As we move closer to a constraint 

boundary 0→ic , causing the need for a large term to be added to the 

objective function. Thus the method keeps the solution away from the 

constraint boundaries and hence is also known  as the barrier function 

method (INT [1]). 

2. Low storage methods: 

  Quasi–Newton (variable metric) methods, which are based on 

generating an approximation to the inverse of the Hessian matrix, require 

only the gradient of the objective function .The advantageous due to their 

fast convergence and absence of second –order derivative computation.     

Limited memory Quasi–Newton methods are known to be effective 

technique for solving certain classes of large–scale unconstrained problems 

(Buckley and LeNir (1983), Liu and Nocedal (1989), Gilbert and 

Lemarechal (1989). They make simple approximation of Hessian matrix, 

which are often good enough to provide a fast rate of linear convergence, 

and require minimal storage. For these reasons it is desirable to use limited 

memory approximation for solving problems.(see Richard ,etal.,1990) 

3. Fletcher low storage algorithm: 

 The columns of  z span 
 
while z? contain only 
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unit matrix – like information. Initially )1(1 gZ =
/ )1(g

 and for ..,.........2,1=k  

the following steps are repeated 

(a) k

T

k gZZd )(−=   

(b)  Line search→ 11, ++ kk xg  

(c)  1kg +

⊥⊥⊥ =
T

ZZg   

(d)  if 0⊥g  extend   ||||/| ⊥⊥ ggZ else ZZ =
~

 

(e)  Update Z
~

to give 1+kZ
 as for L in the BFGS method.   

 It is now possible to describe a BFGS like low storage method based 

of this information structure. Let storage for e vectors in Z be available. The 

method can be followed for e– 1  iterations. After which it is possible to 

carry out PCG steps as the preconditioner for ek  . These steps are 

continued as in the Buckley – LeNir method until some test  

111 2.0 +++  kk
T

kk
T gggg

 
or 

nk =  

Then Z  is reset to kk gg /
and the whole process is restarted (Fletcher 

,1990). The rate of improvement as e increase rather slow, at which point 

the low storage method dose not   performe as well as BFGS. 

4. Self –Scaling variable metric method:  

 This is a variable metric CG method depended by Buckely in (1978) 

for the first time and it combines the CG and QN methods in an attempt to 

provide their main advantages, i.e. The low storage requirements of CG 

methods and the rapped convergence of the QN method.The CG – QN 

algorithm  implemented to use a variable amount of storage depending on 

the variability of space, with minimum requirement of locations. In order to 

eliminate the truncation and rounding error, the new scalar parameter ? is 

added to make the sequence and efficiency( as problem dimension )increase. 

The poor scaling is an imbalance between the values of the function and 

change in x ,the function values may be change very little even though x is 

changing significantly. This difficulty can sometime be remove by good 

scaling factor for the updating H and the performance of self-scaling method 

is undoubtedly favorable in some cases especially when the number of  

variables are large (scales,1985).  

5. The derivation of new self-scaling parameter: 

 In QN methods the approximation kH
 to the inverse of the Hessian 



Abbas Y. Al-Bayati and Hamsa Th. Chilmerane  
 

 

 14 

can be selected to satisfy the QN condition which can be written in the form 

kk
y

k
H ~ 

1
=

+            ...(4)                      

where 1~ =  is scalar  

We introduce suitable special alternative equivalent scalars to the special 

case due to the QN condition. The weakened form is duo to  the following 

secant condition.  

kk HH =+1             ...(5)                                                  

For such case we are suggested for the first time the following several 

values of scalar factors 

(to obtained standard EBFGS )         ...(6)         1-       

 

2-     ...(7)                                   

       

3-                   ...(8)                                     

 

 

4-              ...(9)                                   

     

To derive those scalar from the special case of the QN condition which 

causes weakened form of the secant condition, using the secant condition in 

QN condition (5) we get, 
T

k

T

kk vyH = 
         ...(10)                            

We know that 
T

k

T

k

T

k ggy −= +1 that eq. (10) can be write as 
T

k

T

k

T

kk ggH  =−+ )( 1        ...(11)                       

The matrix is defined by 
T

kkk ZZH =          ...(12)  

Submit in (4) we have 
T

k
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        ...(13) 

Multiplying it by vector kg
, we have 
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From the definition of orthogonal condition we have 
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Z span by nggg ..., 21   
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     ...(16) 

 

 

for k=1,2,………..and for orthogonal property holds                                      

  k

T

kk

T

k

TT

k

T

k gvgggggg =− 21 ,               ...(17)                                                          

k

T

kk

T

kk

T

k gvgggg =−                 ...(18)  

            

              ...(19)                                     

 

Which is defined in (7) 

we kwon that  kkkkk dxxv =−= +1   

               

       ...(20)                                                    

 

Which is defined in (8) 

But we have k

T

kkk gZZd  −= the eq.(20), can be written as 
 

 

            ...(21)  

 

Which is defined in (9) 

5.1 New proposed low storage method: 

Step 1: Find an initial approximation x0 in the interior of the feasible region 

for the inequality constrains 0)( xc . e is scalar  

Step 2: Set  1=k  and 
10 =

 is the initial value of 0 , 
⊥Z is a unit matrix. 

Step 3: set kk ggZ /=
 

Step 4: ( ) k

T

kkk gZZd −= , where the columns of Z  generated by g1, g2, .. gk. 

Step 5: xk+1=xk+?k dk  

 

Step 6:if go to step (6) else go to step (7) 
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Step 11: update Z  to give 1+kZ
 with new scaling factor, which is define in 

eq. (21) 

Step 12: compute dk+1 = -Zk+1 gk+1 + ? k dk 

Step 13: check for restarting criterion, i.e if 

1111 8.0 ++++ − k
T
kkk

T gggd  Satisfied go to step (2) else set k=k+1 ,    

10
1

k

k


 =+

   and go to step (4) 

6. Numerical results: 

Several standard nonlinear constrained test functions are minimized to 

compare the new algorithm with standard algorithm see (Appendix) with 
7)(1  xc  

FORTRAN programs were written to implement the suggested and previous 

algorithms. All numerical results quoted here are obtained using (Pentium 4 

computer). All cases the stopping criterion taken to be 
5

1 101 −
+ kg

 
and  


=

−
m

i i xc1

5101
)(

1
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All the algorithms in his paper use the same ELS, which is the cubic fitting 

technique fully, described from (Bundy, 1989). 

The comparative performance for all these algorithms are evaluated by 

considering NOF , NOI  and NOC , are considered as the comparative 

performance of the following algorithms: 

1  F/R low storage algorithm (1990). 

2  New self – scaling F/R low storage algorithm. 

In Table (1) we have compared between F/R low storage algorithm and the 

new self – scaling F/R low storage algorithm. 

 

Table (1) 

Comparison of our new algorithm with standard F/R 

low storage algorithms 
 

Test fun. 
F/R low storage algorithm 

NOF (NOI) NOC 

New algorithm 

 

NOF (NOI) NOC 

1 156 (54) 403 170 (63) 477 

2 165 (49) 681 138 (37) 611 

3 248 (52) 423 249 (55) 389 
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4 104 (30) 695 98 (28) 678 

5 90 (29) 416 90 (29) 416 

6 86 (27) 302 87 (28) 296 

7 134 (47) 338 139 (48) 253 

8 99 (32) 260 91 (31) 235 

9 45 (19) 26 43 (19) 92 

10 111 (40) 217 104 (38) 191 

Total 1238 (379) 3761 1209 (376) 3638 
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Appendix 
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