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ABSTRACT 

 In this paper an iterative method for the fixed point is used to obtain 

an approximation solution for the Fredholm integral equations of the second 

kind by using several problems with different accuracy .Also we have 

proposed a successful improvement for the iterative fixed point method. A 

number of different tests are solved and compared in order to study the 

effectiveness of the proposed technique. 
Keywords: fixed point method, Fredholm integral equations of the second 

kind. 

الحل التقريبي لمعادلات فردهولم التكاملية لإيجاداستخدام الطريقة التكرارية للنقطة الصامدة   

 عباس يونس البياتي
 كلية علوم الحاسوب والرياضيات، جامعة الموصل 

 7/9/2002تاريخ قبول البحث:    4/8/2002تاريخ استلام البحث: 

 الملخص
الحل التقريبي  دلا يجاة للنقطة الصامدة في هذا البحث تم استخدام الطريقة التكراري 

، باستخدام عدد من المسائل  للحصول على نتائج  دهولم التكاملية من النوع الثانيلمعادلات فر 
عددية بدقة معينة . فضلًا عن هذا فقد تم تحسين الطريقة التكرارية للنقطة الصامدة وتم حل عدد  

 .لعددية لبيان اهمية الطريقة المستخدمة نظرياً وعملياً مقارنة النتائج ا تالتطبيقية وجر من المسائل 
 من النوع الثاني.  معادلات فردهولم التكاملية، نقطة الصامدةطريقة ال الكلمات المفتاحية:

1- Introduction: 

 An equation, which contains an unknown function under the integral 

symbol, is called integral equation. A general example for general equation 

may be expressed as follows: Let 

 (s) = f (s)+  K(x,t) u(t)dt     …(1) 

Here K(x,t) is a well-known function with two different variable and it is 

called the kernel of the integral equation; the function f(x) is a known 

deriving term; and the function u(x) is un-known. (See for example Delves 

et al. 1985; Jerri, 1985; Athinso, 1997; Karashor et al. 1971). 

The mathematical representation for a number of some special problems 

occur naturally by an integral equation. Some other problems, which are 
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represented as differential equations with some conditions, may also be 

translated to an integral equation. There are some applications for the 

integral equation, such as "Electrostatic of anisotroic inclusions in anistropic 

media" by Helsing and Samulssan 1995; and "Flexural wave scattering in a 

conducting plate under a uniform magnetic field" by Shindo et al. 1997; also 

" Internal semi-infinite plane" by Goryaheva et al 1996; and "Solution of the 

two dimensional problem of earache in a uniform field in eddy- current non-

destructive evaluation" by Harfield and Bowler 1995; and Abelis problems 

described in porter 1993. 

To study the standard methods for the integral equations with one 

dimensional equation inside the Fredholm integral equation of the form: 

 +=

b

a

t)u(t)dt k(x,  (x) f  h(x)u(x)      …(2) 

where x, t defined on integral [a,b] and A is parameter; when h(x)=1, we 

obtain 

 +=

b

a

t)u(t)dt k(x,  (x) f  u(x)      …(3) 

which is called Fredholm integral equation of the second kind while when 

h(x)=0, we will obtain 

 =
b

a

t)u(t)dt k(x,    (x) f       …(4) 

this is called Fredholm integral equation of the first kind. In the eq.(3) and 

eq.(4) if the k(x,t)=0, when t >x then 

 +=

x

a

t)u(t)dt k(x,  (x) f  u(x)      …(5) 

and 

 =

x

a

t)u(t)dt k(x,   f(x)       …(6) 

 

These equations are called volterra equations of the second and first kinds. 

In eq.(2), when f(x)=0 this gives 

 =

x

a

t)u(t)dt k(x,   u(x)       …(7) 

this equation is called Homogeneous Fredholm equation. Also if in eq.(7), 

k(x,t)=0,  at t >x then 

 =
x

a

t)u(t)dt k(x,  u(x)       …(8) 
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this equation is called Homogeneous volterra equation. All the forms 

eq.(3) to eq.(8) represent linear integral equations for unknown function 

u(x): 

 

2- Modification for Iterative Formulation: 

 The Fredholm integral equation of the second kind defined in 

eq.(3) can be written in a matrix form as follows: 

 U = f + KU       …(9) 

There are several numerical techniques used to solve eq.(3) successfully, 

one of these techniques is a numerical series technique which can be 

expressed as follows: 

 


=

=

0i

ii fKU        …(10a) 

and as truncation formulation 

 
=

=

n

i

ii
n fKUU

0

      …(10b) 

 

if series defined in eq.(l0a) converges then 0=−
→

|UU|lim n
n

, hence the 

approximation Un can be obtained by using the successive method, for 

which 

 nn kUfU +=+1         ...(11)                           

which the initial value U0=f the clearly notation of this function is defined 

by 

 KU = 
b

a

n(t)dtt)U K(x,  

Now for the improved iterative formula defined in eq.(11), suppose that                                                               

 )U(MU nn =+1
       ...(12)                            

And hence M(Un ) = f + KU . Now writing eq.(12)in a specific 

arrangement by adding u to both sided of eq.(12) with  -1 gives          

(1 +)u = u + M(u) this equation yields 

 )u(Mu)u(Nu 
+


+

+
=

11

1
     ...(13)  

                  If u* satisfies eq.(12), then it must satisfy eq.(13) this means 

that u* is a solution of eq.(11), hence the iterative formula 

 )u(Mu nn + =1        ...(14) 

Converges faster to the solution u than the iterative formula are defined in 

eq.(11). Our choice for choosing the optimal value of the parameter /3 

depends on the following formula 

 )GD(/ += 21        ...(15) 
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where 

  

  )u(MD

)u(MG

b,a

b,a

sup

inf

=

=
      ...(16) 

for more details of this specified choice see Davies 1987. 

3- Fixed Point and Contractive mapping: 

 The very basic iterative method that we employed 

 +=+ dt)t(u)t,x(k)x(fun 1      …(17) 

was constructing solution, and the convergence of the sequence was 

constructing solutions, and the convergence of the sequence un(x) to u(x) 

has been studied for the original integral equation 

 += ,dt)t(u)t,x(k)x(f)x(u      ...(18) 

 Our treatment in this paper has been directed toward solving only 

linear integral equation as defined in eq.(18). The integral in eq.(18) is 

looked at in the following way, the right-hand side is considered as a 

mapping or transformation T on u denoted by T(u), while the left-hand 

side indicates that the transformation had left this one element u 

unchanged. 

  u=T(u)       ...(19) 

This means that the solution u which we seek for the integral eq.(18) 

represented a very special element in the domain of the operator T. 

namely; that which remains unaltered or fixed under the T transformation. 

Such an element u as defined in eq.(19) is called a fixed point of the 

transformation (or mapping) T. in this sense the successive approximation, 

solution of eq.(17) can be written as 

 )u(Tu nn =+1       n=0,1,2,3, ...     ...(20) 

Definition (1): 

 If a mapping T satisfies the Lipschitz condition on the interval [a,b] 

then there exists a positive constant L, such that 

 Lvu)v(T)u(T −−       ...(21) 

for all values u,v  [a,b], where [a,b] is the space of continuous functions 

closed interval [a,b]. The constant L is called Lipschitz constant. 

Definition (2): 

 A map T is called contraction map on the closed interval [a,b], if it 

satisfies the following conditions: 

1- u E ( [a,b] → T(u)  ( [a,b]. 

This condition is called the closure condition. 
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2- T Lip [a,b] with Lipschitz constant, 0<L<1. For more details of these 

definitions see Davies 1987. Based on the above definitions: Let us 

consider the following theorem. 

 

Theory(1): 

 If T is a contraction mapping on the interval [a,b], then  

a- The equation u=T(u) has a unique solution u* E [a,b]. 

b- For any uo [a,b] the sequence defined in eq.(20) convergence to u*.  

Proof: TLip[a,b] then Tc[a,b]. Also since 

 )u(Tu =        …(22) 

is continuous on the interval [a,b], then we have to prove that it is a unique 

solution to eq.(22).On contrary, suppose that there exists another solution 

v*such that v*  u* which satisfy u*=T(u*), v*=T(v*). 

 This implies that  |u * -v *| = |T(u * -T(v*)|  |  u * -v *| L; 

hence L 1 which is a contradiction to the definition of the Lipschitz 

constant (L1). Since T is contraction mapping on the interval [a,b] →, 

then u* must be unique. 

 Now prove the second part (b) of the above theorem we employed 

the closure condition. 

If uo [a,b], then ur [a,b]; for r=1,2,3,... 

 |ur-1-v*|=|T(ur-1-T(v*)||ur-1-v*|L; 

so that we obtain  

  |ur-1-u*|L|u0-u*| ;  

since 0<L<l, then 0→
→t

rL . This means u r→u* for  r→ .  

This completes the proof of the above theorem. 

Now we are going to use the same technique stated in section 2 to improve 

the fixed-point method. Start with eq.(19); add u to both sides of this 

equation with -1, to get 

 (1 +)u =u + T (u)  ,  

hence 

 )u(Tu)u(Tu 
+


+

+
=

11

1
      …(23)  

 u* = T (u*)    u* = T (u*) 

     T R ( u * )  

is a solution of eq.(3). (see Al-Husen, 1998). 

Now the iterative formula 

 )u(Tu rr + =1 ; (r=0,1,2 ....) …(24)  
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 Converges to the solution u, faster than the iterative formula 

defined in eq.(20); this means that there exists an ideal value for the 

parameter  which gives a faster convergence. Now calculating  from 

eq.(15) and eq.(16) will vanish the process. 

 Now to study the effectiveness of the new procedure, let us 

consider the following example given in Al-Hassan (1998): 

Example (1): Let   dt)t(uxt)x(u +=

1

0

21   

 By using the iterative method for the fixed point, the exact solution 

for the above problem is given by u(x) =1 +4x/9. 

 Now start with initial solution uo(x)=1. By using iterative method 

for fixed point we obtain 

311

1

0

2 /xdt)t(uxt)x(u +=+=   

Similarly continue to get  
 u2(x)=1+5x/12 

 u3(x)=1+7x/16 

 u4(x)=1+85x/192 

 u5(x)=1+341x/768 
 : : 

 : :  

 un (x) =1 +4x/9 , which represent the exact solution. 

The convergence condition in this problem is||<15.Again solving the 

above problem by using the improvement technique start with uo(x)=1, by 

the iterative formula set   

 ++
+


+

+
=+

1

0

2
1

1

1

11

1
dt)t(urxt)x(uu rr        , r=1 2 3 ... 

We have observed that the quantity of approximation solution will be 

obtained with one iteration at the value ( =-0.25), at this value the 

quantity error equals zero. From eq.(15) and eq.(16) opt=-1/6=-0.16667 

by using this value in the iterative procedure we get 
 u1(t)=1+2x/5 

 u2 (x) =1 +11x/25 

 u3 (x) =1 + 111x/250 

 u4 (x) = 1+1111x/2500 

 u5 (x) = 1+11111x/25000 
 : : 

 : :  

 un(x)=1+4x/9 

 Table (1) represents the convergence range of the sequence values 

which has been obtained by using opt=-1/6=-0.16667 compared with the 
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values which have been obtained by using = 0.0 (without improvement). 

The value of en has been calculated at the defined value for x=0.5 the exact 

solution is given by u(0.5) =(1.222222). 

Table (1) 

Comparison between the error of exact and approximation solution at 

defined value for x of example (1) 
 

r 00.=  166670..opt −=  

 en .opte  

0 0.222222 0.222222 

1 0.055555 0.022222 

2 0.13889 2.2222x10-3 

3 3.4722 x10-3 2.222 x10-4 

4 8.68 x10-4 2.22 x10-5 

5 2.17 x10-4 2.2 x10-6 

6 5.42 x10-5 2.0 x10-6 

7 1.35 x10-5 0.0 
 

Clearly from table (1) the new proposed technique is most efficient and its 

value of convergence is quadratic and it saves few iteration in obtaining 

the exact solution when compared with the standard fixed method with out 

loosing any extra evaluations. 

4-  An Accelerated  I terat ive  Method:  

 To accelerate the modified technique discussed in Al-Husen and Al-

Hussan (1998), we may write the kernel equation 

  −=

s

ii dz)t,z(k)z,s(k)t,s(k

0

1  

In the same manner adding  k(s,t) for the both sides of the above equation 

  +=+

s

).t,s(kdz)t,z(k)z,s(k)t,s(k)t,s(k

0

-1   with  

This may be reduced to 

so that 

 ++
+


= 

s

dz)t,z(k)z,s(k)t,s(k)t,s(k

0
1

1

1
 

and hence the new proposed iterative formula becomes: 

+=+

s

dztzkzsktsktsk
0

),(),(),(),()1(  
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  =
+

+
+


=

−− 

s

dz)t,z(k)z,s(k)t,s(k)t,s(k
ii

0

2,3,...i    
1

1

1 11
 

Calculating 8 by formula (15) or (16) gives an effective numerical results. 

Example (2) : Let    +=

s

dt)t(st)s(f)s(

0

            

Solution: 
     k1(s, t) = k(s, t) = st 

 

st)()t,s(k

st)()t,s(k

st)t,s(k

n
n

1

2
3

2

3

1

3

1

3

1

−=

=

=



 

The exact solution of this problem is 

  (s) =1.25  

 opt. can be calculated from eqs.(15), (16), so that opt.= -0.125. 

Using the value of opt. in the new proposed iterative eq.(25) yields: 

 

st)()t,s(k

....

st)()t,s(k

st)()t,s(k

st)t,s(k

n
n

21

5

21

5

21

5

2
3

2

1

=

=

=

=









 

The approximated value of (s) can be calculated from 

  +=

s

dtsts)s(

0

2

5

3
 

so that 

 (s)=1.195 

which is very close to the exact value of the integral. 

5- Conclusion: 

 We have modified an iterative method for fixed point iteration to 

obtain an approximate solution for Fredholm integral equation of the 2nd 

kind. Also we have developed an accelerated version of the method. 
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