
Raf. J. of Comp. & Math’s. , Vol. 6, No. 3, 2009

11

New low storage VM-algorithm for constrained optimization

Abbas Y. Al-Bayati Hamsa Th. Chilmerane

 profabbasalbayati@yahoo.com hamsathrot@uomosul.edu.iq

College of Computer Sciences and Mathematics

University of Mosul

Received on: 13/4/2005 Accepted on: 4/9/2005

ABSTRACT

 In this paper a new low-storage VM-algorithm for constrained

optimization is investigated both theoretically and experimentally. The new

algorithm is based on both the well-known Fletcher's low storage algorithm

which generates columns Z spanned on the gradient vectors g1, g2, ... gn

and the idea of both Buckley and LeNir of combined variable storage-

conjugate gradient method. The well-known SUMT algorithm is adapted to

implement the new idea. The new algorithm is very robust compared with

the standard low-storage Fletcher algorithm and the standard SUMT

algorithm which was designed for solving constrained problems, of the

numerical results of application very promising.
Keywords: constrained, low storage, SUMT.

 خوارزمية جديدة لتقليل الخزن للمتري المتغير في الأمثلية المقيدة

 همسة ثروت جلميران عباس يونس البياتي

 كلية علوم الحاسوب والرياضيات
 جامعة الموصل

 4/9/2005تاريخ قبول البحث: 13/4/2005تاريخ استلام البحث:

 ملخصال

 المقيدة للأمثلية المتغير المتري في الخزن لتقليل جديدة خوارزمية استحداث تم البحث هذا في

 الخزن لتقليل القياسية Fletcher خوارزمية على تعتمد الجديدة الخوارزمية وعمليا. نظريا دراستها وتم

 لفكرة جينيةاله الخوارزمية n,…g2,g1g.المترافقة المتجهات من المكونة 1Z أعمدة تولد التي

Buckley & LeNir المترافقة المتجهات بخوارزمية المتغير المتري خوارزميتي تربط التي .

 الخوارزمية وهذه . الجديدة للخوارزمية مناسبه تكون لكي تطويرها تم SUMT المعروفة الخوارزمية

 وخوارزمية الخزن لتقليل القياسية Fletcher خوارزميات مع مقارنتيها وتم وعمليا نظريا نشطه

SUMT جدا مشجعة نتائج على الحصول مع القياسية.
 . SUMTمقيدة، خزن قليل، الكلمات المفتاحية:

Abbas Y. Al-Bayati and Hamsa Th. Chilmerane

 12

nggg,,........., 21

1. Interior point method (Barrier function):

 In the interior penalty function method, the Barrier term is defined to

keep the solution from leaving the feasible region. It is impossible to

directly handle equality constraints in this method. Thus the original

problem for this method is defined as follows:

for i= 1,……,m ...(1)

Two commonly used interior penalty functions are defined as follows:

-Logarithmic barrier function

 ...(2)

-Inverse barrier function

 ...(3)

Where  is a positive constant , known as the barrier parameter. It is chosen

that the inequality constraints are satisfied(>0) always ,and a positive term

is added to the objective function. As we move closer to a constraint

boundary 0→ic , causing the need for a large term to be added to the

objective function. Thus the method keeps the solution away from the

constraint boundaries and hence is also known as the barrier function

method (INT [1]).

2. Low storage methods:

 Quasi–Newton (variable metric) methods, which are based on

generating an approximation to the inverse of the Hessian matrix, require

only the gradient of the objective function .The advantageous due to their

fast convergence and absence of second –order derivative computation.

Limited memory Quasi–Newton methods are known to be effective

technique for solving certain classes of large–scale unconstrained problems

(Buckley and LeNir (1983), Liu and Nocedal (1989), Gilbert and

Lemarechal (1989). They make simple approximation of Hessian matrix,

which are often good enough to provide a fast rate of linear convergence,

and require minimal storage. For these reasons it is desirable to use limited

memory approximation for solving problems.(see Richard ,etal.,1990)

3. Fletcher low storage algorithm:

 The columns of z span

while z? contain only





0)(

)(

xc

xfMininum

i









−= 

=

m

i

kikkkk xcxfx
1

)(log()(),(









+= 

=

m

i ki

kkk
xc

xfx
1)(

1
)(),(

New low storage VM-algorithm for constrained optimization

 13

unit matrix – like information. Initially)1(1 gZ =
/)1(g

 and for ..,.........2,1=k

the following steps are repeated

(a) k

T

k gZZd)(−=

(b) Line search→ 11, ++ kk xg

(c) 1kg +

⊥⊥⊥ =
T

ZZg

(d) if 0⊥g extend  ||||/| ⊥⊥ ggZ else ZZ =
~

(e) Update Z
~

to give 1+kZ
 as for L in the BFGS method.

 It is now possible to describe a BFGS like low storage method based

of this information structure. Let storage for e vectors in Z be available. The

method can be followed for e– 1 iterations. After which it is possible to

carry out PCG steps as the preconditioner for ek  . These steps are

continued as in the Buckley – LeNir method until some test

111 2.0 +++  kk
T

kk
T gggg

or

nk =

Then Z is reset to kk gg /
and the whole process is restarted (Fletcher

,1990). The rate of improvement as e increase rather slow, at which point

the low storage method dose not performe as well as BFGS.

4. Self –Scaling variable metric method:

 This is a variable metric CG method depended by Buckely in (1978)

for the first time and it combines the CG and QN methods in an attempt to

provide their main advantages, i.e. The low storage requirements of CG

methods and the rapped convergence of the QN method.The CG – QN

algorithm implemented to use a variable amount of storage depending on

the variability of space, with minimum requirement of locations. In order to

eliminate the truncation and rounding error, the new scalar parameter ? is

added to make the sequence and efficiency(as problem dimension)increase.

The poor scaling is an imbalance between the values of the function and

change in x ,the function values may be change very little even though x is

changing significantly. This difficulty can sometime be remove by good

scaling factor for the updating H and the performance of self-scaling method

is undoubtedly favorable in some cases especially when the number of

variables are large (scales,1985).

5. The derivation of new self-scaling parameter:

 In QN methods the approximation kH
 to the inverse of the Hessian

Abbas Y. Al-Bayati and Hamsa Th. Chilmerane

 14

can be selected to satisfy the QN condition which can be written in the form

kk
y

k
H ~

1
=

+ ...(4)

where 1~ = is scalar

We introduce suitable special alternative equivalent scalars to the special

case due to the QN condition. The weakened form is duo to the following

secant condition.

kk HH =+1 ...(5)

For such case we are suggested for the first time the following several

values of scalar factors

(to obtained standard EBFGS) ...(6) 1-

2- ...(7)

3- ...(8)

4- ...(9)

To derive those scalar from the special case of the QN condition which

causes weakened form of the secant condition, using the secant condition in

QN condition (5) we get,
T

k

T

kk vyH = 
 ...(10)

We know that
T

k

T

k

T

k ggy −= +1 that eq. (10) can be write as
T

k

T

k

T

kk ggH  =−+)(1 ...(11)

The matrix is defined by
T

kkk ZZH = ...(12)

Submit in (4) we have
T

k

T

k

T

k

T

kk vggZZ =−+)(1
 ...(13)

Multiplying it by vector kg
, we have

k

T

kk

T

k

T

k

T

kk gvgggZZ =−+)(1 ...(14)

From the definition of orthogonal condition we have

k

T

kk

T

kk

T

k gvgZZg =−
 ...(15)

Z span by nggg ..., 21

1=k

2)(
2

k

T

k

k

T

k

gg

gv−
=

2)(
3

k

T

k

k

T

kk

gg

gd


−
=

2)(
4

k

T

k

k

T

kk

T

k

gg

gZZg
k


 =

  k

T

kk

T

k

TT

k

T

k gvgggg

g

g

g

g =



















− 


21

2

1

,

New low storage VM-algorithm for constrained optimization

 15

 ...(16)

for k=1,2,………..and for orthogonal property holds

  k

T

kk

T

k

TT

k

T

k gvgggggg =− 21 , ...(17)

k

T

kk

T

kk

T

k gvgggg =− ...(18)

 ...(19)

Which is defined in (7)

we kwon that kkkkk dxxv =−= +1

 ...(20)

Which is defined in (8)

But we have k

T

kkk gZZd −= the eq.(20), can be written as

 ...(21)

Which is defined in (9)

5.1 New proposed low storage method:

Step 1: Find an initial approximation x0 in the interior of the feasible region

for the inequality constrains 0)(xc . e is scalar

Step 2: Set 1=k and
10 =

 is the initial value of 0 ,
⊥Z is a unit matrix.

Step 3: set kk ggZ /=

Step 4: () k

T

kkk gZZd −= , where the columns of Z generated by g1, g2, .. gk.

Step 5: xk+1=xk+?k dk

Step 6:if go to step (6) else go to step (7)

Step 7: check , then stop else go to (7)

ek = set He=Hn and go to step (11) Step 8: if

Step 9: Find 1+

⊥⊥⊥ = kgZZg
T

Step 10: check g?? 0 extend   ZggZ
~

||||/| =⊥⊥

,else ZZ
~

=

2)(k

T

k

k

T

k

gg

gv−
=

2)(k

T

k

k

T

kk

gg

gd


−
=

2)(k

T

k

k

T

kk

T

kk

gg

gZZg
 =

()


−

+

+

1

1

k

kk

f

ff

()
 

=

m

i i

k
xc1

1

Abbas Y. Al-Bayati and Hamsa Th. Chilmerane

 16

Step 11: update Z to give 1+kZ
 with new scaling factor, which is define in

eq. (21)

Step 12: compute dk+1 = -Zk+1 gk+1 + ? k dk

Step 13: check for restarting criterion, i.e if

1111 8.0 ++++ − k
T
kkk

T gggd Satisfied go to step (2) else set k=k+1 ,

10
1

k

k


 =+

 and go to step (4)

6. Numerical results:

Several standard nonlinear constrained test functions are minimized to

compare the new algorithm with standard algorithm see (Appendix) with
7)(1  xc

FORTRAN programs were written to implement the suggested and previous

algorithms. All numerical results quoted here are obtained using (Pentium 4

computer). All cases the stopping criterion taken to be
5

1 101 −
+ kg

and


=

−
m

i i xc1

5101
)(

1


All the algorithms in his paper use the same ELS, which is the cubic fitting

technique fully, described from (Bundy, 1989).

The comparative performance for all these algorithms are evaluated by

considering NOF , NOI and NOC , are considered as the comparative

performance of the following algorithms:

1 F/R low storage algorithm (1990).

2 New self – scaling F/R low storage algorithm.

In Table (1) we have compared between F/R low storage algorithm and the

new self – scaling F/R low storage algorithm.

Table (1)

Comparison of our new algorithm with standard F/R

low storage algorithms

Test fun.
F/R low storage algorithm

NOF (NOI) NOC

New algorithm

NOF (NOI) NOC

1 156 (54) 403 170 (63) 477

2 165 (49) 681 138 (37) 611

3 248 (52) 423 249 (55) 389

New low storage VM-algorithm for constrained optimization

 17

4 104 (30) 695 98 (28) 678

5 90 (29) 416 90 (29) 416

6 86 (27) 302 87 (28) 296

7 134 (47) 338 139 (48) 253

8 99 (32) 260 91 (31) 235

9 45 (19) 26 43 (19) 92

10 111 (40) 217 104 (38) 191

Total 1238 (379) 3761 1209 (376) 3638

REFERENCES

[1] Buckly B.and A. LeNir, (1983) " QN–like variable storage

 conjugate gradient", Mathematical programming 27, 103-340.

[2] Bundy, B. (1984) "Basic Optimization Method" Edward Arnold,

 Bedford Square, London, U.K.

[3] Fletcher, R. (1990) "Low Storage Methods for Unconstrained

 Optimization", Vol.26.

[4] Gillbert and C. Lemarechal, (1989) "Some numerical experience

 with variable storage quasi – Newton algorithms", mathematical

 programming, 407-436.

[5] Liu and J. Nocedal, (1989) "On the limited memory BFGS method

 for large scale optimization", mathematical programming, 45,

 503-528.

[6] Richard H. Byrd,JorgeNccedal and Robert B. SCHNABEL,

 (1990)"Representation of quasi-Newton matrices and their use

 in limited memory methods".

[7] Scales L. E. (1985) "Introduction to Non – Linear Optimization"

 Academic Press, London.

 [8] "Interior Penalty `function", 2004 http://library.wolfram.com

 /conferences/ devconf99/bhatti/Links/Bhatti_Nonlinear_lnk_7.html/

Abbas Y. Al-Bayati and Hamsa Th. Chilmerane

 18

Appendix

1- min 21 2)(xxxf −=

 s.t

 01 2

21 −+ xx

 02 x

2- min 321)(xxxxf −=

 s.t

 020 1 − x

 011 2 − x

042 3 − x

02272 321 −−− xxx

0ix

3- min 321)(xxxxf −=

 s.t

5132 2

3

2

2

2

1 ++ xxx

4- min 321)(xxxxf −=

 s.t

042 − ix

7222 321 ++ xxx

0ix

5- min
2

2

2

1)(xxxf −−=

 s.t

 066517 21

2

2

2

1 +−−+ xxxx

 0411010 21

2

2

2

1 +−−+ xxxx

New low storage VM-algorithm for constrained optimization

 19

 045144 21

2

2

2

1 +−−+ xxxx

07 +− ix

6- min
2

2

2

1)4()3()(−+−= xxxf

 s.t

 342 2

2

2

1 + xx

 1832 21 + xx

7- min 7614)(21

2

2

2

1 −−−+= xxxxxf

 s.t

 221 + xx

 32 21 −− xx

8- min
2

2

2

1)(xxxf +=

 s.t

 011 −x

 012 +x

9- min
2

2

2

1)(xxxf +=

 s.t

 92

2

2

1 + xx

 121 + xx

10- min 3

2

2

2

1 5.13)(xxxxf ++=

 s.t

0202 321 −++ xxx

 01031 −+ xx

0ix

