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ABSTRACT 

 The Hosoya polynomials of Steiner n-distance of the sequential join 

of graphs J3
 and J4

 are obtained and the Hosoya polynomials of Steiner 3-

distance of the sequential join of m graphs 
mJ  are also obtained. 
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 لبيانات الجمع التتابعي n-ستينرلمسافة هوسويا  حدوددات متعد
 رش عبدالل يه
جامعة صلاح الدين ، كلية العلوم  

 30/01/2008القبول: اريخ ت                                  26/11/2007تاريخ الاستلام: 

 الملخص
لكل من بيانات الجمع  n-ث ايجاد متعددات حدود هوسويا لمسافة ستينرتضمن هذا البح

J3التتابعي 
J4و  

لبيان الجمع التتابعي  3-تم ايجاد متعددات حدود هوسويا لمسافة ستينر كما 

mJ ـل m .من البيانات 
 ، متعددة حدود هوسويا، الجمع التتابعي.n-مسافة ستينرالكلمات المفتاحية: 

1. Introduction 

We follow the terminology of [2,3]. For a connected graph 

),( EVG =  of order p, the Steiner distance[5,6,7] of a non-empty subset 

)(GVS  , denoted by )(SdG , or simply )(Sd , is defined to be the size of the 

smallest connected subgraph T(S) of G that contains S; T(S) is a tree called 

a Steiner tree of S. If |S|=2, then d(S) is the distance between the two 

vertices of S. For pn 2  and |S|=n, the Steiner distance of S is called 

Steiner n-distance of S in G.  The Steiner n-diameter of G, denoted by 

Gdiamn
*  or simply )(

*
Gn , is defined by: 

  nSGVSSdGdiam Gn == ||),(:)(max
* . 

Remark 1.1.  It is clear that 

(1) If n m , then GdiamGdiam mn
**  . 

(2) If SS  , then )()( SdSd GG  . 
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 The Steiner n-distance of a vertex )(GVv , denoted by ),(
*

GvWn , is 

the sum of the Steiner n-distances of all n-subsets containing v. The sum of 

Steiner n-distances of all n-subsets of )(GV  is denoted by )(Gdn  or )(
*

GWn . 

It is clear that 




−=

)(

**
),()(

GVv

nn GvWnGW
1 .      ...(1.1) 

The graph invariant )(
*

GWn  is called Wiener index of the Steiner n-distance 

of the graph G. 

Definition 1.2[1] Let ),(
*

kGCn  be the number of n-subsets of distinct 

vertices of G  with Steiner n-distance k. The graph polynomial defined by 




−=

=

*

),();(
**

n

nk

k
nn xkGCxGH

1

,      ...(1.2) 

where 
*
n  is the Steiner n-diameter of G; is called the Hosoya polynomial 

of Steiner n-distance of G. 

It is clear that 




−=

=

*

),()(
**

n

nk

nn kGkCGW

1

      ...(1.3) 

 

For pn 1 , let ),,(
*

kGuCn  be the number of n-subsets S of distinct 

vertices of G containing u with Steiner n-distance k. It is clear that 

 101 =),,(
*

GuC . 

 Define 




−=

=

*

),,();,(
**

n

nk

k
nn xkGuCxGuH

1

.     …(1.4) 

Obviously, for pn 2   




=

)(

**
);,();(

GVu

nn xGuH
n

xGH
1

.     …(1.5) 

 

Ali and Saeed [1] were first who studied this distance-based graph 

polynomial for Steiner n-distances, and established Hosoya polynomials of 

Steiner n-distance for some special graphs and graphs having some kind of 

regularity, and for Gutman’s compound graphs 21 GG •  and 21 :GG  in 

terms of Hosoya polynomials of G1 and G2. 

Definition 1.3[2] Let G1
, G2

, …, 
mG , m 2 , be vertex disjoint graphs. The 

sequential join of G1
, G2

, …, 
mG  is a graph denoted by  
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m mJ G G G1 2 ...= + + + , 

and defined by 

 
m

m i

i

V J V G
1

( ) ( )
=

= , 

   1...,,2,1,)()( 1

1

−=












= +

=

miforVvandVuvuGEJE ii

m

i

im  

  

 in which 
i iV V G( )= , as depicted in the following figure. 

 

Fig. 1.1 
mJ  

 

It is clear that 

 
m

m i
i

p J p
1

( )
=

= , 
m

m m i i i
i

q J q q p p
1

1
1

( ) ( )
−

+
=

= + + , 

in which  

i ip p G( )=  and 
i iq q G( )= . 

One can easily see that for 
m

i
i

m G
1

3,
=

   is not commutative, that is 

for m=3   G G G G G G1 2 3 1 3 2+ +  + + . 
 

 In [8], Saeed obtained the (ordinary) Hosoya polynomials of mJ , 

and in [7], Herish obtained the Steiner n-diameter of the sequential join of 

m empty graphs and of m complete graphs. Also, the Hosoya polynomials 

of Steiner distance of the sequential join of m empty graphs and of m 

complete graphs were obtained. For m 3  and n 2 , the Steiner n-diameter 

of the sequential join of   m complete graphs is given by[7] 

     

m

n m

m

m n if n p p
diam J

m n if p p n p

1*

1

3, 2

3 , 1 ,

+ −   +
= 

+ − −  + +  

  

where   is the smallest integer such that  …(1.6) 

G1
 G2

 
mG 1−

 mG
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     


=

++++

1

11 1

i

imm rppnpp . 

It is obvious that Eq. 1.6 holds for the sequential join of m graphs mJ . 

In this paper, a generalization of the results obtained in [7] is given. 

We obtained the Hosoya polynomials of Steiner n-distance of J3
 and J4

; 

and the Hosoya polynomials of Steiner 3-distance of 
mJ , m 4 . We also 

obtained 
nH J x
*

3( ; ) , for n 2  and 
mH J x

*
3 ( ; ) , for m 4 , where each of 

iG , 

for  i m1,2,...,=  is a special graph.  

2. Hosoya Polynomials of Steiner n-Distance of J
3

and J
4

 

 In this section, we consider  
mJ , for m=3 and m=4. Let S be any n-

subset of vertices of 
mJ . Let 

iB G( ) , for i m1,2,...,= , be the number of all n-

subsets S such that S  is connected in 
iG . The following proposition 

determines the Hosoya polynomials of Steiner n-distance of J3 . 

Proposition 2.1.  For n p p p p1 2 33 ( )  = + + , 

 nn
n xCxCxJH 2

1
13

*
);( += − , 

where  

p p p p
C B G B G B G

n n n

1 2 2

1 1 2 3( ) ( ) ( )
+     

= − − + + +     
     

,  

p p p
C B G B G B G

n n

2 1 3

2 1 2 3( ) ( ) ( )
+   

= + − + +      
   

, 

and 

 B G B G1 2( ), ( ) and B G3( )  are as defined above. 

Proof. It is clear that  

n

n if n p p
diam J

n if otherwise

1 3*
3

, 3

1, .

  +
= 

−

 

Therefore,  
nn

n xCxCxJH 2
1

13
*

);( += −  

in which C1 is the number of all n-subsets of V(J3) with Steiner distance 

equals n-1, and C2 is the number of all n-subsets of V(J3) with Steiner 

distance equals n. 

Therefore, 
n

i

i
i j

p p p
C B G

n j n j

3 1
1 3

2
1 1

( )
−

= =

     
= − +     

−     
   
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      p p p
B G B G B G

n n

2 1 3

1 2 3( ) ( ) ( )
+   

= + − + +      
   

. 

 

 

Now, since  









=+

n

p
CC 21 , 

therefore 

p
C C

n
1 2

 
= − 
 

p p p p
B G B G B G

n n n

1 3 2

1 2 3( ) ( ) ( )
+     

= − − + + +     
     

 

This completes the proof. 
 

The following corollary computes the n-Wiener index of J3 . 

Corollary 2.2. For n p p p p1 2 33 ( )  = + + , 

n

p
W J n C

n

*
3 1( )

 
= − 

 

, 

where C1
 is given in Proposition 2.1. 

 

     Next, we shall find the Hosoya polynomials of Steiner n-distance of J4 .  

Proposition 2.3. For n p p p p p1 2 3 43 ( )  = + + + , 

 n n n
nH J x C x C x C x
* 1 1

4 1 2 3( ; )
− += + + , 

where  

   
n n i

i j

p p p p p p
C

i j n i j i j n i j

2 1
1 2 3 2 3 4

1
1 1

− − −

= =

        
= +        

− − − −        
   

n i jn n i

i j k

p p p p

i j k n i j k

13 2
1 2 3 4

1 1 1

− − −− − −

= = =

    
+     

− − −    
   i

i

B G
4

1

( )
=

+  

p p p p p p

n n n

1 2 2 3 3 4+ + +     
+ + +     
     

p p p p

n n n n

1 2 3 4
2 2

       
− − − −       
       

,  

  

  
n n i

i j

p p p p
C

n i j n i j

2 1
1 2 3

2
1 1

− − −

= =

      
= −       

− −      
   

       
n i jn n i

i j k

p p p p

i j k n i j k

13 2
1 2 3 4

1 1 1

− − −− − −

= = =

    
−     

− − −    
   i

i

B G
4

1

( )
=

−  

        p p p p p p p p

n n n n

1 2 2 3 3 4 1 4+ + + +       
− − − −       
       
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        p p p p

n n n n

1 2 3 4
2 2 2 2
       

+ + + +       
       

, 

 

 

and 

p p p p
C

n n n

1 4 1 4

3

+     
= − −     
     

. 

Proof. It is clear that 
nn diam J n
*

41 1−   + , therefore the Hosoya 

polynomials of Steiner n-distance of J4
 has the following form 

n n n
nH J x C x C x C x
* 1 1

4 1 2 3( ; )
− += + + . 

To find C1
, C2

 and C3
, let S be any n-subset of vertices of J4

, then 

we have the following possibilities for the subset S. 

(I) d S n( ) 1= −  if and only if S has any of the following subcases: 

(1) S is a subset of 
iV , for i 1,2,3,4=  and S  is a connected subgraph of 

iG . The number of these n-subsets is given by 

  B G B G B G B G1 2 3 4( ) ( ) ( ) ( )+ + + . 

(2) 
k kS V V 1+  and (

kS V    
kS V 1+  ), k 1,2,3= . 

The number of these subsets S is given by  
n n n

i i i

p p p p p p

i n i i n i i n i

1 1 1
1 2 2 3 3 4

1 1 1

− − −

= = =

        
+ +        

− − −        
  

p p p p p p p p p p

n n n n n n n

1 2 2 3 3 4 1 2 3 4
2 2

+ + +             
= + + − − − −             
             

,  

(3) (
i i

i

S V S V
3

1=

    ) or (
i i

i

S V S V
4

2=

    ). The number of 

these n-subsets is given by 
n n i

i j

p p p p p p

i j n i j i j n i j

2 1
1 2 3 2 3 4

1 1

− − −

= =

        
+        

− − − −        
   

(4) 
iS V   , i 1,2,3,4= . The number of these n-subsets is given by 

n i jn n i

i j k

p p p p

i j k n i j k

13 2
1 2 3 4

1 1 1

− − −− − −

= = =

    
    

− − −    
    

From (1), (2), (3) and (4), we get C1
 as given in the statement of the 

proposition. 

(II) d S n( ) 1= +  if and only if S V V1 4  and ( S V1    and 

S V4   ). The number of these S’s is given by 
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n

i

p p p p p p

i n i n n n

1
1 4 1 4 1 4

1

−

=

+        
= − −        

−        
 . 

So, C3
 is as given. 

Now, since p
C C C

n
1 2 3

 
+ + =  

 

, 

therefore 

p
C C C

n
2 1 3

 
= − − 
 

. 

This completes the proof. 

Remark. The triple summation in C1
 is taken to be zero when n=3. 

The following corollary computes 
nW J
*

4( ) . 

Corollary 2.4. For n p p p p p1 2 3 43 ( )  = + + + , 

n

p
W J n C C

n

*
4 1 3( )

 
= − + 

 

, 

where C1
 and C3

 are given in Proposition 2.3. 

Remark. For m 5 , the calculation of the coefficients of 
n mH J x
*
( ; )  is 

complicated. 

 The numbers B G1( ) , B G2( )  and B G3( )  are given in Proposition 2.1 

can be counted for some specific graphs G1
, G2

 and G3
 as in the following 

examples. 

Example 2.5. Let 
pN

1

, 
pN

2

 and 
pN

3

be empty graphs of orders p1
, p2

 and 

p3
 respectively, then 

 
p p pB N B N B N

1 2 3
( ) ( ) ( ) 0.= = =  

Example 2.6. Let 
pK

1

, 
pK

2

 and 
pK

3

be complete graphs of orders p1
, p2

 

and p3
 respectively, then 

 
i

i

p

p
B K

n
( )

 
=  
 

, for i 1,2,3= . 

Example 2.7. Let P
1
, P

2
 and P

3
be path graphs of orders 

1 , 
2  and 

3  

respectively, then 

 
i iB P n( ) 1 =  − + , for  i 1,2,3= . 



Herish O. Abdullah 
 

 

 92 

Example 2.8. Let C
1
, C

2
 and C

3
be cycle graphs of orders 

1 , 
2  and 

3  respectively, then 

 
i iB C( ) =  , for  i 1,2,3= . 

 

Example 2.9. Let W
1
, W

2
 and W

3
be wheel graphs of orders 

1 , 
2  and 

3  respectively, then 

 
i

i

iB W
n

1
( ) 1

1


 − 
= +  − 

− 

, for  i 1,2,3= . 

Example 2.10. Let 
i i

K , 
, for  i 1,2,3= , be complete bipartite graphs of 

partite sets of size 
i  

i  , then 

 
i i

i i i i
B K

n n n
,( ) 

 +        
= − −     
     

, for  i 1,2,3= . 

3. Hosoya Polynomials of Steiner 3-Distance of mJ  (m 5 ) 

 In this section, we consider 
m mJ G G G1 2 ...= + + + , for m 5 . The 

following theorem determines Hosoya polynomials of Steiner 3-distance of 

mJ . 

Theorem 3.1. For m 5 , 
m m

j i
m i j i j

j i i

H J x A Bx x p p p p x
1

* 2 11
3 2

1 1

( ; ) ( ) ( 2)
−

− +

= + =

= + + + −   

     
jm m

j i

i j r
j i i r

p p p x
12

2 1 1

−−
−

= + = =

 
+  

 
   , 

where  

i

m

i
i v V

v
A

1

deg
2

2= 

  
= −   

   
  , 

m
i

i

p
B A

1 3=

 
= − 

 
 , 

in which i , for i m1,2,...,=  is the number of non-identical triangles K3
 as 

a subgraph in 
iG . 

Proof. Let S  be any 3-subset of vertices of 
mJ , then we have three main 

cases for the subset S . 

(I) If 
iS V , for i m1,2,...,= , then 

(a) d S( ) 2= , when S  is a connected subgraph in 
iG , and by Lemma 

3.4.4. of [7], the number of such 3-subsets S is given by 
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i

m

i
i v V

v
A

1

deg
2

2= 

  
= −   

   
  . 

(b) d S( ) 3= , when S  is a disconnected subgraph in 
iG , and the 

number of such 3-subsets S is given by 

 
m

i

i

p
B A

1 3=

 
= − 

 
 . 

Case(I) produces the polynomial 

  F x A Bx x
2

1( ) ( )= + . 

(II) Either two vertices of S are in 
iV  and one vertex of S in 

jV , i j , or 

one vertex of S in 
iV , and two vertices of S in 

jV , for mji 1 . For 

each such cases of S,  

  1)( +−= ijSd , 

and the number of ways of choosing such S is given by 

  
+=

−

= 



















+








m

ij

m

i

i
j

j
i

p
p

p
p

1

1

1
22

, 

and, this produces the polynomial 

  
+=

−

=

+−−+−=

m

ij

m

i

ij
jjiiij xppppppxF

1

1

1

1
2 11

2

1
)]()([)(  

          
+=

−

=

+−−+=

m

ij

m

i

ij
jiji xpppp

1

1

1

12
2

1
)(  

(III) One vertex of S in 
iV , one vertex in 

jV , 2+ ij , and the third vertex 

in 
rV , jri  .  For such case  

  ijSd −=)( , 

 and the number of all possibilities of such S is 

   
+=

−

=

−

+=












m

ij

m

i

j

ir

rji ppp

2

2

1

1

1

, 

 and this produces the polynomial 

   
+=

−

=

−
−

+=













=

m

ij

m

i

ij
j

ir

rji xpppxF

2

2

1

1

1

3 )( . 

 

Now adding the polynomials )(),( xFxF 21  and )(xF3 obtained in (I), 

(II) and (III), we get the required result. 
 

The numbers A and B are given in Theorem 3.1 can be counted 

when 
iG , for i m1,2,...,= , has a special form, as in the following examples. 
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Example 3.2. Let 
ipN , for i m1,2,...,=  be empty graphs of orders 

ip , then 

 A 0=  and 
m

i

i

p
B

1 3=

 
=  

 
 . 

Example 3.3. Let 
ipK , for i m1,2,...,=  be complete graphs of orders 

ip , 

then 

 
m

i

i

p
A

1 3=

 
=  

 
  and B 0= . 

Example 3.4. Let 
i

P , for i m1,2,...,=  be path graphs of orders 
i , then 

 
m

i
i

A p m
1

2 2
=

=  − = −    and 
m

i

i

B p m
1

2
3=

 
= − + 

 
 . 

Example 3.5. Let 
i

C
, for i m1,2,...,=  be cycle graphs of orders i , then 

 
m

i
i

A p
1=

=  =  and 
m

i

i

B p
1 3=

 
= − 

 
 . 

Example 3.6. Let 
i

W
 for i m1,2,...,=  be wheel graphs of orders i , then 

 

i

m m
i

i i i
i v V i

v
A

1 1

deg 3 1
2 ( 1) 2( 1)

2 2 2=  =

    −     
= −  =  − + −  −        

         
    

    
m

i

i 1 2=

 
=  

 
 , 

and 

 
m m m

i i

i i i
i i i

B 1
6

1 1 1

( 1)( 5)
3 2= = =

    
= − =   −  −   

   
   . 

Example 3.7. Let 
i i

K , 
, for  i m1,2,...,= , be complete bipartite graphs of  

partite sets of size 
i  

i  , then it is known that 
i i

K , 
contains no odd cycles, 

and so 
i 0 = , for  i m1,2,...,= . 

Hence, 

 
m m

i i

i i i i i i
i i

A 1
2

1 1

( 2)
2 2= =

     
=  +  =    +  −    

    
  ,  

and  
m

i i

i i i i
i

B 1
2

1

( 2)
3=

  +  
= −    +  −  

  
 . 
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