# A Generalized Curvature of a Generalized Envelope

## Tahir H. Ismail

Ibrahim O. Hamad

tahir hsis@uomosul.edu.iq College of computers Sciences and Mathematics University of Mosul

ibrahim.hamad@su.edu.krd College of Sciences

Received on: 27/6/2007

Salahaddin University Accepted on: 4/11/2007

# **ABSTRACT**

In this paper we study one of the applications of a generalized curvature [3] on the generalized envelope of a family of lines given in [7], [8], using some concepts of nonstandard analysis given by **Robinson**, A. [5] and axiomatized by Nelson, E..

**Keywords:** infinitesimals, monad, envelope, generalized curvature

# حول الانحناء المعمم للغلاف المعمم

إبراهيم عثمان حمد

طاهر حسن إسماعيل

كلية علوم الحاسوب والرباضيات، جامعة الموصل كلية العلوم، جامعة صلاح الدين

تاريخ قبول البحث: 2007/11/4

تاريخ استلام البحث: 2007/6/27

# الملخص

الهدف من هذا البحث هو دراسة بعض تطبيقات الانحناء المعمم [3] على الغلاف المعمم لعائلة من المستقيمات معطاة [7]،[8] باستخدام بعض مفاهيم التحليل غير القياسي الذي أوجده Robinson, A. [5] ووضعه .Nelson, E بأسلوب منطقي.

الكلمات المفتاحية: ما لانهاية من الصغر، هالة، غلاف، انحناء معمم.

#### 1- Introduction:

The following definitions and notations are needed throughout this paper.

Every concept concerning sets or elements defined in classical mathematics is called **standard** [4].

Any set or formula which does not involve new predicates "standard, infinitesimals, limited, unlimited...etc" is called internal, otherwise it is called external [2], [4].

A real number x is called **unlimited** if and only if |x| > r for all positive standard real numbers, otherwise it is called **limited** [2].

A real number x is called **infinitesimal** if and only if |x| < r for all positive standard real numbers *r* [2].

Two real numbers x and y are said to be **infinitely close** if and only if x - y is infinitesimal and denoted by  $x \cong y[2], [6]$ .

If x is a limited number in  $\mathbb{R}$ , then it is infinitely close to a unique standard real number, this unique number is called the **standard part** of x or **shadow** of x denoted by st(x) or x [2], [4].

If x is a real limited number, then the set of all numbers, which are infinitely close to x, is called the **monad** of x and denoted by m(x)[2],[3].

A curve  $\nu$  is called **envelope** of a family of curves  $\{\gamma_{\alpha}\}$  depending on a parameter  $\alpha$ , if at each of its points, it is tangent to at least one curve of the family  $\{\gamma_{\alpha}\}$ , and if each of its segments is tangent to an infinite set of these curves [1].

The projective homogenous plane over  $\boldsymbol{R}\,,$  denoted by  $\,\,\boldsymbol{P}_{\!R}^{2}\,$  is the set:

 $P_R^2 = R^2 \cup \{\text{one point at } \infty \text{ for each equivalence classes of parallel lines } \}, we denoted it by <math>(PHP)$  [1].

The **projective homogeneous coordinates** of a point  $p(x,y) \in \mathbb{R}^2$  are  $(x\alpha, y\alpha, \alpha)$ , where  $\alpha$  is any nonzero number, we denote it by (PHC). In this sense the projective homogeneous coordinates of any point is not unique. [1]

By a **parameterized differentiable curve**, we mean a differentiable map  $\gamma: \mathbf{I} \to \mathbf{R}^3$  of an open interval  $\mathbf{I} = (a,b)$  of the real line  $\mathbf{R}$  into  $\square \mathbf{R}^3$  such that:  $\gamma(t) = (x(t), y(t), z(t)) = x(t)e_1 + y(t)e_2 + z(t)e_3$ , and x, y, and z are differentiable at t; it is also called **spherical curve** [2].

## **Definition 1.1** [7]

Let  $A = \gamma(t)$  be a standard point on the curve  $\gamma$ , then the following cases occur for the point A with the existence of the order of derivatives of  $\gamma$ :

- 1- If  $\gamma' \neq 0$ ,  $\gamma'' \neq 0$  and  $\gamma' \cdot \gamma'' \neq 0$  then the point is called **biregular** point.
- 2- If  $\gamma' \neq 0$  then the point is called **regular** point.
- 3- If  $\gamma' \neq 0$  and  $\gamma' \cdot \gamma'' \neq 0$  then the point is called **only regular** point, and we say that the point is only regular point of order p-1 if  $\gamma' \neq 0$  and  $\gamma' = \gamma'' = \cdots = \gamma^{(p-1)} = 0$ , but  $\gamma' \cdot \gamma^{(p)} \neq 0$ . In this case we say that p is the order of the first vector derivative not  $\square$  **collinear** with  $\gamma'$
- 4- If  $\gamma' = 0$  then the point is called **singular** point. In general if  $\gamma' = \gamma'' = \cdots = \gamma^{(p-1)} = 0$  but  $\gamma^{(p)} \neq 0$ , then the point is called **singular** point of order p.

## **Theorem 1.2** [7]

Let  $\gamma$  be a standard curve of order  $C^n$  and A be a standard singular point of order p-1 on  $\gamma$ ; and let B and C be two points infinitely close to the point A, then the generalized curvature of  $\gamma$  at the point denoted by  $K_G$  and given by

$$K_{G} = \frac{(p!)^{\frac{q}{p}} |x^{(p)}y^{(q)} - x^{(q)}y^{(p)}|}{q!(x^{(p)^{2}} + y^{(p)^{2}})^{\frac{q+p}{2p}}} = \frac{(p!)^{\frac{q}{p}} |\gamma^{(p)} \times \gamma^{(q)}|}{q! |\gamma^{(p)}|^{\frac{q}{p}+1}},$$

where q is the order of the first vector derivative of  $\gamma$  not collinear with  $\gamma^{(p)}$ .

## **Theorem 1.3** [7]

If  $p_k(t) = r_k(t) = q_k(t) = 0$  for  $1 \le k \le n$  (n standard) and  $p_n(t)$ ,  $r_n(t)$ ,  $q_n(t)$  are not all zeros, then the *PHC* points of  $\gamma(t)$  are of the form  $(p_n(t), r_n(t), q_n(t))$  which does not depend on e. Thus, we get the generalized nonclassical form of the envelope curve  $\gamma(t)$  as follows:

$$(x(t),y(t)) = \left(\frac{X_{e}(t)}{Z_{e}(t)}, \frac{Y_{e}(t)}{Z_{e}(t)}\right)$$

$$= \left(\frac{v^{(n)}(t)w(t) - w^{(n)}(t)v(t)}{u^{(n)}(t)v(t) - v^{(n)}(t)u(t)}, \frac{w^{(n)}(t)u(t) - u^{(n)}(t)w(t)}{u^{(n)}(t)v(t) - v^{(n)}(t)u(t)}\right)$$

## 2- A Generalized Curvature of the Envelope of a Family of Lines

Throughout this section, we give a curvature formula for the envelope of a family of lines  $L_t: u(t)x + v(t)y + w(t)z = 0$  represented by the components u, v, and w.

It is clear that every two infinitely closed points (points in the same monad) on the envelope curve of a family of lines determine two infinitely close lines in that monad.

That is,  $\forall A(t_o), B(t_o) \in \gamma(t_o)$ , where  $B(t_o + \alpha) \in m(A(t_o))$  there exists a line  $L_{t_o + a} \in \{L_t\}$  such that  $L_{t_o + a} > L_{t_o}$  in  $m(A(t_o))$ , where  $m(A(t_o))$  denotes the monad of the point A, where  $\alpha$  is an infinitesimal number.

For finding curvature formula of the envelope of a family of lines, we follow the following algorithm.

- 1. Find the envelope curve using **Theorem 1.3** according to the case under consideration.
- 2. Find the singularity and collinearity order of the envelope curve.
- 3. Consider three infinitely closed points  $A(t_o)$ ,  $B(t_o+\alpha)$  and  $C(t_o+\beta)$  on the envelope curve g(t) such that

$$A(t_o) \in L_{t_o}$$
,  $B(t_o + \alpha) \in L_{t_o + a}$  and  $C(t_o + \beta) \in L_{t_o + b}$ 

4. Apply the generalized curvature formula given in **Theorem 1.2** at the points  $A(t_o)$ ,  $B(t_o+\alpha)$  and  $C(t_o+\beta)$ .

Where  $\alpha$  and  $\beta$  are infinitesimal numbers.

The following theorems will give a new formula of the generalized curvature of the envelope of a family of lines.

## Theorem 2.1

Let  $A = (t_0)$  be a regular point of the envelope curve  $\gamma$  of the family  $L_t : u(t)X + v(t)Y + w(t)Z = 0$  in *PHC*, then the generalized curvature  $K_G$  of the envelope curve at a point A is given by

$$\frac{\left|\left(r'(t)q''(t)-r''(t)q'(t)\right)^{2}+\left(p''(t)q'(t)-p'(t)q''(t)\right)^{2}+\left(p'(t)r''(t)-p''(t)r''(t)-p''(t)r''(t)\right)^{2}\right|^{\frac{1}{2}}}{2\left|p'(t)^{2}+q'(t)^{2}+r'(t)^{2}\right|^{\frac{3}{2}}}, \dots (2.1.1)$$

where p(t), r(t) and q(t) are as given in **Theorem 1.3** for n=1

## **Proof:**

Let  $A = \gamma(t_o)$  be a standard point on the envelope of the curve  $\gamma$ , and  $B = \gamma(t_o + \alpha)$ ,  $C = \gamma(t_o + \beta)$  be two points infinitely close to A. Let  $L_t$ ,  $L_{t+a}$  and  $L_{t+b}$  be three lines of the family  $\{L_t\}$  having A, B and C as contact points with the envelope curve, respectively. Then;

$$\begin{split} L_t &: u(t)X + v(t)Y + w(t)Z = 0, \\ L_{t+a} &: u(t+\varepsilon)X + v(t+\square\varepsilon)Y + w(t+\square\varepsilon)Z = 0, \\ L_{t+b} &: u(t+\varepsilon)X + v(t+\square\varepsilon)Y + w(t+\square\varepsilon)Z = 0. \end{split}$$

Since, the point *A* is regular, then **Theorem 1.3** for n=1 is satisfied, and therefore  $\gamma(t) = (p_1(t), r_1(t), q_1(t))$ 

Using the spherical case of the generalized curvature given in **Theorem 1.2** for a curve  $\gamma = (x(t), y(t), z(t))$ , we get

$$K_{G} = \frac{\left| (y'z'' - y''z')^{2} + (x''z' - x'z'')^{2} + (x'y'' - x''y')^{2} \right|^{\frac{1}{2}}}{2 \left| x'^{2} + y'^{2} + z'^{2} \right|^{\frac{3}{2}}} \qquad \dots (2.1.2)$$

Now replacing each of x, y and z by  $p_I(t)$ ,  $r_I(t)$  and  $q_I(t)$ , respectively, we get the required result.

#### Theorem 2.2

Let  $A = \gamma(t_0)$  be a singular point of the envelope curve  $\gamma$  of order n-I, and let m be the order of the first nonzero derivative which is not collinear with  $\gamma^{(n)}(t)$ , that is,  $\gamma'(t) = \gamma''(t) = \cdots = \gamma^{(n-I)}(t) = 0$ ,  $\gamma^{(n)}(t) \neq 0$ , and  $\gamma'(t)$ .  $\gamma'''(t) = \gamma'(t) \square$ .  $\gamma'''(t) = \cdots = \square \gamma'(t) \square$ .  $\gamma^{(m-I)}(t) = \cdots = \gamma^{(n-I)} \square$ .  $\gamma^{(m-I)}(t) = 0$ ,  $\gamma^{(n)}(t)$ .  $\gamma^{(m)}(t) \neq 0$ 

Then, the generalized curvature  $K_G$  of the envelope curve  $\gamma$  at the points of the monad of A is given by

$$\frac{\left(n!\right)^{\frac{m}{n}}\left|\left(r^{(n)}q^{(m)}-r^{(m)}q^{(n)}\right)^{2}+\left(p^{(m)}q^{(n)}-p^{(n)}q^{(m)}\right)^{2}+\left(p^{(n)}r^{(m)}-p^{(m)}r^{(n)}\right)^{2}\right|^{\frac{1}{2}}}{m!\left|p^{(n)^{2}}+q^{(n)^{2}}+r^{(n)^{2}}\right|^{\frac{m+n}{2n}}}\qquad \dots (2.2.1)$$

Moreover, the Cartesian coordinate of the generalized curvature  $K_G$  of the envelope curve  $\gamma$  at the points of the monad of A is given by

$$\frac{\left(n!\right)^{\frac{m}{n}}\left|\left(\frac{p(t)}{q(t)}\right)^{(n)}\left(\frac{r(t)}{q(t)}\right)^{(m)}-\left(\frac{p(t)}{q(t)}\right)^{(m)}\left(\frac{r(t)}{q(t)}\right)^{(n)}\right|}{m!\left|\left(\frac{p(t)}{q(t)}\right)^{(n)^{2}}+\left(\frac{r(t)}{q(t)}\right)^{(n)^{2}}\right|^{\frac{m+n}{2n}}} \dots(2.2.2)$$

where n and m are positive integer numbers.

## **Proof:**

First, applying the spherical case of the generalized curvature given in **Theorem 1.2** at  $\mathbf{x} = p_I(t)$ ,  $\mathbf{y} = r_I(t)$  and  $\mathbf{z} = q_I(t)$ , we get the generalize curvature formula (2.2.1). Since the point  $(p_I(t), r_I(t), q_I(t))$  in *PHC* is equivalent to the point  $(p_I(t)/q_I(t), r_I(t)/q_I(t), I)$ , so again, applying the spherical case of generalized curvature, we get

$$K_{G} = \frac{(n!)^{\frac{m}{n}} \left| \left( y^{(n)} z^{(m)} - y^{(m)} z^{(n)} \right)^{2} + \left( z^{(n)} x^{(m)} - z^{(m)} x^{(n)} \right)^{2} + \left( x^{(n)} y^{(m)} - x^{(m)} y^{(n)} \right)^{2} \right|^{\frac{1}{2}}}{m! \left| x^{(n)^{2}} + y^{(n)^{2}} + z^{(n)^{2}} \right|^{\frac{m+n}{2n}}} \dots (2.2.3)$$

Thus, putting  $\mathbf{x} = p_I(t)/q_I(t)$ ,  $\mathbf{y} = r_I(t)/q_I(t)$  and  $\mathbf{z} = \mathbf{I}$ , in (2.2.3), we obtain the formula (2.2.2).

# **Corollary 2.3**

Let  $A = \gamma(t_0)$  be a singular point of the envelope curve  $\gamma$  satisfying the hypothesis of **Theorem 2.2**.

Moreover, let the coefficient vector (u(t), v(t), w(t)) of the envelope curve has a singularity of order n-1, then the generalized curvature  $K_G$  of the envelope curve  $\gamma$  at points in the monad of A is given by

$$\frac{\left(n!\right)^{\frac{m}{n}}\left|\left(r_{n}(t)q_{m}(t)-r_{m}(t)q_{n}(t)\right)^{2}+\left(p_{m}(t)q_{n}(t)-p_{n}(t)q_{m}(t)\right)^{2}+\left(p_{n}(t)r_{m}(t)-p_{m}(t)r_{n}(t)\right)^{2}\right|^{\frac{1}{2}}}{m!\left|p_{n}^{2}(t)+q_{n}^{2}(t)+r_{n}^{2}(t)\right|^{\frac{m+n}{2n}}} \dots (2.3.1)$$

and the cartesian coordinate curvature  $K_{c}(t)$  of the envelope

curve 
$$\gamma$$
 at  $A$  is given by
$$\underbrace{\left(n!\right)^{\frac{m}{n}} \left[ \frac{p_n(t)}{q_n(t)} \right] \left( \frac{r_m(t)}{q_m(t)} \right] - \left( \frac{p_m(t)}{q_m(t)} \right) \left( \frac{r_n(t)}{q_n(t)} \right)}_{m \cdot l \cdot l} \qquad \dots (2.3.2)$$

$$m \cdot l \cdot \left[ \frac{p_n(t)}{q_n(t)} \right]^2 + \cdot \cdot \left( \frac{r_n(t)}{q_n(t)} \right)^2 \left| \frac{r_n(t)}{r_n(t)} \right| = \frac{r_n(t)}{r_n(t)} \left( \frac{r_n(t)}{r_n(t)} \right) \left( \frac{r_n(t)}$$

#### **Proof:**

By **Theorem 2.2** we have

$$K_{G}(t) = \frac{\left(n!\right)^{\frac{m}{n}} \left| \left(r^{(n)}q^{(m)} - r^{(m)}q^{(n)}\right)^{2} + \left(p^{(m)}q^{(n)} - p^{(n)}q^{(m)}\right)^{2} + \left(p^{(n)}r^{(m)} - p^{(m)}r^{(n)}\right)^{2} \right|^{\frac{1}{2}}}{m! \left| p^{(n)^{2}} + q^{(n)^{2}} + r^{(n)^{2}} \right|^{\frac{m+n}{2n}}}$$

Since the coefficient vector (u(t), v(t), w(t)) of the envelope curve has a singularity of order *n-1*, so we get

$$u'(t)=v'(t)=w'(t)=\cdots=u^{(n-1)}(t)=v^{(n-1)}(t)=w^{(n-1)}(t)=0,$$

 $(u^{(n)}(t),v^{(n)}(t),w^{(n)}(t))\neq 0$ and

Therefore.

$$\begin{array}{l}
p^{(n)}(t) = v^{(n)}(t)w(t)-w^{(n)}(t)v(t)=p_n(t) \\
r^{(n)}(t) = w^{(n)}(t)u(t)-u^{(n)}(t)w(t)=r_n(t) \\
q^{(n)}(t) = u^{(n)}(t)v(t)-v^{(n)}(t)u(t)=q_n(t)
\end{array}$$
...(2.3.3)

Hence, the result of the first part is proved.

To prove the second part put  $x = p_n(t)/q_n(t)$ ,  $y = r_n(t)/q_n(t)$  and z = 1 and then apply the spherical curvature formula (2.2.3) to obtain the formula **(2.3.2).** ■

## **Corollary 2.4**

Let  $A = \gamma(t_0)$  be a singular point of the envelope curve  $\gamma$  satisfying the hypothesis of **Theorem 2.2**. Let  $\gamma(t) = (p(t), r(t), q(t))$  be such that q(t)has a nonzero constant value, then the generalized curvature  $K_G$  of the envelope curve  $\gamma$  at points of the monad of A is given by

$$\frac{\left(n!\right)^{\frac{m}{n}}\left|\left(p^{(n)}(t)r^{(m)}(t)-p^{(m)}(t)r^{(n)}(t)\right)^{2}\right|}{m!\left|p^{2}(t)+r^{2}(t)\right|^{\frac{m+n}{2n}}}\cdot q^{\frac{m-n}{n}} \qquad \dots (2.4.1)$$

#### **Proof:**

Without loss of generality we use the cartesian coordinate form (2.2.2) of **Theorem 2.2** to obtain

$$K_{G}(t) = \frac{\left(n!\right)^{\frac{m}{n}} \left(\frac{p(t)}{q(t)}\right)^{(n)} \left(\frac{r(t)}{q(t)}\right)^{(m)} - \left(\frac{p(t)}{q(t)}\right)^{(m)} \left(\frac{r(t)}{q(t)}\right)^{(n)}}{\left(\frac{r(t)}{q(t)}\right)^{(n)^{2}} + \left(\frac{r(t)}{q(t)}\right)^{(n)^{2}} \left(\frac{r(t)}{q(t)}\right)^{(n)^{2}}} \dots (2.4.2)$$

Since the value of q(t) is constant, we get

$$K_{G}(t) = \frac{(n!)^{\frac{m}{n}} \left(\frac{1}{q}\right)^{2} \left| p(t)^{(n)} r(t)^{(m)} - p(t)^{(m)} r(t)^{(n)} \right|}{m! \left(\frac{1}{q}\right)^{\frac{m+n}{n}} \left| p(t)^{(n)^{2}} + r(t)^{(n)^{2}} \right|^{\frac{m+n}{2n}}}$$

$$= \frac{(n!)^{\frac{m}{n}} \left| \left( p^{(n)}(t) r^{(m)}(t) - p^{(m)}(t) r^{(n)}(t) \right)^{2} \right|}{m! \left| p^{2}(t) + r^{2}(t) \right|^{\frac{m+n}{2n}}} \cdot \mathbf{q}^{\frac{m-n}{n}} . \blacksquare$$

#### Remark 2.5

If q(t)=0 then, by using either equation (2.2.1) or the equation (2.3.1), we can find a spherical generalized curvature  $K_G$ , but it does not represent a real curvature of the envelope curve. We shall call such value of curvature **Ideal Curvature** of a curve  $\gamma$  at points of the monad of  $A=\gamma$   $(t_0)$ .

# Example 2.6

Consider the family of lines  $2x - 3ty + t^3 = 0$ 

By applying the algorithm given at the beginning of this section, we get

$$u = 2$$
  $u' = 0$   $u'' = 0$   $u''' = 0$   
 $v = -3t$   $v' = -3$   $v'' = 0$   $v''' = 0$   
 $w = 2t^3$   $w' = 6t^2$   $w'' = 12t$   $w''' = 12$ 

Now we determine the singularity and collinearity

$$\gamma(0)=(0,0)$$
  $\gamma'(0)=(0,0)$   $\gamma''(0)=(0,2)$   $\gamma'''(0)=(12,0)$ 

Thus  $\gamma$  has a first singularity order (that is n=2) and the order of collinearity is equal to 3. The envelope curve  $\gamma(t)$  is given by

$$(X\varepsilon(t),Y\varepsilon(t),Z\varepsilon(t)) = (v'(t)w(t)-w'(t)v(t),w'(t)u(t)-u'(t)w(t),u'(t)v(t)-v'(t)u(t))$$

$$= (6t^3.6t^2.12)$$

Since the value of q(t) is constant, so using Corollary 2.4, we get,

$$K_{G} = \frac{(2!)^{\frac{3}{2}} \left| \left( p^{(2)}(t) r^{(3)}(t) - p^{(3)}(t) r^{(2)}(t) \right)^{2} \right|}{3! \left| p^{2}(t) + r^{2}(t) \right|^{\frac{3+2}{2\times 2}}} \cdot q^{\frac{3-2}{2}} = \frac{1}{\sqrt{6}} \cdot \sqrt{12} = \sqrt{2}$$

Note that if we use the cartesian coordinate, we find that  $\gamma(t)$  is equal to

$$(x(t),y(t)) = \left(\frac{X_{e}(t)}{Z_{e}(t)}, \frac{Y_{e}(t)}{Z_{e}(t)}\right) = \left(\frac{v'(t)w(t)-w'(t)v(t)}{u'(t)v(t)-v'(t)u(t)}, \frac{w'(t)u(t)-u'(t)w(t)}{u'(t)v(t)-v'(t)u(t)}\right)$$

$$= (1/2)(t^{3}, t^{2})$$

Here  $\gamma$  also has a first singularity order (that is n=2) and the order of collinearity is equal to 3. Thus by using the usual two dimensional forms of the generalized curvature, we get, (see **Figure 2.3**)

$$K_{G} = \frac{\left(2!\right)^{\frac{3}{2}} \left| \left(x^{(2)}(t)y^{(3)}(t) - x^{(3)}(t)y^{(2)}(t)\right)^{2} \right|}{3! \left| \left(x^{(2)}(t)\right)^{2} + \left(y^{(2)}(t)\right)^{2} \right|^{\frac{3+2}{2\times2}}} = \frac{\left(2!\right)^{\frac{3}{2}} \left| 3t \cdot 0 - 3 \cdot 1 \right|}{3! \left| \left(3t\right)^{2} + \left(I\right)^{2} \right|^{\frac{3+2}{2\times2}}} = \sqrt{2}$$

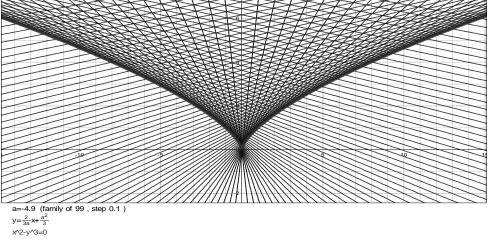


Figure 2.3

**Remark:** The graph of the equation of the above example is plotted with specific software **Omnigraph V3.1b-2005**.

## **REFERENCES**

- [1] Carmo, M. (1976); Differential Geometry of Curves and Surfaces, Prentice-Hall, INC, New York.
- [2] Diener, F.& Diener M. (1996); Nonstandard Analysis in Practice, Springer-Verlag, Berlin, Heilde Berg.
- [3] Keisler, H. J. (2005); Elementary Calculus-2ed-An Infinitesimal Approach, Creative Commons, 559 Nathan Abbott, Stanford, California, 93405, USA.
- [4] Nelson, E. (1977); Internal set Theory-A New Approach to Nonstandard Analysis, *Bull. Amer. Math. Soc*, Vol.83, No.6, pp.1165-1198.
- [5] Robinson, A. (1974); Nonstandard Analysis 2<sup>ED</sup>, North-Holland Pub.Comp.
- [6] Rosinger, E. E(**2004**); Short Introduction to Nonstandard Analysis, arXiv: math. GM/0407178 v1 10 Jul.
- [7] Tahir H. Ismail & Ibrahim O. Hamad(2006); On Generalized Curvature, *Raf. J. Comp. Sc. and Maths.*, Vol. 3, No.2, pp.83-98.
- [8] Tahir H. Ismail & Ibrahim O. Hamad; A Nonstandard Generalization of Envelopes, To Appear