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ABSTRACT

In this paper we study one of the applications of a generalized
curvature [3] on the generalized envelope of a family of lines given in [7],
[8], using some concepts of nonstandard analysis given by Robinson, A. [5]
and axiomatized by Nelson, E..
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1- Introduction:
The following definitions and notations are needed throughout this

paper.
Every concept concerning sets or elements defined in classical
mathematics is called standard [4].
Any set or formula which does not involve new predicates “standard,
infinitesimals, limited, unlimited...etc” is called internal, otherwise it is
called external [2], [4].

A real number X is called unlimited if and only if |X| > r for all

positive standard real numbers, otherwise it is called limited [2].
A real number X is called infinitesimal if and only if |x| < r for all

positive standard real numbersr [2].
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Two real numbers xand y are said to be infinitely close if and only
iIf X —y isinfinitesimal and denoted by X = y [2], [6].

If X is a limited number in R, then it is infinitely close to a unique
standard real number, this unique number is called the standard part of X
or shadow of X denoted by st(x)or °x [2], [4].

If X is a real limited number, then the set of all numbers, which are
infinitely close to X, is called the monad of x and denoted by m (x)[2], [3].

A curve v is called envelope of a family of curves {y,} depending
on a parameter ¢ , if at each of its points, it is tangent to at least one curve
of the family { 7, }, and if each of its segments is tangent to an infinite set of

these curves [1].
The projective homogenous plane over R, denoted by P2 is the

set:
P2 =R*{one point atoo for each equivalence classes of parallel lines },we

denoted it by (PHP) [1].
The projective homogeneous coordinates of a point p(x,y)eR?

are(xa, ya,a ), where « is any nonzero number, we denote it by (PHC).
In this sense the projective homogeneous coordinates of any point is not
unique. [1]

By a parameterized differentiable curve, we mean a differentiable
map y: | — R?® of an open interval | =(a,b) of the real line R intod R*such
that: v (©)=(x(t), yt), z(t)) = x(t)ei+ y(t)e2+ z(t)es, and X, y, and z are
differentiable at t ; it is also called spherical curve [2].

Definition 1.1 [7]

Let A=y(t) be a standard point on the curve y, then the following
cases occur for the point A with the existence of the order of derivatives
ofy:
1-1f y'#0,y"#0 and y"-y" # 0 then the point is called biregular point.

2- If vy’ # 0 then the point is called regular point.

3-1f y"#0 and y"-y" =0 then the point is called only regular point, and
we say that the point is only regular point of order p-1 if y"#0 and
Y =y"=-. =y =0, but y'-y*’ 20. In this case we say that p is
the order of the first vector derivative not Ccollinear with y’

4- 1f y" =0 then the point is called singular point. In general if
Y =y"=-..=y*" =0 but y'*) =0, then the point is called singular

point of order p.
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Theorem 1.2 [7]

Let y be a standard curve of order C"and A be a standard singular
point of order p-1 on y; and let B and C be two points infinitely close to the
point A, then the generalized curvature of y at the point denoted by K, and
given by . .

KG - (p !)p |X(p)y @) _X(q)y (p)| _ (p !)p |7,(p) ><},(q)| ,

q+p q
2 2\ 2p 1o, |[p ™
qx®?+y® q!ly

where q is the order of the first vector derivative of y not collinear with
Y(p) .
Theorem 1.3 [7]

If pk(t)= r(t)= q(t)=0 for 1 <k <n (n standard) and pn(t), rn(t), gn(t)
are not all zeros, then the PHC points of vy (t) are of the form (pn(t), ra(t),

gn(t)) which does not depend on € . Thus, we get the generalized nonclassical
form of the envelope curve vy (t) as follows:

(x(t),y(t)):(xe_a) mj

Z,@t) Z.(t)

(v ew)-wtvE) wOtu)-u™ew(t)
Lu®Ev©)-vOeuE) u®Ev)-vOeu(t)

2- A Generalized Curvature of the Envelope of a Family of Lines
Throughout this section, we give a curvature formula for the

envelope of a family of lines Lt ‘u(t)x + v(t)y + w(t)z =0 represented by the

components u, v, and w .

It is clear that every two infinitely closed points (points in the same
monad) on the envelope curve of a family of lines determine two infinitely
close lines in that monad.

That is,V A(to),B(to) € v (to), where B(to+ o) € m(A(to)) there exists

a line Lt . E{Lt} such that L, . > L, in m(A(to)), where m(A(to)) denotes

t,+a

the monad of the point A, where ¢ is an infinitesimal number.
For finding curvature formula of the envelope of a family of lines,
we follow the following algorithm.
1. Find the envelope curve using Theorem 1.3 according to the case
under consideration.
2. Find the singularity and collinearity order of the envelope curve.
3. Consider three infinitely closed points A(to), B(to+ o) and C(to+f)

on the envelope curveg (t) such that
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Alt)el, ,B(tota) el, , andC(te+p) € Lt0+b

4. Apply the generalized curvature formula given in Theorem 1.2 at
the points A(to), B(to+ o) and C(to+ ).
Where «and g are infinitesimal numbers.

The following theorems will give a new formula of the generalized
curvature of the envelope of a family of lines.

Theorem 2.1
Let A= (to) be a regular point of the envelope curve y of the family

L, - u(t)X + v()Y +w(t)Z =0 in PHC, then the generalized curvature K . of

the envelope curve at a point A is given by

‘(r'(t)Q"(t)—r"(t)fl'(t))2 +(p"(M)'®) -p't)a"@)) +(p'Or"€)-p"M)r'e))
2|ty +q'ty +r'(t)2|3

where p(t), r (t) and q(t) are as given in Theorem 1.3 for n=1

1

oL

2

Proof:
Let A= y(to) be a standard point on the envelope of the curve v, and

B=1v(tta), C=vy(t+p) be two points infinitely close to A. Let L , L, ,
and L,,, be three lines of the family {Lt} having A ,B and C as contact
points with the envelope curve, respectively.

Then;
L, : u®X+v(t)Y +w(t)Z =0,
L, - ut+e)X+v(t+ )Y +w(t+1g)Z =0,
L., @ ut+e)X+v(t+1g)Y +w(t+1g)Z =0.

Since, the point A is regular, then Theorem 1.3 for n=1 is satisfied,
and therefore vy ()= (pw(t), r(t), qu(t))
Using the spherical case of the generalized curvature given in
Theorem 1.2 foracurve y = (x(t),y(t),Z(t)), we get
1
‘(y IZ " _y Irz r)2 + (X NZ ’r _XIZ /r)2 + (le " _Xuy r)2 F
) 2

.. (2.12)

G

(W

2 2 72
X' +y"“ +z

Now replacing each of X, y and Z by pu(t), ru(t) and qu(t),
respectively, we get the required result. m

Theorem 2.2
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Let A= vy (to) be a singular point of the envelope curve y of order
n-1, and let m be the order of the first nonzero derivative which is not
collinear with y (™(t), that is,y () = y "(t)=--=y ™I(t) =0, y™"(t)#0, and
Y@y 0=y OO0y "Q=-=0y Q0. y ™D()==y ODO. () y ™(1)=0,

y O().y M(®)#0

Then, the generalized curvature K of the envelope curve vy at the
points of the monad of A is given by

(n) (r‘”’q(m)—r("‘)q(”)z+(p(””q(”)—p(”)q(””)2+(p(”’r(m)—p(m)r(“))2
m+n
2n

N =

m
n

..(22.1)

0?2 o)

2
m! [p™ +q

Moreover, the Cartesian coordinate of the generalized curvature K,
of the envelope curve y at the points of the monad of A is given by

[p(t))(n) (r(t)j(m)_[p(t))(m)(r(t)j(n)
q() a() a() q()

m +n
2n

..(2.2.2)

(n)n

o [p(t)j(n)z_k (r(t)j(ﬂ)z
a) a)

where n and m are positive integer numbers.

Proof:

First, applying the spherical case of the generalized curvature given
in Theorem 1.2 at X =pa(t), Y =ri(t) and zZ =qi(t), we get the generalize
curvature formula (2.2.1). Since the point (pu(t), ri(t), gu(t)) in PHC is
equivalent to the point (pi(t)/ga(t),re(t)/gu(t),1), so again, applying the
spherical case of generalized curvature, we get

m 2 2 2
K _(n!)n (y(n)z(m)_y(m)z(n)) +(Z(n)x(m)_z(m)x(n)) +(X(n)y(m)_x(m)y(n))
G-

m+n
2n

1
2

..(2.2.3)

m I +y(”)2+z(“)2

Thus, putting X =p1(t)/qs(t),y =ri(t)/qu(t) and z =1, in (2.2.3), we
obtain the formula (2.2.2). m
Corollary 2.3

Let A= y(to) be a singular point of the envelope curve y satisfying

the hypothesis of Theorem 2.2.
Moreover, let the coefficient vector (u(t), v(t), w(t)) of the envelope
curve has a singularity of order n-1, then the generalized curvature K, of

the envelope curve y at points in the monad of A is given by
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1

’.(23.1)

2

(1) 08, €) =T 08, ) + (P €, €) =Py ) ©) +(P0 O ©) =P OF, €))

P +ar ) +ry O]
and the cartesian coordinate curvature K (t) of the envelope
curve y at A iSFiven by

N Pn(t)j rm(t)]_[pm(t)j(rn(t)j‘
Y [qn(t) g, ®) ) la, ©)\a, @) ..(2.3.2)

(pn(t)f+ (ran
q, t) q, t)

(nhn

m!

2n

m!
Proof:
By Theorem 2.2 we have
1
m 2
KG (t) :(I’] !)n (r(n)q(m)_r(m)q(n)) +(p(m)q(n)_p(n)q(m)) +(p(n)r(m)_p(m)r(n)) 2

n)2

2 2
m!p® +q®™ +r

Since the coefficient vector (u(t), v(t), w(t)) of the envelope curve
has a singularity of order n-1,s0 we get
u'(t):v'(t):W'(t):'--:u(”'L)(t):v(”'l)(t)zw(”'l)(t):0,

and  (UM(t),v(t),wM(t))# 0

Therefore,
p™(t) = v t)w(t)-w(t)v(t)=p(t)
r(t) = w@)ut)-uM(©)w(t)=rn(t) ...(2.33)

a™() = U OVO)-VO[OuB)=an ()
Hence, the result of the first part is proved.
To prove the second part put X =pn(t)/gn(t) ,y¥ =rn(t)/gn(t) and z =1 and
then apply the spherical curvature formula (2.2.3) to obtain the formula
(23.2). =
Corollary 2.4

Let A= vy (to) be a singular point of the envelope curve y satisfying
the hypothesis of Theorem 2.2. Let(] y(t) = (p(t), r(t), q(t)) be such that q(t)
has a nonzero constant value, then the generalized curvature K, of the
envelope curve y at points of the monad of A is given by
(Y (PO O -p"Or O)| 0 41

.q n
m+n q

2n

mt [p®()+r? ()
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Proof:
Without loss of generality we use the cartesian coordinate form (2.2.2) of
Theorem 2.2 to obtain

(p(t)j‘”) (r(t)j(m) _(p(t)j‘m) [r(t)j‘”)
at)) lac) at)) la@

[p(t)j(n)z+ (r(t)](")z
q() q()

Since the value of q(t) is constant, we get

(n !)"3[1] PO™r €™ —p©)™r )"
KG(t): q m +n

m!@} "o re)ef

m
n

m

Ko )=(")"

... (2.4.2)

m!

m+n
2n

(Y (PO Q=P O Of | g
= m+n q " .

m! |p?(t)+r’(t) "

Remark 2.5
If q(t)=0 then, by using either equation (2.2.1) or the equation
(2.3.1), we can find a spherical generalized curvature K , but it does not

represent a real curvature of the envelope curve . We shall call such value of
curvature Ideal Curvature of a curve y at points of the monad of A=y (o).

Example 2.6
Consider the family of lines 2x - 3ty + t3 =0
By applying the algorithm given at the beginning of this section, we

get
u=2 u =0 u'=0 u” =0
v =-3t V' =-3 v'=0 v’ =0
w =2t3 W' =612 w =12t w =12
Now we determine the singularity and collinearity
v(0)=(0,0) v (0)=(0,0) v (0)=(0,2) v7(0)=(12,0)

Thus vy has a first singularity order (that is n=2) and the order of
collinearity is equal to 3. The envelope curve y (t) is given by
Xe (1),Ye (1),Z¢e(t))

=(v'(w(t)-w () v(t),w' Rut)-u'(tw(t),u'E)v(t)-v'(tu(t)
= (613,612,12)
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Since the value of g(t) is constant, so using Corollary 2.4, we get,

@Y (PP Or 2O -p O OO)| o2 )

G = 342 -q _\/6_
31 |p*(t)+r?(t)f2

Note that if we use the cartesian coordinate, we find that v (t) is
equal to

xO.Y0)=( X Yo )_(VEOWD-wENE) wEu)-uEwe)
Z,t)" Z,(t)) (u'tv@)-vEut) u'ne)-viEue)
=(1/2)(t3, t?)
Here y also has a first singularity order (that is n=2) and the order of

collinearity is equal to 3. Thus by using the usual two dimensional forms of
the generalized curvature, we get, (see Figure 2.3)

(202

(O O -x" ey 0) | @ippio 31|

Ko = T 2| =2
2 2 31 ((3t)% +(1)? 2=
@) @) 2x2 : +
3t [x® o)+ @0 o
N AN W LN o e U i Y ] [ ] B ] I Sy, e Sy e o ey S ez
SO
S S S ST TS S TSN e [ e | ] S L S T A S e 7 S
S N O O R e B e e e b o i e e
eSS SRS S e =/ ==
ST T e P e gy =
: S S
<> o=
<)

AV

\/

AWV
/\

Y

N

A
W

a=-4.9 (family of 99 , step 0.1)
2 2
y=gaxt

X"2-y"3=0

Figure 2.3

Remark: The graph of the equation of the above example is plotted with
specific software Omnigraph V3.1b-2005.
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