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ABSTRACT

In this paper, we have investigated a new class of conjugate gradient algorithms
for unconstrained non-linear optimization which are based on the quadratic model.
Some theoretical results are investigated which are sufficient descent and ensure the
local convergence of the new proposed algorithms. Numerical results show that the
proposed algorithms are effective by comparing with the Polak and Ribiere algorithm.
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1. Introduction
Our problem is to minimize a function of n variable
minimize f(x) , xeR"
where, f is smooth and its gradient g(x) = Vf(x) is available. Conjugate gradient
methods. For solving (1) are iterative methods of the form

Xeg =X+ de (2)

where, «, >0 is a steplength and d, is a search direction. Let g, denotes g(x,). The
search direction at the first iteration is the steepest descent direction, i.e., d, =—g,. The
consequent search direction can be defined by

dey=-0 + A4, (3)
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where, g, isascalar. If f(x)is a strictly convex quadratic function
f(x) = %XT AX

where, Ae R™ is a symmetric positive definite matrix, and if ¢, is the exact one-
dimensional minimizer given by
T
— 0y dk

Oy == e, 5

k dJAdk ( )
then, the methods (2) and (3) are called the linear conjugate gradient method. Thus,
several formulas of f, where considered, which are equivalent for strictly convex

quadratic objective function .Within the framework of linear conjugate gradient method,
the conjugacy condition is defined by

diTAdJ-:O, 1] (6)

for search directions, and this condition guarantees the finite termination of linear
conjugate gradient methods.

On the other hand, (2) and (3) are called the non-linear conjugate gradient method
for general unconstrained optimization problem. The non-linear conjugate gradient
method was first proposed by Fletcher and Reeves [3]. Within the framework of
nonlinear conjugate gradient methods, the conjugacy condition is replaced by

dl.y, =0 @
where, y, =0,,, —J,, because the relations

1
dkT+1Adk :a_dkTA(Xkﬂ _Xk)

k

1
=a_dkT+1(gk+1_gk) (8)

K e

1
= _dl-<|—+lyk

k

hold for the strictly convex quadratic objective function, or the mean value theorem
yields

dkTyk ZadelVZf(Xk -|-a)akdk)dk .................... 9)
for some @ € (0,1). Thus, condition (7) means that the search directions d,,, and d, are

mutually conjugate with respect to Hessian matrix V?f(x) at some point. The

extension of conjugacy condition was studied by Perry [4]. He tried to accelerate the
conjugate gradient method by incorporating the second-order information into it.
specifically, he used the secant condition

H..Ye=S. (10)
of quasi-Newton methods, where asymmetric matrix H,,, is an approximation to the
inverse Hessian. For quasi-Newton method, the search direction d,,, can be calculated
in the form

26



A Modified Class of Conjugate Gradient Algorithms Based on ...

dk+1 — _Hk+1gk+1 ....................
by (10) and (11), the relation
dlLlyk = _(Hk+lgk+l)T Y = _gk+l(Hk+1yk) = _g:JrlSk """"""""""

holds. By taking this relation into account, Dai and Liao replaced the conjugacy
condition (7) by the condition

dlLY, =—00.Se (13)
Recently, Dai and Liao [6] proposed the condition
d.y.=—tg/.s. (14)

where t > 0 is a scalar.
Well-known formulas for g, are the Fletcher-Reeves (FR) [5] Polak-Ribiere-

Polyak (PRP) [12] and Hestenes-Stiefel (HS) [2] formulas and they are given by

2
FR _ ||gk+1||

kil = ||9k||2 .................... (15)
K+l ||9k||2 .................... (16)
STy (17)

The global convergence properties of the FR, PRP and HS methods without
regular restarts have been studied by many researchers, including Zoutendijk [7], Al-
Baali [8] and Gilbert and Nocedal [9]. The conjugate gradient method with regular
restart was stated in [10]. To establish the convergence results of these methods, it is
usually required that steplength «, should satisfy the strong Wolf conditions:

f(x)-f(x +d)>-0a,0,d, e (18)

9% +ad)'d|<olord|] L (19)

where 0< ¢ <o <1. Some convergence analyses even require that «, be computed by
exact line search, that is,
f(Xk+akdk):mig‘ fx+edy) (20)

On the other hand, many other numerical methods for unconstrained optimization
are proved to be convergent under the standard Wolfe conditions:

f(x)-f(x +od)>-Se,0/d, (21)

g(x, +e,d)'d, >09,d, (22)
for example, (see Nocedal and Wright [10]).
these line search strategies require the descent condition

g,d <0, forallk (23)

however most of conjugate gradient methods don't always generate a descent condition,
so condition (23) is usually assumed in the analyses and implementations, (see Hirotaka
and Hiroshi [11]).

27



Basim A. Hassan & Hameed M. Sadiq

The structure of the paper is as follows. In section (2), we present the new
formulas 2™ and B°"?. Section (3) shows that the search direction generated by this

proposed algorithms at each iteration satisfies the sufficient descent condition and
descent algorithm. Section (4) establishes the global convergence property for the new
class of CG-methods. Section (5) establishes some numerical results to show the
effectiveness of the proposed CG-method and Section (6) gives brief conclusions and
discussions.

2. New Formulae for g,

The quadratic model is obtained from Taylor expansion of the function upto the
second order terms, which can be written

f(x, +8)= f(xk)+gls+%sTGs
since s, =, d,, then from (24) we get:
f(x, +e,d)=f(x)+a.g,d, +%ak2d;Gdk

where, G is symmetric positive definite matrix.
Now, by using exact line srarch to derive «, (exact step size), in particular for the
quadratic model
9, di

“TTaTed, e, (26)

substituting (26) into (25), we obtain :
_(g;dk)z +l(ggdk)z

fO randy) = fix) =-S5 me ot e 7)
k k k
Td 2
f(Xk+akdk)_f(Xk):_% .................... (28)
k k
T 2
dGd, = o) (29)
Z(fk+1 o fk)
then, we get
(07d, )
S I where 1, is identity matrix

C2(f, - f)drd, o e BEEERTEEER (30)

therefore, from the above equation, we have
G—l 2(fk+1_ fk)dljd

. e 31
(d479,)° ey
then, the Newton direction d,,, =-G™g,,, can be written as follows :
2(f,,—f.)d,d
d — k+1 k/~k ~k
k+1 ( (dggk)z jgkﬂ .................... (32)

using the conjugacy condition (7), since Newton direction is conjugate gradient with
the exact line searches we get :
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(Z(fkﬂ - fk)dlz—dk
(dg,)’?

then, we have

4 _[Hz(fm— fi)dy djg:ﬂyk
-

ngHYk :_g;—ﬂyk +:BkdkTyk

(di9,)’ dy i

k

2(f.,,—f )d.d|g,,
dk+l:_gk+l+ 1+ ( k 1T kz k ng1Yk d
(dk gk) d Y,
since, s, = «,d, then:
2(fi, — f)did, j G Vi s
(dg,)* Yi Si

where, new formulae denote by 2™ is defined by :

ﬂkBHl =1+ Z(fk+1 B fk )ddek ngYk
(d;gk)2 dljyk

k

dk+l = _gk+l +[1+

or

BH1 _ | 1_ 2(f, = fi)did |9eaYe
k 2 T
(d[gk) dy Yy

We can therefore modify the Eqg. (38) and Eq. (36) by using the idea of Dai and
Laio [6] and combining the quasi-Newton direction (32) with conjugace condition

23), we get :
_ Z(fk — fk+1)ddek

ngyk + gL—lSk =0
2
(@/g,)

and

dILlyk :_g:+1Yk +,3kdkTyk =0
from (39) and (40) we get :

ﬂk :(1_ Z(fk B fkﬂ)ddeJ ngYk n ngSk

(deg)” ) diye  dey,
since, s, =, d, then:

T T
Sk yk sk yk

iy =—04 +{{1 2(fk - fk+1)ddek J ngyk n ngSk }Sk,

(@79, )

BH2
where new formulae denote by B is defined by :

BH2 _|1_ Z(fk — fk+1)ddek 9:+1yk + ngsk
ko ™ 2 T T
(dkTgk) de v de Y
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it seems from (43) if exact line search is used (s, g,., =0) then (43) reduces to (38).

3. The Descent Property and Descent Algorithm

Below we have to show the sufficient descent property for our proposed new
conjugate gradient methods, denoted by A°* and p"? . For the sufficient descent
property to be hold :
Oies <=9, for k=0andec>0 (44)

Assumption(1):

Assume f is bounded below in the level set S = {x eR": f(x)< f(xo)}; In some
neighborhood N of S, f is continuously differentiable and its gradient is Lipshitz
continuos, there exist L >0 such that:

lo) —g)|<Llx—y| ¥xyeN.

suppose that Assumption (1) holds and if the line search satisfies the Wolfe condition.
it follows from (22) that

dy, =d; (9., —9,)=(c-2)d]9, (46)
on the other hand, the Lipschiz condition (45) implies
(9,.,-9.)'d, <a, L||dk||2 .................... (47)
the above two inequalities give
o-1 gldk
G Z———"=—o . (48)
Lol
which (18) implies that
(ord, )
k~ hea 2C—5— (49)
o]

where, ¢ = 5(— o)/ L, more details can be found in [13].
Theorem (3.1) :
_ T
If z(fk< Tfk“))gk de _ u > 1 then the search direction (3) and B> givenin
dk gk
equation (38), with the condition (44) will hold for all k >1.

Proof :

Since d, =-g,, we have g;d, =—||g0||2, which satisfies (44). Multiplying (35)
by 9,.,, we have

Z(fk - fk+1)ddek } ngYk T

d:+lgk+1 :_||gk+l||2 +|:1_ (dTg )2 dTy dk gk+1 .................... (50)
k Ik k Jk
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=gl +0- u]%kk*lyy:dkgkﬂ .................... (51)
yielding
raOis = 9] + - U)gvk;;ik VO ) (52)
0780 =Gl +A-0) (g:+lky; RS (53)

applying the inequality w'v < E(||W|| +||v||2) to the second term of the right hand side

of the above equality, with w=(y, v, )d,,, and v=(g,.,v, )y, We get:

0 <o + (( )) Glofomr @b (54)
k k
1-u
] RS e HURA
k
.................... (55)
<3 etfore § (o] I
from (55) we get :
dk+1gk+l [ ___}"gm" 2((\/ y% (gk+1 k) ”yk”
k Jk
.................... (56)
R R et AR A
k Jk
S Ry I AT Y 57
gk+1 2 2 (STy ) yk .................... ( )
k Jk
therefore, when %+% >0 and 1-u<0 , we get
1 u
dl;r+lgk+l < _(E + E]”gkﬂnz
e, (58)
< =gy
where ,
c:%+% .................... (59)

Theorem (3.2) :
For the line search directions defined by
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2(f, - f,,.)d d, o,y g S
dT - _ 1— k k+1 Mk Yk k+1J k d k+1°k d
k+1 gk+1 +( (dlzgk)z J dkTyk dkTyk .................... (60)
If Z(fk — fk+l)ddek =t > 1+ Sk yk then
5 >
(@79, Iy,
d],0., < c||gk+1|| .................... (61)

Proof :

The inequality (61) holds for k=0, clearly. Now, we let k>1. From the
following inequality

wivsl (||W|| oM, and wyver™ 62)

it can be derived that

(ors e ) (s o)< 5 (ars Pl + s Flowal’)

.................... (63)
S0, it follows from (40) , (42) and (63) that
f. - f.,)d.d
diG = ||gk+l|| [ 2 k(d;g:))z — J gsk;;ik Sk Ot + i?;: SOt (64)
0 G <0 +0- t)z( - ((gmsk)zyk (yksk)zgmj gk*;kSIgM
k k k
gsf - e (65)
1 +
<l et yk)z((@1k+1sk)zyk ots o) A
(orss S [, el Il
L e R IR )
therefore, when %+% >0 and s, Y, — Hyzk H H 2” <0, we get
sl < _6 ' %j”gkﬂnz .................... (67)

< ~clgial

1t
where, c ==+ —-
2 2

Now, we can obtain the new descent conjugate gradient algorithms, as follows :
The Descent Algorithm
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Step 1. Initialization: Select x, e R" and the parameters 0< o, <J, <1.Compute
f(x,) and g,. Consider d, = —g, and set the initial
guess o, =1/|g, |

Step 2. Test for continuation of iterations. I ||g,,| <107, then stop. else step 3.

Step 3. Line search: Compute ¢, ,, >0 satisfying the Wolfe line search conditions (18)
and (19 ) and update the variables x,,, = x, + &, d, .

Step 4. p, conjugate gradient parameter which is defined in (38)and (43).

Step 5. Direction computation. Compute d, , =-0,,, + fB.d, . If the restart criterion of

Powell ‘nggk‘zO.Z |9, is satisfied, then set d,,=-g,, otherwise define

d,., =d.Compute the initial guess a, =, _[d,,|/|d | set k =k +1 go to step2 .

4. Global Convergence Property :

Next, we will show that CG method with g°"* and 2% converges globally. We

study the convergence of suggested methods by using uniformly convex function, then
there exists a constant x >0 such that

(VEQ)-VE()) (x—y)> gfx—y|" forany x,yeS ... (68)
or equivalently
Yy S, > /¢||sk||2 and y||sk||2 <ys, < L||sk||2 .................... (69)

on the other hand, under Assumption(1), it is clear that there exist positive constants B,
such

IX|<B,vxes (70)

Proposition:
Under Assumptionl and equation (70) on f , there exists a constant » > Osuch that
Vi) <y, vxeS (71)

Lemma(l):

Suppose that Assumption(1) and equation (70) hold. Consider any conjugate
gradient method in froms (2) and (3), where d, is a descent direction and «, is

obtained by the strong Wolfe line search. If

1
= 0
é dk+1||2 .................... (72)
then we have
lim(infg,)=0. (73)

more details can be found in [6],[11].
Theorem (4.1):
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Suppose that Assumption (1) and equation (70) and the descent condition hold.
Consider a conjugate gradient method in the forms(2)—(3) with " as in (38), where
a, is computed from Wolf line search conditions (21) and (22). If the objective
function is uniformly convex on 'S, then E@Oinf||gk|| =0.

Proof :

Firstly, we need simplify our new A2, so that our convergence proof will be

much easier. Subsisting (49) into (37), we obtain :

e _ (1 p¢) JenYi %k“yk .................... (74)
k Jk
Now, we get
Pl =[- 0 +0-2080ea ) 75)
k Jk
91 Vi gk+1yk
de] = - d, —2c d,
] H Ty, dr v,
:H_ghﬁgmyk g fiade g
Yk Sk yk Sk 76)
L 2 L ....................
SI|9k+1||+”g“” !SII s |9l Llsl’
As] Al
L . L
s||gk+1||(l+——2c—J
7R
1-2¢)L)-
Idya] < (W} .................... (77)

this relation shows that

1
l=00
Z dk”Z (,U-i-(l 2C ] —ZZ .................... (78)

k>1 7/ k>1

Therefore, from Lemma 1, we have lim(inf lg.[)=0, which for uniformly convex

function is equivalent to lim||gk|| =0.

Theorem(4.2):

Suppose that the assumption 1 holds and consider conjugate gradient algorithm in
the forms (2)—(3) with B2 as (43), where d, is descent direction and ¢, is obtained
by Wolf line search. If

2

2 S O
k>1 ||dk+1||
then

lim(infg,J)=0. (80)
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Proof :
Substiting (49) into (43), we obtain :

‘ﬁBHZ‘ |gk+1Yk_2CgI+1Yk 9I+1Sk|

+——— 81
‘dek dg Y, dkTyk‘ (81)
then
Layfde] . Lenfdi] | onld]
B <] — T TP (82)
A ey et
From (71) and (82) we have
[dcal < gicall -+l
Le,|d Le,|d a,|d
<l g Sl g bedh], ddil
‘dk yk‘ ‘dk yk‘ ‘dk yk‘ .................... (83)
2
=g 1+ La:”d” _2c LakT||dk|| +0‘k||Tdk||
d v SHEYM I A
From the strong Wolfe conditions (18), (19) and sufficient descent condition, we
have
diy, >(c-2gid, =@-o)o >0 (84)
Le,|d, | Le,|d, | a|d, |
ol fo L Ll e
C-o)o " C-olo ) @-o)a
2 2 2 | (85)
S||9k+1||!1+ LB’ LarB akB_z}
t-o) (-o) (@-o)
=[guM < Mo (86)
2 2 2
where, M =1+ LB -2c LB + B . This relation implies

i-oy” Q-0 Q-o)

I 3221“0 .................... 87)

k>1 kJr1|| M y k=
therefore, we have lim inf|g, =0

5. Numerical Results:

In this section, we have reported some numerical results obtained with the
implementation of new formals #>*and £2"?on a set of unconstrained optimization
test problems taken from [1]. We have selected (15) large scale unconstrained
optimization problems in extended or generalized form, for each test function , we have
considered numerical experiments with the number of variable 100 <n <1000. These
two new algorithms are compared with Polak-Ribe're (PR) algorithm, by using the
standard Wolfe line search conditions (21) and (22) with 6 =0.001 and o =0.9. In all
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these cases, the stopping criteria is the |g,|=10"°. The programs are written in Fortran

90. The test functions are commonly used for unconstrained test problems with standard
starting points and a summary of the results of these test functions were given in Table
(5.1). We tabulate for comparison of these algorithms, the Total number of iterations
(TNOI) and the Total number of restart (TIRS).

Table(5.1)
Test PR BH1 BH?2
problems K K K
TNOI TIRS | TNOI TIRS | TNOI TIRS
Extended Rosenbrock 745 436 379 185 392 201
Extended While & 2296 2012 396 184 410 189
Holst
Extended PSC 1 176 136 94 65 93 64
Extended Maratos 3282 2631 2695 2442 2664 2419
Quadratic QF2 4480 2743 2873 865 2714 813
Arwhead 158 95 128 85 137 93
Nondia 1371 1308 128 76 132 76
Partial Perturbed 2407 815 2279 631 2193 566
Quad.
Liarwhd 315 174 213 119 210 117
Denschnc 2487 2247 2135 2084 2138 2084
Denschnf 223 196 200 172 204 174
Extended Block 1280 650 154 94 155 95
Diagonal
Generalized Quad. GQ1 110 65 94 57 96 59
Sincos 176 136 94 65 93 64
Generalized Quad. GQ2 730 329 412 73 413 170
Total 20236 13973 12274 7197 12044 7184

6. Conclusions and Discussions:

In this paper, we have proposed a modified class of non-linear CG- algorithms
based on the Taylor expansion to second order terms defined by (38) and (43)
respectively. Under some assumptions, the two new algorithms have been shown to be
globlly convergent for uniformly convex, functions and satisfied the sufficient descent
property. The computational experiments show that the new two kinds given in this
paper are successful .

Table (5.1) gives a comparison between the new-algorithm and the Polak-Ribiere
(PR) algorithm for convex optimization, this table indicates, (see Table (6.1)), that the
new algorithm saves (59.50-60.65)% NOI and (51.41-51.50)% IRS, overall against

the standard Polak-Ribiere (PR) algorithm, especially for our selected group of test
problems.
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Table(6.1): Relative Efficiency of the New Algorithm

[1]
[2]

[3]
[4]
[5]
[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

Tools NOI IRS
PR Algorithm 100 % 100 %
New Algorithm with ﬂkBHl 39.35 % 48.59 %
New Algorithm with ,BkBHz 40.50 % 48.50 %
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