
Raf. J. of Comp. & Math’s. , Vol. 6, No. 3, 2009

111

Enhancing Cost and Security of Arabic SMS Messages over Mobile

Phone Network

Abdullah A. Abdullah

College of Computer Sciences and Mathematics

University of Mosul, Iraq

Received on: 27/08/2008 Accepted on: 23/11/2008

ABSTRACT

This paper investigates a novel algorithm for compressing and

encrypting Arabic short text messages (SMS messages). Short text messages

are used in cellular networks. Compression is required for saving the

transmission energy or to use bandwidth in an efficient manner in addition

to save the user money while the end-to-end effective encryption is required

for security providence. This work succeeded to overcome small size

limitation of the SMS message by changing Arabic characters coding from

Unicode to Base64 coding scheme and developing a runt version of lossless

Huffman coding scheme. Examples are shown where the application of the

text compressor for short message services offering more than three times

the capacity compared to a standard message.

Keywords: SMS compression, Huffman coding, Transposition key.
 القصيرة عبر شبكة الهاتف المحمولالعربية تكلفة وأمن الرسائل النصية حسين ت

 عبد الله عبد الله
جامعة الموصل ، كلية علوم الحاسوب والرياضيات

 23/11/2008قبول: تاريخ ال 27/08/2008تاريخ الاستلام:
 الملخص

في هذا البحث تم تقديم خوارزمية جديدة لكبس وتشفير الرسائل النصية العربية القصيرة،
والتي تستخدم في شبكات الهاتف الخلوي. إن الفائدة الأساسية لعملية الكبس هي لتوفير طاقة النقل

عملية اللازمة أو لنقل البيانات بأسلوب كفوء بالإضافة إلى توفير المال للمستخدم، بينما تعتبر
التشفير أساسية لتوفير سرية مناسبة للرسالة. في هذا العمل تم تجاوز مشكلة صغر الحجم المتاح

(Unicodeللرسالة النصية القصيرة وذلك بتغيير نمط تمثيل الحروف العربية من التمثيل الموحد)
هذا الحجم (، بعدها تم تطوير نسخة مختزلة لطريقة كبس هوفمان تناسب Base64إلى التمثيل)

الصغير. لقد ظهر من خلال تطبيق الطريقة المقترحة لكبس الرسائل النصية الصغيرة أن الزيادة
 في حجم الرسالة وصلت لأكثر من ثلاثة أضعاف حجم الرسالة التقليدية.

 هوفمان، مفتاح تبديل. كبس، القصيرةالنصية الرسائل كبس الكلمات الرئيسية:

Abdullah A. Abdullah

 112

I. INTRODUCTION

1. Mobile and SMS messages

The mobile phone is the most successful new technologies of the past

two decades [13]. In addition to making voice communication mobile, the

mobile phone brought to light a new form of communication: SMS (Short

Message Service) or text messaging. Some researchers even argue that it is

SMS – rather than voice calls - that has been the major force in the adoption

of mobile phones. SMS’s popularity was due to the controlled cost that SMS

provides, and the efficiency of its asynchronous communication model [16].

The recent exploration of research of SMS as a separate communication

medium is found in [15], which focuses solely on SMS communication.

The short message service (SMS) was developed as part of the Global

System for Mobile Communications (GSM 03.40) standard [5] and it allows

mobile systems and other network-connected devices to exchange short text

messages with a maximum length of 160 characters. The length limit is

caused by the way that SMS is transmitted. It usually rides on the control

channels, the same frequencies or time slots used for call setup information

by mobile phones. This means that users can send or receive SMS messages

while they are making a phone call, though they need a hands-free kit to

read the screen or type on the keypad [2]. SMS was commercially

introduced in 1992.

SMS is a well established technology which has widespread use

around the globe, is quick, efficient and reliable. It can be used in many

fields such as to access banking details, to access local information services

like traffic announcements, weather forecasts, news broadcasting etc. It has

also been used in television programs to vote for people to stay in the show

or be removed [9] [7].

A simplified view of an SMS message traversing a GSM-based

system from submission to delivery was found in [21], including

Submitting, routing and wireless delivery for a message.

The following can be named as some of the advantages of SMS

1. Communication is possible when the network is busy.

2. We can exchange SMS messages while making telephone calls.

3. SMS messages can be sent in offline mode.

SMS has been called the 'killer' application of mobile phones, as its

usage exceeded all expectations. Some reasons given for the huge growth

include low cost, asynchronous nature (users can reflect before sending and

reply at their leisure) and potential for private or quiet use [11].

2. SMS (Short Message Service) specifications

The SMS message, as specified by the Etsi organization[5]

(documents GSM 03.40 and GSM 03.38), can be up to 160 characters long,

http://www.etsi.org/

Enhancing Cost And Security Of Arabic SMS Messages Over Mobile Phone Network

 113

where each character is 7 bits according to the 7-bit default alphabet. Eight-

bit messages (max 140 characters) are usually not viewable by the phones as

text messages; instead they are used for data in e.g. smart messaging

(images and ringing tones). 16-bit messages (max 70 characters) are used

for Unicode (UCS2) text messages, viewable by most phones. A 16-bit text

message of class 0 will on some phones appear as a Flash SMS (aka

blinking SMS or alert SMS).

II. MOTIVATION

1. SMS Compression

Compression of short messages is a vital operation for low complexity

entities such as mobile phones or wireless sensors. As is the case with any

computing system, yet, particularly in embedded systems, data compression

is one of the most important applications due to the restricted resources

available [14][3]. In the mobile phone’s world, the compression would

allow users to increase the number of characters of their short message

service (SMS). As it seems obvious to compress these messages, state of the

art text compressor based on LZ77 and others would fail to compress such

small messages ending up with more data than the original [6]. Therefore, a

totally new concept is needed to compress short messages. The transmission

of compressed data over cellular networks is done in a transparent way (so

still not more than 160 characters or 140 bytes are transmitted in one SMS)

and therefore a compressor/decompressor is needed on both ends, as

illustrated in Figure 1. The compression will pay off if the energy spent by

the compression and decompression is lower than the energy saved for the

transmission, such that the compression and decompression is done only

once, but the gain for shorter transmission time and in turn less power

consumption is achieved by each hop.

Another advantage of the compression is that the time spent on the

wireless medium is shorter and therefore more capacity is available [19].

This is especially important for information aggregation, where a central

entity wakes up thousands of nodes asking them to provide some

information. Therefore, compression of short messages to be conveyed over

the wireless medium seems to be promising in terms of power, costs, and

bandwidth savings. The complexity introduced in terms of computational

power and memory usage will be investigated and reported to be low.

http://www.dreamfabric.com/sms/default_alphabet.html
http://www.dreamfabric.com/sms/alert.html

Abdullah A. Abdullah

 114

Figure. 1. Text Compressor for the Mobile Phone World.

2. SMS security

The contents of SMS messages are visible to the network operator's

systems and personnel. Therefore, SMS is not an appropriate technology for

secure communications. Most users do not realize how easy it is to intercept

messages. It would likely be a relatively complex to hack into a telecom

provider’s systems to obtain the content of SMS messages, but finding staff

privileged to look at SMS messages and persuading them to reveal the

contents is much easier. Gartner Research has already expressed

reservations about security in U.K. trials of SMS voting in local elections

held in May 2002. Enterprises, including governments, cannot use SMS in

its present state for any confidential communication. Enterprises seeking

secure communication channels to mobile employees should consider

encrypted end-to-end solutions on devices having additional security

features. The underlying specifications and technology for SMS

transmission leave many security gaps. These gaps make SMS vulnerable to

[12][21]:

1. Snooping: On device, at the store and forward network elements

2. SMS Interception: Over the air, in wired network

3. Spoofing: Using commercial tools, own SMS gateway Modification

4. Using conventional hacking techniques

In this paper, we intended to overcome the SMS message size

limitations in order to decrease transmission cost for user and network as

well as adding suitable and effective end-to-end encryption method to

improve its reliability.

III. RELATED WORK

In [4], an optimal statistical model is adaptively constructed from a

short text message and transmitted to the decoder. Thus, such an approach is

not useful for short message compression, as the overall compression ratio

Enhancing Cost And Security Of Arabic SMS Messages Over Mobile Phone Network

 115

would suffer from the additional size of the context model. The recent paper

in [8] uses syllables for compression of short text files larger than 3 kBytes.

A related work in the field of very short text files is the study in [6], where a

tree machine is employed as a static context model. It is shown that failure

occurs for short messages (compression starts for files larger than 1000

Bytes). In contrast to the work in [19], the model is organized as a tree and

allocates 500 KBytes of memory, which makes the proposed method less

feasible for a mobile device. In [18] the compression for the smaller data

models was improved by using a modified hash function. Furthermore, a

methodology for the design and analysis of low complexity data-models

together with extended performance results are given in [17].

IV. PRACTICAL

The aim of this work is to add cost and security enhancements to the

Arabic SMS messages, which can be send over GSM networks, these

enhancements involve two branches:

1. Encoding (or compression) with suitable algorithm

2. Encryption method, which must be effective, simple and fast.

The overall algorithm we applied should be suitable to some mandatory

constraints:

1. Mobile hardware capabilities constraints (low speed).

2. Mobile memory constraints.

3. The size of SMS messages which is considered very short (140 byte

or 1120 bit).

Fixed-length code versus variable-length code

A fixed length code is based on the idea that, all the letters in a given

alphabet have same probability of occurrence (i.e. equal frequency). ASCII

is an example of a fixed length code. There are 100 printable characters in

the ASCII character set, and a few non-printable characters, giving 128 total

characters. Since lg 128 = 7, ASCII requires 7 bits to represent each

character. The ASCII character set treats each character in the alphabet

equally, and makes no assumptions about the frequency with which each

character occurs.

A variable length code is based on the idea that for a given alphabet,

some letters occur more frequently than others. This is the basis for much of

information theory, and this fact is exploited in compression algorithms to

use as few bits as possible to encode data without “losing” information.

More sophisticated compression techniques can use compression techniques

that actually discard information like image and video data. However, for

text compression, we do not want to have characters discarded as part of the

compression, so a text compression requires a unique decodability condition

Abdullah A. Abdullah

 116

of the compression algorithm [10][6]. Our enhancement includes both of

them. Firstly in Fixed-length code, by minimizing the representation of

Arabic alphabet codes from standard Unicode (16 bit per symbol) into a

compact alphabet version (6 bit per symbol), and finally in variable-length

code, by using a modified runt version of Huffman [1] coding scheme to

suite SMS message small size.

Fixed-length code enhancement

Arabic text usually coded using Unicode coding [20] (16 bit per

character), this make the Arabic SMS message can contain a maximum of

70 characters while default alphabet SMS message can contain up to 160

characters (7 bit per character).

Table. 1. illustrates the 7-bit default alphabet as specified by GSM

03.38

As shown in the Table 1, we can notice that, many symbols are not

used in normal Arabic language (i.e. like Ç , Ψ ,ü , ¤, … etc). Since we can

derive from Unicode a compact Arabic alphabet containing only 64 symbols

(i.e. Base64 coding scheme), including standard Arabic characters and some

@  SP 0 ¡ P ¿ p

£ - ! 1 A Q a q

$  " 2 B R b r

¥  # 3 C S c s

è  ¤ 4 D T d t

é  % 5 E U e u

ù  & 6 F V f v

ì  ' 7 G W g w

ò  (8 H X h x

Ç ) 9 I Y i y

LF  * : J Z j z

Ø 1) + ; K Ä k ä

ø Æ , < L Ö l ö

CR Æ - = M Ñ m ñ

Å ß . > N Ü n ü
å É / ? O § o à

Enhancing Cost And Security Of Arabic SMS Messages Over Mobile Phone Network

 117

common used symbols (i.e. like +, - , * , / , (,) , : , … etc) together with

their corresponding original Unicode, can be shown in Table 2.

Each symbol from our suggested Arabic alphabet now can be represented in

(6 bit only) instead of (16 bit or 7 bit).This scheme extends the message size

to be nearby 186 symbols per message (1120 bit / 6 bit).

Variable-length code enhancement

After changing the Arabic alphabet -coding scheme from the Unicode

to Base64 coding scheme in order to reduce the alphabet size, then message

will travel into the following three main steps:

1. Apply Run-length compression algorithm using an escape character

('@') when there is a benefit, in order to reduce the message length. this

step added since repeated symbols chains are very common in real life

user messages.

2. Apply our proposed runt frequency table Huffman algorithm, which we

suggest to make Huffman coding applicable in SMS messages due to its

very small length (160 characters) only.

3. Apply transpose encryption; this simple and fast encryption method will

reduce the computation time as compared with other complex

encryption methods. It will use a transpose key derived from the receiver

phone number which is entered by the sender in order to strength it. The

derived key will be used twice, firstly in rearranging the frequency table

before encoding process started in order to scatter

4. their values, and secondly to perform XORing operation on the header

part of the message only. This security procedure will be sufficient to

provide a reliable encryption scheme, since without the header

information there is no way to know which are the used characters, how

many bits occupied by each character frequency value and what are

these frequencies, which considered necessary information to any

intruder to decode the received message.

Abdullah A. Abdullah

 118

Proposed Sender Algorithm

 The following abbreviations list are used throughout the algorithm:

 ArabicSMS: array to store the Arabic SMS message.

PN: sender Phone Number.

FreqList: Frequencies List

USV: Used Symbols Vector

FFS: Frequency Field Size

RFT: Runt Frequency Table.

B
a

se
6

4
 c

o
d

e

C
h

a
r

U
n

ic
o

d
e

B
a

se
6

4
 c

o
d

e

C
h

a
r

U
n

ic
o

d
e

B
a

se
6

4
 c

o
d

e

C
h

a
r

U
n

ic
o

d
e

 1569 ء 44 1588 ش 22 1632 ٠ 0

 1577 ة 45 1589 ص 23 1633 ١ 1

 Cr 0010 46 1590 ض 24 1634 ٢ 2

 lf 0013 47 1591 ط 25 1635 ٣ 3

 Sp 0032 48 1592 ظ 26 1636 ٤ 4

 0033 ! 49 1593 ع 27 1637 ٥ 5

 0037 % 50 1594 غ 28 1638 ٦ 6

 0040) 51 1601 ف 29 1639 ٧ 7

 0041 (52 1602 ق 30 1640 ٨ 8

 0042 * 53 1603 ك 31 1641 ٩ 9

 0043 + 54 1604 ل 32 1575 ا 10

 0044 , 55 1605 م 33 1576 ب 11

 0045 - 56 1606 ن 34 1578 ت 12

 0046 . 57 1607 ه 35 1579 ث 13

 0047 / 58 1608 و 36 1580 ج 14

 0058 : 59 1610 ي 37 1581 ح 15

 0059 ; 60 1571 أ 38 1582 خ 16

 0061 = 61 1573 إ 39 1583 د 17

 0063 ? 62 1570 آ 40 1584 ذ 18

 0064 @ 63 1609 ى 41 1585 ر 19

 1572 ؤ 42 1586 ز 20

 1574 ئ 43 1587 س 21

Table. 2. proposed Base64 Arabic alphabet

Enhancing Cost And Security Of Arabic SMS Messages Over Mobile Phone Network

 119

1. Read the entered Arabic SMS message (in Unicode) call it ArabicSMS

of size 70 letter as a full message (may be another size) then read the

receiver PHONE NUMBER, call it PN. ArabicSMS[70]=

 "*******مرحبا علي, سأهاتفك لاحقا هذا المساء, اتمنى ان تكون بخير********"

Receiver phone number: PN = 1740405

Message size = 70 symbol in 1120 bit

2. Applying Run Length compression using '@' as an escape symbol, in

order to reduce redundancy characters chain like (" ******* "), which

are very common in real life messages. This step will be applied only if

it will minimize message size , in this case ArabicSMS[61] =

" ٨مرحبا علي, سأهاتفك لاحقا هذا المساء, اتمنى ان تكون بخير@*٧@* "

Note: if the '@' character appeared repeated in original message like

"@@@@@", then it will be replaced as "@@٥", also if the repeated

character are more than 3 times then run length considered useful to be

applied ,else there is no need.

Message size = 61 symbol in 976 bit

3. Converting each Unicode character in ArabicSMS into corresponding

code from our proposed 6-bit codes.

Message size = 61 symbol in 366 bit

6-bit code 63 53 07 33 19 15 11 10 48 27 32 ...
Symbol @ * ا ب ح ر م ٧ sp ل ع …

Unicode 0064 0042 1639 1605 1585 1581 1576 1575 0032 1593 1604 …

4. Calculate ArabicSMS symbols frequencies and store it in frequency

table FreqList[n] where n < m (n = 27 used characters, m = 61)

5. Sort FreqList in descending order by frequencies values as in Table 3,

this table will be stored later in a runt (or compact) manner as a part of

message header data, so that the receiver can extract it then build the

code-word binary tree (Huffman tree) which then used to encode

message characters into variable length codes.

Abdullah A. Abdullah

 120

6. Calculate Used-Symbols-Vector (USV), which is 64 bit (8 bytes) stream

corresponding the 64 alphabet characters, for example if bit 15th value

was '1' this indicate that character 'ح' was used in this message, else

considered absent. USV in hexadecimal will be 80 9D 2D E8 3F 13 A1

80.

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15-00 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0

31-16 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1

47-32 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1

63-48 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1

7. Compute bits needed to represent each coded symbol frequency,

Frequency-Field-Size (FFS) = log2 (max (FreqList[n])) bits.

ex: FFS = log2 (9) = 4 bits to represent each frequency.

Then frequencies can be stored in (27 * 4) bits only, which we call Runt

Frequency Table RFT.

8. Apply transpose encryption to frequency table before encoding process

started in order to scatter their values through the following steps:

• Shift with rotate the phone number,

ex: PN = "1740405" → PN = "5174040"

6
b

it
 c

o
d

e

ch
a

r

F
rq

6
b

it
 c

o
d

e

ch
a

r

F
rq

 2 ه 35 9 ا 10

 2 ك 31 9 48

 1 ٧ 07 3 م 33

 1 ع 27 3 ل 32

 1 أ 40 3 ت 12

 1 ف 29 3 ن 34

 1 ق 30 2 @ 63

 1 ذ 18 2 * 53

 1 ء 44 2 ر 19

 1 ى 41 2 ح 15

 1 و 36 2 ب 11

 1 خ 16 2 ي 37

55 , 2 08 ٨ 1

 2 س 21

Table. 3. Sorted frequencies

Enhancing Cost And Security Of Arabic SMS Messages Over Mobile Phone Network

 121

This step is necessary to overcome a situation when PN is originally

ordered like "1346889", in this case the key will be "1234567" which is

not effective.

• Order PN in ascending order, the index is the derived Key.

shifted 5 1 7 4 0 4 0

Ordered 0 0 1 4 4 5 7

index 4 6 1 3 5 0 2

Key = 4613502 in hexadecimal is 04 61 35 02

Then derived key will be used in rearranging the frequency table

before encoding process started in order to scatter their values. Tailer

characters (if less than 7) remain unchanged for simplicity. After that, we

must replace each character in the message with the corresponding one

according to Key, so the message now rearranged depending on the key

sequence.

The message will be:

@حفأتنهق @* ,عل@ميك سربت " ت ٧لتر ,بخ@نقوا@تا @تن اى@تل حتء*@أذت@ ٨سمي "

9. Build Huffman binary tree from frequencies to produce new code words

for only used symbols. The algorithm works by constructing a binary

tree from the bottom up, using the frequency counts of the symbols to

repeatedly merge sub-trees together. Intuitively, the symbols that are

more frequent should occur higher in the tree and the symbols that are

less frequent should be lower in the tree.

Conceptually, the algorithm creates a weighted node for each symbol,

and repeatedly merges the lowest-frequency nodes into the tree, adding

the weights cumulatively as in Figure 2.

10. Encode each symbol in ArabicSMS by corresponding code word.

The first 10 characters of original message coded by new code words are

shown below; the difference in storage size is obvious, that 20-byte

(10*16 bit) message size can be stored now in (46 bit) only.

Now previous message with 122-byte (61*16 bit) size can coded into

267 bit only which result from:

Coded-message data size = ∑ FreqList[i] * CWS[i], I = 1...n

Where CWS[i] equal to Code Word Size in bits of i-th character.

char س , ي ب ح ر * @ ن ت ل م ا ...
Key 4 6 1 3 5 0 2 4 6 1 3 5 0 2 …

New char ح * , ب ر س ي م ا ن ل @ ت ….

Abdullah A. Abdullah

 122

 ... ع @ ت ب ر س ك ي م
00001 00101 11111 1101 10101 01001 11001 000 100 010001 ...

Figure.2. resulted Huffman coding binary tree

11. Store Header data which consist of three parts as in Table 4:

• USV (size = 64 bits).

• FFS value (size = 6 bits).

• RFT (size = (FFS * n) bits).

Such that each frequency value of FreqList resides in FFS bits, this

chain of frequencies should ordered by the original alphabet-indexing

scheme.

Overall message size (MS) calculated as:

MS = USV + FFS + RFT + Coded-data stream

In this example:

MS = 64 + 6 + 108 + 267 = 445 bits, instead of 1120 bits of original

message.

Enhancing Cost And Security Of Arabic SMS Messages Over Mobile Phone Network

 123

USV 64 bit FFS

6 bit

RFT
108 bit (4 *27)

Coded

Data

 … … ع س ر ذ ح ت ب ا ٨ ٧

9D 2D E8 3F 13 A1 80 04 1 1 9 2 3 2 1 2 2 1 … …

Table. 4. New message structure

12. Appling a transpose encryption, such that the transpose key which was

derived from the receiver phone number PN and previously used in

rearranging the frequency table now will be XORed with the header

fields USV and FFS (i.e. encrypt Header only).

13. Send new coded SMS message to the receiver with PN.

Proposed Receiver Algorithm

1. Read the received coded Arabic SMS message, with receiver phone

number PN.

2. Derive the transposition key from PN, then XOR it with message header

fields USV and FFS only.

3. Extract Header data fields, which consist of USV, FFS and RFT.

4. Determine what are the used symbols from USV field.

5. Extract frequency values from RFT using FFS value.

6. Sort frequencies in descending order by frequencies value.

7. Apply transpose encryption to return the original frequency table.

8. Build Huffman binary tree from frequencies list.

9. Decode each symbol in the received message by the corresponding

base64 code.

10. Converting each base64 code back to its original Unicode

representation.

11. Applying Run Length decompression using '@' as an escape symbol, in

order to get the original message.

V. Experimental results and Compression ratio

Naturally, one of the most important metrics of efficiency for

compression algorithms is compression ratio. Compression ratio can be

defined as the ratio of size of the original text to that of the coded text,

Message Header (178 bit)

Coded

Data

…

USV + FFS RFT

Bit stream 80 9D 2D E8 3F 13 … …

XORing       …

Repeated key 02 35 61 04 02 35 … …

Final message 82 A8 48 E8 39 26 … …

Abdullah A. Abdullah

 124

defined as (Size of original text) /(Size of coded text), For above example,

Compression ratio = 1120 / 445 = 2.516

In Figure 3, we draw the compression ratio for several different

messages varied in size and number of used characters. We found that as the

message size increases the compression ratio also increases, which is

expected because when the message size increases the frequency of the

symbols will increase, so we expect to have better compression on large

messages.

Additionally, results show that the size of proposed header for the

message that depends on number of used characters does not significantly

affect compression ratio.

As a result, from any compression process, a storage space is freed.

However, since Huffman coding depends on variable length codes, we

cannot determine exactly how many characters can resides into the freed

space. Therefore, we will divide the freed space by the Average code-word

length in order to estimate the count of characters, which can be added to

the message bounded by original message size (1120 bits). To illustrate this

we calculate:

Gained bits = 1120 – 445 = 675 bits

Average code-word length = 267 / 61 = 4.377 bits

Expected additional characters = 675 / 4.377= 154 characters.

Estimated new message size = 70 + 154 = 224 character

We can notice that, if the user adds often characters of code word bits

less than 4.377 bits (like 'ن','م','ا' … etc), we can get more than 154 additional

characters, that is mean the compression ratio will increase. while if the

added characters were often have code word bits more than 4.377 bits (like

 etc), then we can get less than 154 additional characters, that is … 'ف','ح','ر'

mean the compression ratio will decrease.

0

0.5

1

1.5

2

2.5

3

3.5

4

61 128 166 198 265 280 372 396 528

Message size

C
o

m
p

re
s
s
io

n
 r

a
ti

o

0

5

10

15

20

25

30

35

40

61 128 166 198 265 280 372 396 528

Message size

N
o

.
o

f
U

s
e
d

 c
h

a
ra

c
te

rs

a) Compression ratio b) No. of used characters

Figure. 3. Experimental results

Enhancing Cost And Security Of Arabic SMS Messages Over Mobile Phone Network

 125

In this example, we reach to 2.51 % compression ratio; this rate is

considered a high ratio especially when compared with the small data size

constraint.

 Another important aspect in analyzing results is the compression

time, here we present the time needed for a stand alone compression on the

Nokia 6300 as example with its 238MHz processor. In Figure 4 the time

needed to compress or decompress is given respectively.

In general the time needed for compression is obviously more than the once

needed for decompression that is due to compression extra steps such as

(calculating frequencies). We can also notice that message length is

considered main factor in increasing time. Therefore, for a message length

of 128, the Nokia 6300 needs 1.77 seconds for compression and 1.61

seconds for decompression. While a message length of 528 needs 6.83

seconds and 6.21 seconds for compression and decompression respectively.

VI. CONCLUSION

This paper investigates a novel algorithm for compressing and

encrypting Arabic short text messages. The algorithm can be applied in

cellular mobile communication systems. It has been found that the

compression of Arabic SMS saves space and reduces transmission time.

Also it is found that as the message size increases the compression ratio also

increases, that is expected because when the message size increases the

frequency of the symbols will increase, so there is a great expectation to

have better compression on large messages. Additionally, results show that

the size of proposed header for the message does not significantly affect

compression ratio. However, Arabic users can send nearby 3 in 1 encrypted

SMS messages.

 a) Compression time b) Decompression time

Figure. 4. Compression and Decompression time in seconds

Abdullah A. Abdullah

 126

REFERENCES

[1] A. Huffman, 1952, "A Method for the Construction of Minimum

Redundancy Codes," Proc. IRE, Vol. 40, pp. 1098-1101.

[2] A. Dornan, “The Essential Guide to Wireless Communications

Applications”, published by Prentice Hall PTR, ISBN 0-13-031716-

0.

[3] C. Sadler and M. Martonosi, 2006, "Data compression algorithms for

energy-constrained devices in delay tolerant networks". In Sen-

Sys'06, pages 265.278.

[4] E. Hatton, 1995, “Samc–efficient semi-adaptive data compression,”

in Proceedings of the IBM 1995 conference of the Centre for

Advanced Studies on Collaborative research, Toronto, Ontario,

Canada, p. 29.

[5] European Telecommunications Standards Institute (ETSI), GSM

03.40 v7.4.0, Digital cellular telecommunications system (Phase 2+),

Technical realization of the Short Message Service (SMS), ETSI

2000, http://www.etsi.org.

[6] G. Korodi, J. Rissanen, and I. Tabus, 2005, “Lossless data

compression using optimal tree machines,” in Proceedings of the

IEEE Data Compression Conference (DCC’05), pp. 348–357.

[7] G. Le Bodic, “Mobile Messaging Technologies and Services – SMS,

EMS & MMS”, published by John Wiley & Sons Ltd, ISBN 0-470-

84876-6.

[8] J. Lansky and M. Zemlicka, 2006, “Compression of small text files

using syllables,” in Proceedings of the IEEE Data Compression

Conference (DCC’06), p. 458.

[9] Latest Mobile, GSM, Global, Handset, Base Station, & Regional

Cellular Statistics http://www.cellular.co.za/stats/stats-main.htm.

[10] M. Nelson and J.-L. Gailly, 1995. "The Data Compression Book",

2nd Edition. M&T Brooks, San Mateo, CA.

[11] M. Shirali-Shahreza, 2006, "Stealth Steganography in SMS,"

Proceedings of the third IEEE and IFIP Int. Conference on Wireless

and Optical Communications Networks (WOCN 2006), Bangalore,

India.

http://www.etsi.org/
http://www.cellular.co.za/stats/stats-main.htm

Enhancing Cost And Security Of Arabic SMS Messages Over Mobile Phone Network

 127

[12] Network Security Solutions, 2006. White paper on SMS

vulnerabilities and XMS technology enabling mCOMMERCE.

http://www.mynetsec.com February.

[13] K., Nyiri, 2003. "Mobile Communication: Essays on Cognition and

Community". Published by Passagen Verlag, Vienna.

[14] P. Havinga and G. Smit, 2000. "Design techniques for low-power

systems". Journal of Systems Architecture: the EUROMICRO

Journal archive, 46(1):1.21.

[15] R., Harper, L. Palen, and A.S. Taylor, 2005, "The Inside Text".

Springer, Germany.

[16] S. Jenson, 2005, Default Thinking: Why consumer products fail. In

The Inside Text. Eds. Harper, R., Palen, L. and Taylor A. Springer.

[17] S. Rein and C. G¨uhmann, “A free library for context modeling with

hash-functions– part i,” Wavelet Application Group, Tech. Rep.,

May 2005. [Online]. Available: http://www.mdt.tu-berlin.de.

[18] S. Rein, C. G¨uhmann, and F. Fitzek, 2006. “Low complexity

compression of short messages,” in Proceedings of the IEEE Data

Compression Conference (DCC’06), pp. 123–132.

[19] S. Rein, C. G¨uhmann, and F. Fitzek, 2006. "Compression of Short

Text on Embedded Systems". J. Computers, Vol. 1, No. 6,

September.

[20] Unicode Standard, Version 5.0, 1991-2008 (ISBN 0-321-48091-0),

[Online] at http://www.unicode.org/versions/Unicode5.0.0 .

[21] W. Enck, P. Traynor, P. McDaniel, and T. La Porta, 2005,

“Exploiting Open Functionality in SMS Capable Cellular

Networks”, In Proceedings of ACM CCS’05, November 7–11,

Alexandria, Virginia, USA.

http://www.mdt.tu-berlin.de/
http://www.unicode.org/versions/Unicode5.0.0

