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ABSTRACT 

 This paper presents the recently-discovered linear [n,3,d] codes over 

PG(2,29) that arises from a complete (n,r)-arcs which the paper[12] 

presented it for the first time. The aim of this paper is to formulate the 

recently discovered upper bounds and lower bound for (n,r)-arcs as bounds 

that will look familiar to coding theorists.New two lists in this paper 

appeared, the first list of 15 codes arranged from[164,3,156]-code up to 

[704,3,678]-code, the second list of  27 codes arranged from [28,3,25]-code 

up to [776,3,747]-code, they are appeared for the first time in this paper, all 

of these codes we can call them as complete codes as thier definition in this 

paper, they belong to the class of  error-correcting codes (ECC). In this 

paper I made a computer programs to construct these new codes with 

Random Greedy Construction method (RGC)  which is mentioned in [13]. 

Keywords: linear code, complete arc, finite field, Error-correcting 

codes,(n,r)-arcs . 
 PG(2,29)( في n  ،r)-من النمط جديدة أقواس تامةمن الناشئة الخطية شفرات ال

 د عزيزو شعاع محم
 جامعة الموصل ، والرياضيات كلية علوم الحاسوب

 14/10/2008القبول:  اريخت                                16/07/2008تاريخ الاستلام: 
 صخالمل

المستنبطة  code-[n,3,d]يعرض هذا البحث أحدث الشفرات الخطية المكتشفة من النمط  
هدف هذا البحث هو  رة.[ لأول م12والتي ذكرت في ]  arcs-(n,r)من الاقواس التامة  من النمط

ملائمة للمتعاملين   قيودا   تكون ل  arcs-(n,r)من النمط العليا والدنيا للاقواس التامة  صياغة القيود
 بالشفرات. تم في هذا البحث ذكر قائمتين من الشفرات الجديدة يتراوح مدى الاولى بين 

[164,3,156]-code [704,3,678]و-code  [28,3,25]نية بين، ويتراوح مدى القائمة الثا-code 

وأن كل هذه الشفرات تنتمي الى   لأول مرة في هذا البحث، ا،حيث تم ذكره code-[776,3,747]و 
هذا  وتم إعطاؤها تسمية الشفرات التامة حسب تعريفها في  (ECC)فئة شفرات تصحيح الاخطاء

يقة التوّاقة للبناء هذه الشفرات مستخدما  الطر  لإيجادم برنامج حاسوبي ااستخدتم كما  البحث.
 [ . 13المذكورة في المصدر] (RGC)العشوائية
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 .(n  ،r)-اقواستصحيح الأخطاء،  شفرات، نتهي، حقل متام، قوس ةخطي شفرة :مفتاحيةالكلمات ال
1. Introduction ( Linear codes and Error-Correcting Codes ) 

 Communicating information from one person to another is, of 

course, an activity that is as old as mankind. The (mathematical) theory of 

the underlying principles is not so old. It started in 1948, when C.E. 

Shannon gave a formal description of a communication system and, at the 

same time, also introduced a beautiful theory about the concept of 

information, including a good measure for the amount of information in a 

message. 

The theory of error detecting and correcting codes (ECC) is that branch of 

engineering and mathematics which deals with the reliable transmission and 

storage of data. Information media are not 100% reliable in practice, in the 

sense that noise (any form of interference) frequently causes data to be 

distorted. To deal with this undesirable but inevitable situation, some form 

of redundancy is incorporated in the original data. With this redundancy, 

even if errors are introduced (up to some tolerance level), the original 

information can be recovered, or at least the presence of errors can be 

detected. We saw in class how adding to the original message the parity bit 

or the arithmetic sum allows the detection of a (certain type of) error. 

However, that kind of redundancy doesn't allow for the correction of the 

error. Error-correcting codes do exactly this: they add redundancy to the 

original message in such a way that it is possible for the receiver to detect 

the error and correct it, recovering the original message. This is crucial for 

certain applications where the re-sending of the message is not possible (for 

example, for interplanetary communications and storage of data). The 

crucial problem to be resolved then is how to add this redundancy in order 

to detect and correct as many errors as possible in the most efficient way. 

Error-correcting codes are particularly suited when the transmission channel 

is noisy. This is the case of wireless communication. Nowadays, all digital 

wireless communications use error-correcting codes. 

This paper sets new codes that are not known until now, it's codes  appeared 

from (n,r)-arcs in the finite projective plane PG(2,29), this information in 

this research finds new correcting codes that were not known before, so the 

benefit of this paper is to use it's codes in transmitting  security information 

among large distance without using the normal used codes that may be 

exposed it's security .  

2. Preliminary 

 At first I must give some definitions, a linear [n,k,d] code over finite 

field Fq is a k-dimensional subspace of the n-dimensional vector space 

V(n,q) over Fq such that d is the smallest number of positions in which two 

different elements of the code differ [6]. Let PG(2,q) be a finite projective 
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plane Π of order q , where q= 1, hph    this plane consists of q2+q+1 lines 

and the same number of points , q+1 points on every line and q+1 lines 

passing through every point[8]. An (n,r)-arc is a set K of n points in 

PG(2,q) with at most  r points on a line but there are no r+1 or more on any 

line[10], an (n,r)-arc is called complete, if it is not contained in an (n+1,r)-

arc [11]. A line L of the plane containing precisely i points of K,  called an 

i-secant .Let Ti denote the total number of i-secants to K in PG(n,q). 

Hamming distance d on Fn
q× Fn

q  is given by d(x;y) = #{i:  xi ≠ yi}, where x 

= (x1,…, xn) and y = (y1,… yn). The weight of x is defined by w(x) := d(x,o) 

,where o := (0,…,0) [9]. The minimum distance of a code C  Fn
q  is given 

by d(C) := min{d(x,y) : x,y C, x  y}.For  a linear code C  Fn
q  we have 

d(C) = min{w(x): xC|{0}}.Let C  Fn
q  be a linear code of dimension k,a  

generator matrix of C is a  k × n matrix whose rows form an Fq-base of C. 

Let C  Fn
q  be a code, the dual code of C is the code C⊥  defined by 

C⊥ :={x Fn
q: yx, =0, yC},where for  

x = (x1,…, xn), y = (y1,…,yn), yx, :=
=

n

i

ii yx

1

 is the usual bilinear form on 

Fn
q× Fn

q  . 

Note that C⊥  is indeed a linear code. For x  Fn
q , let xt denote its 

transpose. 

2.1 Lemma[3]  Let C  Fn
q  a linear code of dimension k and M a generator 

matrix of C, Then 

(1) C⊥  = { x  Fn
q : Mxt=0}; 

(2) C⊥  has dimension  n-k. 

2.2 Corollary[3]: Let C be a linear code and H a generator matrix of C⊥ . 

Then: 

(1) C = (C⊥ ) ⊥ ; 

(2)  C={ x  Fn
q :Hxt=0}. 

The redundancy of a k-dimensional linear code in Fn
q is n - k. 

A parity check matrix of a linear code is any generator matrix of its dual. 

2.3 Lemma[3]:  Let C be a linear code and H a parity check matrix of C. 

Then: 

(1) There exists x C of weight w if and only if there exist w columns of H 

which are  Fq-linearly dependent. 

(2) We have d(C) = min{wZ +|w columns Fq-linearly dependent in H}. 

2.4 Corollary[5]  (Singleton Bound) For an Fq-linear code of length n, 

dimension k and minimum distance d,  .1 knd −−  
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Definition[3] : An Fq-linear code of length n, dimension k and minimum 

distance d is called maximum distance separable (MDS) if d - 1 = n - k. 

Definition[3] : The Singleton defect of an [n,k,d]-code C is s(C) = n-k+1-d, 

So an MDS code is a code with Singleton defect equal to 0. 

Definition[3] : Let C be an [n,k,d]-code, when the Singleton defect s(C) = 1, 

C is said to be an Almost MDS code (AMDS code for short). 

2.5 Proposition[3]: The dual code of an MDS code is also MDS. 

3. Points of Finite Projective Plane PG(2,29) 

Let f(x)=x3-4x2-x-1 be an irreducible monic polynomial over GF(29) then 

companion matrix T  of  f(x) 

 

 

 

 
 

 is cyclic projectivity on PG(2,29). 

Let  p0 be the point U0=(1,0,0) then pi=p0T
i ,i=0,…,870,are the 871 points of  

PG(2,29). (see Table(1.1)) 
       

Table(1.1) Points of  PG(2,29) 
 

Pi i 
1 0 0 

 
0 

0 1 0 1 
0 0 1 

 
2 

1 1 4 
 

3 
… 
. 
. 

… 
. 
. 

1 8 10 869 
1 4 28 870 

 

4. Relation between linear codes and (n,r)-arcs 

 Write out the points of the (n,r)-arc K as columns of a matrix G, then 

form the code C as linear combinations of the rows of G. So, C is an [n,3,d]-

code. What is d? Think of it in this way. The rows of G are as follows: 

r1 = x1  x2 ...  xn 

r2 = y1  y2 ...  yn 

r3 = z1  z2 ...  zn 

If the line L with equation ax + by + cz =0 contains exactly s points of K, 

then the codeword  

ar1 + br2 + cr3 has weight n - s. This is because, if ax + by + cz is zero for 

the points P1,P2,...,Ps, it is not zero for the other n- s points of K.So, this 

0 1 0

0 0 1

1 1 4

T

 
 

=
 
  
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implies that, since any line contains at most r points, the weight of a 

codeword is at least n-r. Since some line contains exactly r points, so the 

minimum weight d = n-r.  

Further, if you count the numbers Ti for K, where Ti is the number of lines 

meeting K in exactly i points, then the numbers  (q - 1)Ti  give the weight 

distribution of the code.[4] 

Definition: If the (n,r)-arc is complete then we call the corresponding code 

for it a complete code. 

 Hence if one can get  the matrix G so, he gets the code C (where G is 

it's generator matrix).For example if our arc contains from the following 

points {0,2,3,869,870} from  the points of PG(2,29)  so, the generator 

matrix  G will be written as  the coordinates of  each point contains from the 

same arc {0   2    3    869 970} as written here  

G=

















2810410

48100

11101

   on the finite field F29 . For simplicity denote to the 

points by its order in the finite field without typing the coordinates for each 

one.  

5. What is RGC-Method ? 

 When one wants to construct  an object with certain structural 

constrains such as packings, covers, graphs without  certain small subgraphs 

and arcs in a plane, random greedy construction is considered as a natural 

way to generate it : Randomly order all possible elements of the desired 

object and select each of them one by one in the order if and only if it 

together with already selected ones cause no conflict, i.e. no violation to the 

given constrains. Here we mean by "select" that we choose and permanently 

add it to the desired object being constructed. We may discard at each step 

all elements that cause any conflict with already selected ones and then 

randomly select a non-discarded one. This is an equivalent construction and 

will be called the Random Greedy Construction (RGC). For example, the 

RGC of a complete arc is the following. Initially, the arc being constructed 

is empty. At each step, discard all points contained in any secant of already 

selected points and select one non-discarded point uniformly at random. 

Then the set of all selected points is a  complete arc. In many cases, it is 

believed that the RGC yields an almost optimal desired object.[13] 

6.1 First List of ECC  

 It depends on the latest appeared maximum bounds for (n,r)-arcs 

which were not appeared even in [7] nor [2] but only (24,2)-arc appeared in 

[1]. So, I can set them as follows: 

The  following codes are now exist :  



Shua'a M. Aziz 
 

 

 182 

n k d type 

164 3 156 Complete code 

191 3 182 Complete code 

219 3 209 Complete code 

247 3 236 Complete code 

275 3 263 Complete code 

303 3 290 Complete code 

334 3 320 Complete code 

421 3 404 Complete code 

457 3 439 Complete code 

489 3 470 Complete code 

520 3 500 Complete code 

570 3 548 Complete code 

602 3 579 Complete code 

631 3 607 Complete code 

704 3 678 Complete code 

 

6.2 Second List of ECC 

 It depends on the latest appeared minimum bounds for (n,r)-arcs  

which were not appeared even in [2].So, I can set them as follows: 

The  following codes are now exist : 

 

n k d type 

28 3 25 Complete code 

46 3 42 Complete code 

62 3 57 Complete code 

82 3 76 Complete code 

100 3 93 Complete code 

125 3 117 Complete code 

152 3 143 Complete code 

177 3 167 Complete code 

203 3 192 Complete code 

230 3 218 Complete code 

254 3 241 Complete code 
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282 3 268 Complete code 

310 3 295 Complete code 

337 3 321 Complete code 

363 3 346 Complete code 

390 3 372 Complete code 

422 3 403 Complete code 

453 3 433 Complete code 

484 3 463 Complete code 

515 3 493 Complete code 

548 3 525 Complete code 

585 3 561 Complete code 

616 3 591 Complete code 

653 3 627 Complete code 

691 3 664 Complete code 

730 3 702 Complete code 

776 3 747 Complete code 

 

 7. Two samples      

 For example the first two codes from the second list have the 

following generator matrices G1 and G2 respectively  : 
G1 = [ 0    1   12   18   20   27   34   40   82  113  132  142  144  148  271  317        

323  374  389  391   491  564  565  597  615  794  843  870 ]. 

G2 = [ 0    1    4    5   37   47   67   86   93  116  129  161  165  196  212  218 226  

233  249  258  264  278  299  341  374  384  386  391  394  400  439  443  

459  529  587  588  602  611  654  669  699  705  745  786  807  829 ]. 
 

8. Conclusion :  

 This research finds new correcting codes that are not known before, 

so the benefit of this paper is to use it's codes in transmitting  security 

informations among large distance without using the normal used codes that 

may be exposed it's security .  
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