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ABSTRACT
In 2005 Wang investigated the zero divisor graphs of degrees 5,6,9 and 10. In 2012
Shuker and Mohammad investigated the zero divisor graphs of degrees 7 and 8. In this
paper, we consider zero divisor graphs of commutative rings of degrees 11, 12 and 13.
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1. Introduction

The concept of zero divisor graph of a commutative ring was introduced by Beck
in [3], he let all elements of the ring be vertices of a graph. In [1] Anderson and
Livingston introduced and studied the zero divisor graph whose vertices are the non-
zero zero divisors.

Throughout this paper, all rings are assumed to be commutative rings with
identity, and Z(R) be the set of zero divisors. We associate a simple graph I'(R) to a ring
R with vertices Z(R)*= Z(R)-{0}, the set of all non-zero zero divisors of R. For all
distinct x,ye Z(R)*, the vertices x and y are adjacent if and only if xy=0. In [1]
Anderson and Livingston proved that for any commutative ring R, I'(R) is connected.

In [6], Wang investigated the zero divisor graphs of degree 5, 6, 9 and 10. In [5],
we consider the zero divisor graphs of degree 7 and 8. In this paper, we extend these
results to consider the zero divisor graphs of commutative rings of degrees 11,12 and
13.

2. Rings with |Z(R)*|=11

The main aim of this section is to find all possible zero divisor graphs of 11
vertices and rings correspond to them.

Recall that if R is a finite ring, then every element of R either unit or zero divisor
[2]. In [6] Wang proved the following result.

Lemma 21: Let (Rymi)) and (Rzmz) are local rings, then
|Z(R1XR2)"|=|R[X|m2+|Rz|x|ma|-|m1||m2|-1. m

In [5] we extended Wang's result.
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Lemma 2.2: If (Ri,mi1), (Rz,mz) and (Rs,ms) are finite local rings, then
|Z(R1XR2XR3)"|=|R1[X|Rz2|X|ms|+|Z(R1XR2)[X(|R3|-|ms|)-1 where

|Z(R1xR2)[=[R1[X|mz[+[RzfX|mz|-[mz[X|m2|.m

As a direct consequence to Lemma 2.2, we obtain the following:

Corollary 2.3: If Ry, R2 and Rz are finite fields, then

|Z(RixR2XR3) = [R1|R2+[Ru|[Rs|+[R2[|Rs|-[R1|-[R2-|Rs|. m

Corollary 2.4 : If R is a finite ring and R=R1xR2XR3, then |Z(R)*[>13 for some
local ring Ri but not field. m

Corollary 2.5: If R; is local not field for some 1<i1,i><3,then |Z(R) [>27.m

Lemma 2.6: [6] Let R be a ring and R =zR1xR2xR3, where Rj is local for i=1,2,3,
then

1- If |Ri[=3 for some iy, iz, then |Z(R)"|>13.
2- If |Ri|>4 for some i, then |Z(R)"[>12.

Lemma 2.7: [6] Let R RixR2xR3xR4, where R; is local for every i. Then
|Z(R)'|>14.

Next, we prove two fundamental lemmas

Lemma 2.8 : Let R be a ring with |Z(R)"|=11, then R=R:1xR2 , where R; and R>
are local rings.

Proof: Let R = R1 X Rz ...x Rn, where each Ri is a local ring. If n > 4 or n=3 with
Ri not field for some i=1,2 and 3, then we have a contradiction , by Lemma 2.7 and
Corollary 2.4 respectively. It is clear that if n=1, then |Z(R)|=12 and hence, it also a
contradiction so that we can investigate the case when n=3 and R; are fields for each
i=1,2,3 .By Corollary 2.3 , |Z(R1xR2XR3)"|= |R1/|R2|+|R1||R3|+|R2||R3|-|R1|-|R2|-|R3|=11. If
|R1|=|R2|=2, then |Rs|=11/3 which is a contradiction. If |R1|=2, |R2|=3, then |R3|=5/2,
which is a contradiction. If |R1j=2 and |R2[>4, then by Lemma 2.6(2) |Z(R)"|>12, which
is a contradiction. If |R1| and |Rz| >3, then by Lemma2.6(1) |Z(R)"[>13, which is again a
contradiction. Therefore, n=2 and, hence RxR1xR>. m

Lemma 2.9: Let R be a ring with |Z(R)*|=11. Then, R=Z4xZs, ZsxZ2[X]/(X?),
Zo[X)Y (XA Zo[X]/(X?), ZoXZg, ZoxZ3[X]/(X?), ZoXZs, ZoxZo[X]/(X3),
ZoXZa[XJ(2X,X2-2), ZoxZo[X,YV(KY)3, ZoxZa[XV/(X2,2X), ZsxZa, ZsxZo[X]/(X),
ZoXZ11, FaxFg or ZsxFs.

Proof: By Lemma 2.8; R=RixR2 , where R1,R2 are local rings. If R and R are
not fields, then |Z(RixR2)'|=|R1|X|mz|+|Rz|X|ma|-|ma|jm2|-1=11. If |mij=p , where p is
prime, then |R1|=p? [ 6, Lemma 4.8]. If |[m1|=2, then |R1|=4 which implies that |R2|=6-
Im2|, therefore |m2|=2 and |Rz|=4 so that Rz ZsxZs or ZaxZo[X]/(X?) or Z2[X]/(X?)x
Zo[X]/(X?). if |ma|=3, then |R1|=9 which implies that |R2|=4-2|mz|, but |my|>2, therefore
|R2|<0 which is a contradiction . If |mai|,|mz[>4, then [Ry|,|R2>8 so that 11=|Z(R)"[>47
which is a contradiction. If Ry is a field and Rz is not a field, then |R2|=12-|m2|(|R1]-1).
Let |R1|=2,then |R2|=12-|m2|. Therefore, |m2|=3, |R2|=9 or |m2|=4, |R2|=8 and, hence
R=Z,xZo, ZoxZ3[X]/(X?), ZoXZs, ZoxZo[X]/(X3) ZoxZa[X]/(2X,X?-2),
ZoXxZo[ X, YT(X,Y)2 or ZoxZa[X]/(X2,2X) .

Let |R1|=3, then |R2|=12-2|m3|, which is a contradiction. Let |R1|=4: Then,
|R2|=12-3|m2|, which is also a contradiction. Let |R1|=5. Then, |R2|=12-4|m2|. Therefore,
Im2|=2 and |R2|=4 so that R=ZsxZ4 or Zsx Z2[X]/(X?). Let |R1/>7: Then, |[R2|=12-6|my|
and since [mz/>2, then |R2|<0 which is a contradiction. If R1 and R are fields, then
applying Lemma 2.1 |R1|+|R2|=13 and hence |R1|=2, |R2|=11 or |R1|=4, |R2|=9 or |R1|=5,
|R1|=8. Therefore, R=Z>xZ11, F4xFg Or ZsxFg. m

Now, we shall prove the main result of this section.
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Theorem 2.10: Let R be a ring with |Z(R) *| =11, then, the graphs depicted in the
following figures can be realized as I'(R).

o B 2 K

Figure (1) Figure (2) Figure (3) Figure (4)

= K

Figure ( 5) Figure ( 6) Figure (7) Figure (8)

Proof: By Lemma 2.7; R=Z4XZa, Z4XZz[X]/(X2), Zz[X]/(XZ)X Zz[X]/(XZ), ZoXZg,
ZoxZ3[X]/(X?), ZoxZs, ZoXZo[XJI(X3), ZoXZa[X]/(2X,X2-2), ZoXZo[X,Y]/(X,Y)3,
ZoXZa[X)/(X?,2X), ZsXZa, ZsXZ2[X]/(X?), Z2xZ11, FaxFg or ZsxFs. Figure (1), can be
realized as I'(Z4xZ4) or T'(ZaxZ2[X]/(X?)) or T(Z2[XJ/(X?)x Z2[X]/(X?)). Figure (2) , can
be realized as I'(Z2XZs) or I'(Z2xZ3s[X]/(X?)). Figure (3) , can be realized as I'(Z2XZs) or
[(Z2xZ2[X]/(X3)) or ZoxZa[X]/(2X,X2-2). Figure (4) , can be realized as I'(ZsxZ4) or
['(ZsxZ2[X]/(X?)). Figure (5) , can be realized I['(Z2XZa[X]/(2X,X?)) or
['(Z2xZ[X,Y]/(X,Y)?). Figure (6) , can be realized as I'(Z2xZ11). Figure (7) , can be
realized as I'(F4xFg) and Figure(8) , can be realized as I'(ZsxFg). m

3. Rings with [Z(R)*|=12

The main aim of this section is to find all possible zero divisor graphs of 12

vertices and rings correspond to them.
We shall start this section with the following lemmas.

Lemma 3.1 : Let R be a ring with |Z(R)*|=12; if R=R1xR2x...Rn, where R;j is a
local ring for all i>1 , then n=3 if and only if R=Z>XZ>XF4

Proof: Let R be a ring with |Z(R)*|=12 and let R=R1xR2xRs where R; is a local
ring for all i=1,2,3. If R; is not a field for some 1<i<3, then |Z(R)*|>13 which is a
contradiction, so that Ri is a field for all 1<i<3, then by Corollary2.3, |Z(R1XR2XR3)"| =
|R1||R2|+|Rz||R3|+|R2||R3|-|R1|-|R2|-|R3|=12. If |R1|=|R2|=2, then |Rs3|=4, so that
R=Z,xZ>xFa. If |R1|=2 and |R2|=3, then |R3|=13/4 which is a contradiction. If |R1/>3 and
|R2]>3, then by Lemma2.6(1) |Z(R)"[>13, which is a contradiction. m

Lemma 3.2: Let R be a ring with |Z(R)*|=12, if R=zR1xR2x...Rn, where Rj is a
local ring for all i>1 , then n=2 if and only if R= Z3XZ11, ZsxFg Or Z7xZ7

Proof: Let R be a ring with |Z(R)*|=12 and let R=R1 XxR> where R1 and R are local
rings. If Ry and Rz are not fields, then |Z(R1xRz2) |=|Ra|X|mz|+|Raz|x|ma|-|mzim2|-1=12.

If [m1|=2, then |R1|=4. So that, |R2|=13/2 - |[m2|. Since, |m.| is an integer , then |R2| is
not an integer which is a contradiction.

If |m1>3, then [R1[>8 and, since |m2[>2, [R2j>4 ,then 12=|Z(R)"|> 21 which is also a
contradiction.

If |R1| is a field and |R2| is not a field, then |R2|+|m2||R1|-|m2|=12 which this leads to
a contradiction. If Ry and R are fields, then |Ri+|R2|=14 which implies that
|R1|=3,|R2|=11 or |R1|=5,|R2|=9 or |R1|=|R2|=7. Therefore R=Z3xZ11, ZsxFg or Z7x Z7 . m
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Lemma 3.3: Let R be a ring with |Z(R)*|=12. Then, R=Z>XZoxFs, Z3xZ11, Z5XFo,
Z7XZ7, Z1eo OF Z13[X]/(X?)

Proof: Let R = R: X Rz ...x Rn, where Ri is a local ring. If n>4, then by Lemma 2.7
|Z(R)"|>14. If n=3 , then R=Z,XZoXFs. If n=2 , then R= Z3xZ11 ZsxFy or Z7xZ7. If n=1
and R is a field, then Z(R)={0} which is a contradiction. If R is a local ring, then
|Z(R)|=Im|-1=12, so that |m|=13. Therefore, |R|=169, which implies that R=Zigg or
Z13[X]/(X?). m

Theorem 3.4: Let R be a ring with |Z(R)|[*=12, then the graphs depicted in the
following figures can be realized as I'(R)

Figure (1) Figure (2) Figure (3) Figure (4) Figure (5)

Proof: By Lemma 3.3; R=Z,XZ2XFa, Z3XZ11, ZsXFo, Z7XZ7, Z1ee 0Or Z13[X]/(X?)

. In Figure (1), can be realized as I'(Z2xZ2XFs). Figure (2) , can be realized as
['(Z3xZ11). Figure (3) , can be realized as I'(Z7xZ7). Figure (4) , can be realized as
['(Z7xZ7) . Figure (5) , can be realized as I'(Z169) or I'(Z13[X]/(X)?). m

4. Rings with |Z(R)*|=13

The main aim of this section is to find all possible zero divisor graphs of 13
vertices and rings correspond to them.

We shall start this section with following lemma.

Lemma 4.1 : Let R be a ring with |Z(R)*|=13, if R=R1xR2x...Rn, where R; is a
local ring for all =1 , then n=3 if and only if R=ZoXZ3xZs, Z:XZXxZ4 or
ZoXZoxZo[X]/(X?).

Proof : Let R be a ring with |Z(R)"|=13 and let R=R1xR2xR3, where Ri local rings
for all 1 <i<3 .IfR;is not a field, for some 1 < i1, iz < 3, then |Z(R1XR2xR3)"[>27
which is a contradiction.

If Rs is not a field and Ry and R2 are fields, then |Z(RixR2)|=|R1|+|R2|-1 and
IZ(R1XR2xRs)"|=|Ru||R2[Imsf+(|Ra[+|R2|-1)(|Rsl-Ims[)-1 , so that [Rul|Ra]|msl+(IRy[+|Ral-
D(IRsf-Ims[)=14

If |R1|=|R2=2, then |gr, |:wwhich implies that |Rs| =4 and |ms|=2. Therefore,

R=ZoXZoXZa OF ZoXZoXZo[X]/(X?) . If |[R1/>2 and |[R2[>3, and since |R3>4 and |m3[>2,
then 13=|Z(R1XR2XR3)"[>2.3.2+(2+3-1)(4-2)-1>19 which is a contradiction. If R; is a
field for all 1 <1< 3, then

|R1||Rz2|+|R1||R3|+|R2||R3|-|R1|-|R2|-|R3|=13. If |R1|=|Rz2|, then |R3| = 13/2 which is a
contradiction. If |R1|=2, |R2|=3 , then |R3|=3 so that R=Z>xZ3xZ3. If |R1|=2 and |R2|=4 ,
then |R3|=11/5 which is a contradiction. If |R1|=2 and |R2|=5, then |R3|=5/3 which is a
contradiction. If |R1|=2 and |R2|>7 , then [R3|<1 which is a contradiction. If |R1/>3 and
|R2/>4 , then |R3|<4/3 which is a contradiction. m

Lemma 4.2 : Let R be a ring with [Z(R)*|=13, if R=zR1xR2x...Rn, where R; is a
local ring for all i>1 , then n=2 if and only if R= Z>XxZ13, FaxZ11 or Z7XFs.
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Proof : Let R be a ring with |Z(R)"|=13 and let R=R1xR2, where R; and Rz local
rings. If Ry and R are not fields, then

|Z(R1XR2) ‘|=|R1|Im2|+|Rz2||m1|-|m1|m2|=14. If |m1|=2, then |R1|=4, so that |R2|=7-|m;]|
which is a contradiction. If [mi|,|m2[>3, then [R1|,|R2[>8, so that |Z(R1XR2)"|>3.8+8.3-3.3-
1=38 which is a contradiction. If Ry field and R local not field, then |Ri||m2|+|R2|-
|[m2]=14 which implies that |R2|=14-(|R1|-1)|m2|. If |R1|=2, then |R2|=14-|m2| which is a
contradiction. If |R1|=3, then |R2|=14-2|mz| which is a contradiction. If |R1|=4, then
|R2|=14-3|m2| which is a contradiction. If |Ri|=5, then |Rz|=14-4|mz| which is a
contradiction. If |R1/>7, then |Z(R1XR2)‘|> 15 which is a contradiction. Therefore, Ry and
R> are fields, which imply that |R1[+|R2|=15 and, hence |R1|=2, |R2|]=13 or |R1|=4, |R2|=11
or |R1|=7, |R2|=8. Therefore, R=Z>xZ13, F4xZ11 or Z7xFs. m

Lemma 4.3: Let R be a ring with |Z(R)'|=13, then R=ZyXxZyxZs,
ZoXZoxZo[X]/(X?), R= ZoxZas, FaxZa1 or Z7xFs.

Proof: Let R = R: X R2 ...x Rn, Where Ri is a local ring. If n>4, then by Lemma 2.7
|Z(R)|>14. If n=3 , then R=ZyXZoXZ4 OF ZoXZoXZo[X]/(X?) Lemma 4.1. If n=2 , then
R= ZyxZ13, FaxZ11 or Z7xFg Lemmad.2. If n=1 and R is a field, then Z(R)={0} which is
a contradiction. If R is a local ring, then |Z(R)"|=m-1=13, so that [m|=14 which is also a
contradiction. m

Theorem 4.4: Let R be a ring with |Z(R)["=13, then the graphs depicted in the
following figures can be realized as I'(R)

Figure (1) Figure (2) Figure (3) Figure (4)

Proof: By Lemma 4.3 R=ZoXZoxZa, ZaXZoxZ2[X]/(X?), Z2XxZ13, FaxZi1 or Z7xFe.
Figure (1) can be realized as I'(Z2xZ2xZa) or T(Z2xZ2xZ2[X]/(X)?. Figure (2) can be
realized as I'(Z>xZ13). Figure (3) can be realized as I'(FsxZ11) and Figure (4) can be
realized as I'(Z7xZs).
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